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Abstract

In this paper we deal with second order differential equations with causal operators. To obtain sufficient
conditions for existence of solutions we use a monotone iterative method. We investigate both differential
equations and differential inequalities. An example illustrates the results obtained.
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1. Introduction

Let J = [0, T ], E = C(J,R) and Q ∈ C(E,E). We shall say that Q is a causal operator,
or nonanticipative, if the following property holds: for each couple of elements of E such that
u(s) = v(s) for 0 � s � t, there results (Qu)(s) = (Qv)(s) for 0 � s � t with t < T arbitrary,
for details see [1].

Note that (Q1x)(t) = ∫ t

0 W(t, s, x(s)) ds, t ∈ [0, c) and (Q2x)(t) = h(t, x(t)), t ∈ [0, c) are
examples of causal operators. Indeed, W and h are continuous functions with values in R

p . In
the literature operator Q1 is known under the name “Volterra operator” and Q2 is known as
“Niemytskii operator.”

In this paper, we investigate nonlinear four-point boundary value problems for second order
differential equations with a causal operator Q of the form
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⎧⎪⎨
⎪⎩

x′′(t) = (Qx)(t), t ∈ J = [0, T ],
0 = g1

(
x(0), x(δ)

)
, 0 < δ < T,

0 = g2
(
x(T ), x(γ )

)
, 0 < γ < T,

(1)

where g1, g2 ∈ C(R × R,R). Functional equations with causal operators are discussed in
book [1], see also the references therein. To obtain approximate solutions of nonlinear differ-
ential problems we can apply the monotone iterative technique. This technique is well known
and we have a lot of applications of this method to differential equations both initial and bound-
ary conditions, see for example [3–6,8–12]. Recently, this method is also applied to first order
differential equations with causal operators, see [2] (periodic conditions) and also [7] (nonlinear
boundary conditions). This paper extends the application of this method to nonlinear four-point
boundary problems for second order differential equations with causal operators. In Section 2, we
discuss differential inequalities with positive linear operators to obtain a comparison result. This
result is useful to prove the existence of solutions of problems of type (1). In Section 3, we formu-
late sufficient conditions which guarantee that problem (1) has extremal solutions. A one-sided
Lipschitz condition (with corresponding linear operators) is imposed on the causal operator Q.
The problem when (1) has the unique solution is also investigated. At the end of this section,
an example is added to illustrate theoretical results. In Section 4, we discuss the situation when
problem (1) has quasi-solutions and then also the unique solution.

2. Differential inequalities

To apply the monotone iterative method to problems of type (1) we need a fundamental result
on differential inequalities.

Lemma 1. Assume that:

H1: M ∈ C(J, [0,∞)), M(t) > 0, t ∈ (0, T ), M(0) � 0, M(T ) � 0,
H2: L ∈ C(E,E) is a positive linear causal operator i.e. (Lm)(t) � 0, t ∈ J provided that

m(t) � 0 on J ,
H3: ρ ≡ ∫ T

0 (
∫ T

s
[M(t) + (L1)(t)]dt) ds � 1, where 1(t) = 1, t ∈ J .

Let p ∈ C2(J,R) and{
p′′(t) � M(t)p(t) + (Lp)(t), t ∈ J,

p(0) � 0, p(T ) � 0.

Then p(t) � 0 on J .

Proof. Suppose that the inequality p(t) � 0, t ∈ J is not true. It means that there exists t0 such
that

p(t0) = max
t∈J

p(t) = d > 0.

Note that p′′(t0) � 0 and p′(t0) = 0, t0 ∈ (0, T ).
Case 1. Assume that p(t) � 0, t ∈ [0, t0]. Then

0 � p′′(t0) � M(t0)d > 0.

It is a contradiction.
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Case 2. There exists t1 ∈ [0, t0) such that p(t1) < 0. Then there exists ξ ∈ [0, t0) such that

p(ξ) = min
t∈[0,t0]

p(t) < 0.

It yields

p′′(t) � p(ξ)
[
M(t) + (L1)(t)

]
, t ∈ [0, t0].

Integrating the above inequality from s to t0 we get

−p′(s) = p′(t0) − p′(s) � p(ξ)

t0∫
s

[
M(t) + (L1)(t)

]
dt.

Next, we integrate the above inequality from ξ to t0 to obtain

p(ξ) > −p(t0) + p(ξ) � p(ξ)

t0∫
ξ

( t0∫
s

[
M(t) + (L1)(t)

]
dt

)
ds.

Dividing by p(ξ), we finally get

1 <

T∫
0

( T∫
s

[
M(t) + (L1)(t)

]
dt

)
ds = ρ � 1

since p(ξ) < 0. It is a contradiction. This proves the lemma. �
Remark 1. Let the operator L be defined by

(Lp)(t) =
r∑

i=1

Li(t)p
(
αi(t)

)
,

where Li ∈ C(J,R+), αi ∈ C(J,J ), αi(t) � t , i = 1,2, . . . , r . Then

ρ =
T∫

0

( T∫
s

[
M(t) +

r∑
i=1

Li(t)

]
dt

)
ds.

If M(t) = L0 > 0, Li(t) = Li > 0, t ∈ J , i = 1,2, . . . , r . Then

ρ = 1

2
T 2

r∑
i=0

Li.

3. Extremal solutions. Unique solution

A function y0 ∈ C2(J,R) is said to be a lower solution of (1) if

y′′
0 (t) � (Qy0)(t), t ∈ J, g1

(
y0(0), y0(δ)

)
� 0, g2

(
y0(T ), y0(γ )

)
� 0.

A function z0 ∈ C2(J,R) is said to be an upper solution of problem (1) if the above inequalities
are reversed.

To show that problem (1) has a solution we construct two sequences which elements are
solutions of corresponding linear problems. Existence of solutions of such problems is discussed
in the next theorem.
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Theorem 1. Let assumptions H1–H3 be satisfied. In addition we assume that

H4: Q ∈ C(E,E) is a causal operator, gi ∈ C(R × R,R), i = 1,2,
H5: y0, z0 ∈ C2(J,R) are lower and upper solutions of problem (1), respectively, and y0(t) �

z0(t), t ∈ J ,
H6: m ∈ C2(J,R) and y0(t) � m(t) � z0(t), t ∈ J ,
H7: the following condition

(Qu)(t) − (Qū)(t) � −M(t)
[
ū(t) − u(t)

] − (
L(ū − u)

)
(t) (2)

holds for y0(t) � u(t) � ū(t) � z0(t),
H8: gi , i = 1,2 are nonincreasing with respect to the second variable and there exist positive

constants a, b such that

g1(ū, v) − g1(u, v) � a(ū − u),

g2(ū1, v1) − g2(u1, v1) � b(ū1 − u1)

for y0(0) � u � ū � z0(0), y0(T ) � u1 � ū1 � z0(T ), y0(δ) � v � z0(δ), y0(γ ) � v1 �
z0(γ ).

Let y ∈ C2(J,R) and{
y′′(t) = M(t)y(t) + (Ly)(t) + σ(t), t ∈ J,

y(0) = k1 ∈ R, y(T ) = k2 ∈ R,
(3)

where

σ(t) = (Qm)(t) − M(t)m(t) − (Lm)(t),

k1 = −1

a
g1

(
m(0),m(δ)

) + m(0), k2 = −1

b
g2

(
m(T ),m(γ )

) + m(T ).

Then problem (3) has a unique solution y ∈ C2(J,R) and y ∈ [y0, z0]∗, where [y0, z0]∗ =
{w ∈ C2(J,R): y0(t) � w(t) � z0(t), t ∈ J }.

Proof. Note that problem (3) has at most one solution. To see it let us assume that it has
two distinct solutions z,w ∈ C2(J,R). Put p = z − w. Then p(0) = p(T ) = 0 and p′′(t) =
M(t)p(t) + (Lp)(t) on J . In view of assumption H3 and Lemma 1, we have p � 0, so
z(t) � w(t), t ∈ J . Now putting p = w − z, we have w(t) � z(t), t ∈ J , by Lemma 1. Hence
w(t) = z(t), t ∈ J .

It shows that problem (3) has at most one solution. Denote this solution by y. We need to
show that y ∈ [y0, z0]∗. Put p = y0 − y. Then, in view of assumptions H5, H6, H8, we have

p(0) = y0(0) + 1

a

[
g1

(
m(0),m(δ)

) − g1
(
y0(0), y0(δ)

) + g1
(
y0(0), y0(δ)

)] − m(0)

� y0(0) + 1

a

[
g1

(
m(0), y0(δ)

) − g1
(
y0(0), y0(δ)

)] − m(0) � 0,

p(T ) = y0(T ) + 1

b

[
g2

(
m(T ),m(γ )

) − g2
(
y0(T ), y0(γ )

) + g2
(
y0(T ), y0(γ )

)] − m(T )

� y0(T ) + 1

b

[
g2

(
m(T ), y0(γ )

) − g2
(
y0(T ), y0(γ )

)] − m(T ) � 0.

Moreover,
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p′′(t) � (Qy0)(t) − (Qm)(t) − M(t)
[
y(t) − m(t)

] − (
L(y − m)

)
(t)

� −M(t)
[
m(t) − y0(t)

] − (
L(m − y0)

)
(t) − M(t)

[
y(t) − m(t)

] − (
L(y − m)

)
(t)

= M(t)p(t) + (Lp)(t),

by assumption H7. This result and Lemma 1 show that y0(t) � m(t), t ∈ J . Similarly, we can
show that m(t) � z0(t), t ∈ J . It means that if problem (3) has a solution then it belongs to
[y0, z0]∗.

Now we need to show that problem (3) has a solution. To do it we write problem (3) in the
following way

y(t) =
T∫

0

G(t, s)
[
M(s)y(s) + (Ly)(s) + σ(s)

]
ds + k2 − k1

T
t + k1, t ∈ J, (4)

where the Green function G is defined by

G(t, s) = − 1

T

{
(T − t)s if 0 � s � t � T ,

(T − s)t if 0 � t � s � T .

Denote by A the operator defined by the right-hand side of (4). Note that E is a Banach space
with the norm ‖y‖ = maxt∈J ‖y(t)‖. We employ Schauder’s fixed point theorem to show that
operator A has a fixed point. Let y ∈ E. Note that M(t)y(t) + (Ly)(t) + σ(t) is bounded in J ,
so operator A :E → E is continuous and bounded. In fact A is a compact map. Let∣∣M(t)y(t) + (Ly)(t) + σ(t)

∣∣ � K, K > 0.

Take t1, t2 ∈ J , t1 < t2 such that |t1 − t2| < T ε

4KT 2+|k2−k1| for ε > 0. Then we have∣∣Ay(t1) − Ay(t2)
∣∣

=
∣∣∣∣∣

T∫
0

[
G(t1, s) − G(t2, s)

]{
M(s)y(s) + (Ly)(s) + σ(s)

}
ds

∣∣∣∣∣ + k|t1 − t2|

= 1

T

∣∣∣∣∣(t1 − t2)

t1∫
0

s
{
M(s)y(s) + (Ly)(s) + σ(s)

}
ds

− t1

t2∫
t1

(T − s)
{
M(s)y(s) + (Ly)(s) + σ(s)

}
ds

+ (T − t2)

t1∫
t1

s
{
M(s)y(s) + (Ly)(s) + σ(s)

}
ds

+ (t2 − t1)

T∫
t2

(T − s)
{
M(s)y(s) + (Ly)(s) + σ(s)

}
ds

∣∣∣∣∣ + k|t1 − t2|

� (4KT + k)|t1 − t2| < ε,

where k = |k2−k1|
T

. Consequently A :E → E is compact. Schauder’s fixed point theorem guaran-
tees that A has a fixed point in E. In view of (4), we have y(0) = k1, y(T ) = k2, and y′′ exists
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and y′′ ∈ E. Moreover, y ∈ C2(J,R) and y′′(t) = M(t)y(t) + (Ly)(t) + σ(t), so y is a solution
of problem (3). It shows that y is the unique solution of (3). This ends the proof. �
Theorem 2. Let assumptions from H1–H5 and H7, H8 be satisfied. Then problem (1) has extremal
solutions in the sector [y0, z0]∗.

Proof. Let us define two sequences {yn, zn} by relations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′′
n(t) = (Qyn−1)(t) + M(t)

[
yn(t) − yn−1(t)

] + (
L(yn − yn−1)

)
(t), t ∈ J,

yn(0) = −1

a
g1

(
yn−1(0), yn−1(δ)

) + yn−1(0),

yn(T ) = −1

b
g2

(
yn−1(T ), yn−1(γ )

) + yn−1(T ),⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z′′
n(t) = (Qzn−1)(t) + M(t)

[
zn(t) − zn−1(t)

] + (
L(zn − zn−1)

)
(t), t ∈ J,

zn(0) = −1

a
g1

(
zn−1(0), zn−1(δ)

) + zn−1(0),

zn(T ) = −1

b
g2

(
zn−1(T ), zn−1(γ )

) + zn−1(T )

for n = 1,2, . . . . Note that y1, z1 are well defined, by Theorem 1.
First of all we want to show that

y0(t) � y1(t) � z1(t) � z0(t), t ∈ J. (5)

Put p = y0 − y1. Then

p(0) = y0(0) + 1

a
g1

(
y0(0), y0(δ)

) − y0(0) � 0,

p(T ) = y0(T ) + 1

b
g2

(
y0(T ), y0(γ )

) − y0(T ) � 0,

by assumption H5. Moreover,

p′′(t) � (Qy0)(t) − (Qy0)(t) − M(t)
[
y1(t) − y0(t)

] − (
L(y1 − y0)

)
(t)

= M(t)p(t) + (Lp)(t),

by assumption H5. This result and Lemma 1 show that y0(t) � y1(t), t ∈ J . Similarly, we can
show that z1(t) � z0(t), t ∈ J . Now let p = y1 − z1. Then

p(0) = 1

a

[
g1

(
z0(0), z0(δ)

) − g1
(
y0(0), y0(δ)

)] + y0(0) − z0(0)

� 1

a

[
g1

(
z0(0), y0(δ)

) − g1
(
y0(0), y0(δ)

)] + y0(0) − z0(0)

� z0(0) − y0(0) + y0(0) − z0(0) = 0,

p(T ) = y0(T ) + 1

b

[
g2

(
z0(T ), z0(γ )

) − g2
(
y0(T ), y0(γ )

)] − z0(T ) � 0,

by assumption H8. Moreover,

http://mostwiedzy.pl
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p′′(t) = (Qy0)(t) − (Qz0)(t) + M(t)
[
y1(t) − y0(t) − z1(t) + z0(t)

]
+ (

L(y1 − y0 − z1 + z0)
)
(t)

� −M(t)
[
z0(t) − y0(t)

] − (
L(z0 − y0)

)
(t)

+ M(t)
[
y1(t) − y0(t) − z1(t) + z0(t)

] + (
L(y1 − y0 − z1 + z0)

)
(t)

= M(t)p(t) + (Lp)(t),

by assumption H7. In view of Lemma 1, y1(t) � z1(t), t ∈ J . It proves (5).
Now we show that y1 is a lower solution of problem (1). Note that

0 = y1(0) + 1

a

[
g1

(
y0(0), y0(δ)

) − g1
(
y1(0), y1(δ)

) + g1
(
y1(0), y1(δ)

)] − y0(0)

� y1(0) + 1

a

[
g1

(
y0(0), y1(δ)

) − g1
(
y1(0), y1(δ)

) + g1
(
y1(0), y1(δ)

)] − y0(0)

� y1(0) − y0(0) − y1(0) + y0(0) + 1

a
g1

(
y1(0), y1(δ)

) = 1

a
g1

(
y1(0), y1(δ)

)
,

0 = y1(T ) + 1

b

[
g2

(
y0(T ), y0(γ )

) − g2
(
y1(T ), y1(γ )

) + g2
(
y1(T ), y1(γ )

)] − y0(T )

� 1

b
g2

(
y1(T ), y1(γ )

)
,

by assumption H8. Moreover,

y′′
1 (t) = (Qy0)(t) − (Qy1)(t) + (Qy1)(t) + M(t)

[
y1(t) − y0(t)

] + (
L(y1 − y0)

)
(t)

� −M(t)
[
y1(t) − y0(t)

] − (
L(y1 − y0)

)
(t) + (Qy1)(t) + M(t)

[
y1(t) − y0(t)

]
+ (

L(y1 − y0)
)
(t) = (Qy1)(t),

by assumption H7. It proves that y1 is a lower solution of (1). Similarly, we can prove that z1 is
an upper solution of problem (1).

By mathematical induction we can show that

y0(t) � · · · � yn−1(t) � yn(t) � zn(t) � zn−1(t) � · · · � z0(t), t ∈ J

for n = 1,2, . . . .
It implies that {yn}, {zn} are uniformly bounded. We can show that they are equicontinuous

on J . The Arzeli–Ascoli theorem guarantees the existence of subsequences {ynk
}, {znk

} and func-
tions ȳ, z̄ ∈ C(J,R) with ynk

, znk
converging uniformly on J to ȳ and z̄, respectively, if nk → ∞.

However, since the sequences {yn}, {zn} are monotonic, we conclude that the whole sequences
{yn}, {zn} converge uniformly on J to ȳ and z̄, respectively, if n → ∞. Indeed, ȳ, z̄ are solutions
of problem (1).

We need to show now that (ȳ, z̄) are extremal solutions of problem (1) in the segment [y0, z0]∗.
To prove it, we assume that ỹ is another solution of problem (1), and yn−1(t) � ỹ(t) � zn−1(t),
t ∈ J for some positive integer n. Put p(t) = yn(t) − ỹ(t), q(t) = ỹ(t) − zn(t), t ∈ J . Hence

p(0) = yn−1(0) − ỹ(0) + 1

a

[
g1

(
ỹ(0), ỹ(δ)

) − g1
(
yn−1(0), yn−1(δ)

)]
� yn−1(0) − ỹ(0) + 1

a

[
g1

(
ỹ(0), yn−1(δ)

) − g1
(
yn−1(0), yn−1(δ)

)]
� 0,

p(T ) = yn−1(T ) − ỹ(T ) + 1 [
g2

(
ỹ(T ), ỹ(γ )

) − g2
(
yn−1(T ), yn−1(γ )

)]

b

http://mostwiedzy.pl
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� yn−1(T ) − ỹ(T ) + 1

b

[
g2

(
ỹ(T ), yn−1(γ )

) − g2
(
yn−1(T ), yn−1(γ )

)]
� 0.

This and assumption H7 yield

p′′(t) = (Qyn−1)(t) + M(t)
[
yn(t) − yn−1(t)

] + (
L(yn − yn−1)

)
(t) − (Qỹ)(t)

� −M(t)
[
ỹ(t) − yn−1(t)

] − (
L(ỹ − yn−1)

)
(t) + M(t)

[
yn(t) − yn−1(t)

]
+ (

L(yn − yn−1)
)
(t) = M(t)p(t) + (Lp)(t).

By a similar way we can show that

q(0) � 0, q(T ) � 0 and q ′′(t) � M(t)q(t) + (Lq)(t).

By Lemma 1, yn(t) � ỹ(t) � zn(t), t ∈ J . If n → ∞, it yields y0(t) � ȳ(t) � ỹ(t) � z̄(t) �
z0(t), t ∈ J . It proves that ȳ, z̄ are extremal solutions of problem (1) in the segment [y0, z0]∗.
This ends the proof. �

Now we investigate the case when problem (1) has the unique solution but first we need the
following

Lemma 2. Assume that

H9: δ, γ ∈ (0, T ) and 0 � kγ < T , l � 0,
H10: (i) l ∈ (0,1), k = 1 or (ii) l = 0, k � 0.

Let p ∈ C2(J,R), B ∈ C(J × E,R) and{
p′′(t) � B(t,p), t ∈ J,

p(0) � lp(δ), p(T ) � kp(γ ).
(6)

Then function p satisfies the following inequality

p(t) � 1

Δ

{
(T − kγ )l

δ∫
0

( s∫
0

B(τ,p)dτ

)
ds

+ lδ

[
−

T∫
0

( s∫
0

B(τ,p)dτ

)
ds + k

γ∫
0

( s∫
0

B(τ,p)dτ

)
ds

]

+ t (1 − l)

[
−

T∫
0

( s∫
0

B(τ,p)dτ

)
ds + k

γ∫
0

( s∫
0

B(τ,p)dτ

)
ds

]

− t (1 − k)l

δ∫
0

( s∫
0

B(τ,p)dτ

)
ds

}
+

t∫
0

( s∫
0

B(τ,p)dτ

)
ds,

where Δ = (1 − l)(T − kγ ) + lδ(1 − k).

Proof. We replace problem (6) by{
p′′(t) = B(t,p) + A, t ∈ J,

p(0) = lp(δ) + a, p(T ) = kp(γ ) + b
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with A � 0, a � 0, b � 0. Integrating it two times on [0, T ], we have

p(t) = p(0) + p′(0)t + 1

2
At2 + D(t), t ∈ J, (7)

where D(t) = ∫ t

0 (
∫ s

0 B(τ,p)dτ) ds.
Using the boundary conditions, we have the system⎧⎪⎪⎨

⎪⎪⎩
(1 − l)p(0) − lδp′(0) = a + l

(
1

2
Aδ2 + D(δ)

)
,

(1 − k)p(0) + (T − kγ )p′(0) = b − 1

2
AT 2 − D(T ) + k

(
1

2
Aγ 2 + D(γ )

)
,

(8)

for finding p(0) and p′(0). Solving system (8) and substituting the solutions in formula (7) we
obtain

p(t) = aa1(t) + bb1(t) + 1

2
A

[
c1 + d1(t)

] + h1(t),

where

a1(t) = 1

Δ

[
T − kγ + t (k − 1)

]
, b1(t) = 1

Δ

[
lδ + t (1 − l)

]
,

c1 = 1

Δ
lδ

[
δ(T − kγ ) − T 2 + kγ 2],

d1(t) = 1

Δ
t
[
(1 − l)

(−T 2 + kγ 2) − (1 − k)lδ2] + t2,

h1(t) = 1

Δ

[
(T − kγ )lD(δ) + lδ

(−D(T ) + kD(γ )
) + t (1 − l)

(−D(T ) + kD(γ )
)

− t (1 − k)lD(δ)
] + D(t).

Assume that l ∈ (0,1), k = 1. Then Δ > 0, a1(t) > 0, b1(t) > 0 and

c1 � 1

Δ
lδ

[
T (T − γ ) − T 2 + γ 2] = 1

Δ
lδγ (γ − T ) < 0,

d1(t) = 1

Δ
t(1 − l)

(−T 2 + γ 2) + t2 � 1

Δ
t(1 − l)

(−T 2 + T γ
) + t2 = t (t − T ) � 0.

This and (7) give p(t) � h1(t) because A � 0, a � 0, b � 0. The case (ii) can be discussed in the
same way as above. It ends the proof. �
Theorem 3. Assume that all assumptions of Theorem 2 and H9, H10 are satisfied. In addition,
we assume that

H11: there exist a function L ∈ C(J,R+) and a positive linear operator L1 ∈ C(E,E) such that

(Qū)(t) − (Qu)(t) � −L1(t)
[
ū(t) − u(t)

] − (
L1(ū − u)

)
(t)

for y0(t) � u(t) � ū(t) � z0(t),
H12: there exist constants 0 < M1 � a, 0 < M2 � b, Ni � 0, i = 1,2, such that

g1(ū, v̄) − g1(u, v) � M1(ū − u) − N1(v̄ − v),

g2(ū1, v̄1) − g2(u1, v1) � M2(ū1 − u1) − N2(v̄1 − v1)
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for y0(0) � u � ū � z0(0), y0(δ) � v � v̄ � z0(δ), y0(T ) � u1 � ū1 � z0(T ), y0(γ ) �
v1 � v̄1 � z0(γ )

and

1

Δ

[
lδ + T (1 − l)

] T∫
0

( s∫
0

[
L1(τ ) + (L11)(τ )

]
dτ

)
ds < 1 (9)

with l = N1
M1

, k = N2
M2

, Δ = (1 − l)(T − kγ ) + lδ(1 − k).

Then problem (1) has, in the sector [y0, z0]∗, the unique solution.

Proof. Theorem 2 says that problem (1) has, in the sector [y0, z0]∗, extremal solutions ȳ, z̄ and
y0(t) � ȳ(t) � z̄(t) � z0(t), t ∈ J . We want to show that z̄ = ȳ. Put p = z̄ − ȳ, so p(t) � 0,
t ∈ J . In view of assumption H12, we get

0 = g1
(
z̄(0), z̄(δ)

) − g1
(
ȳ(0), ȳ(δ)

)
� M1

[
z̄(0) − ȳ(0)

] − N1
[
z̄(δ) − ȳ(δ)

]
= M1p(0) − N1p(δ),

0 = g2
(
z̄(T ), z̄(γ )

) − g2
(
ȳ(T ), ȳ(γ )

)
� M2

[
z̄(T ) − ȳ(T )

] − N2
[
z̄(γ ) − ȳ(γ )

]
= M2p(T ) − N2p(γ ),

so

p(0) � lp(δ), p(T ) � kp(γ ).

Moreover, in view of assumption H11, we see that

p′′(t) = (Qz̄)(t) − (Qȳ)(t) � −L1(t)p(t) − (L1p)(t) ≡ B(t,p).

It is obvious that B(t,p) � 0, t ∈ J . From Lemma 2, we obtain

p(t) � 1

Δ

{
−lδ

T∫
0

( s∫
0

B(τ,p)dτ

)
ds − t (1 − l)

T∫
0

( s∫
0

B(τ,p)dτ

)
ds

}
. (10)

Suppose that maxt∈J p(t) = p(t1) = d > 0. Then −B(t,p) � d[L1(t) + (L11)(t)]. From (10),
we have now

d � d

Δ

[
lδ + t1(1 − l)

] T∫
0

( s∫
0

[
L1(τ ) + (L11)(τ )

]
dτ

)
ds

� d

Δ

[
lδ + T (1 − l)

] T∫
0

( s∫
0

[
L1(τ ) + (L11)(τ )

]
dτ

)
ds,

so

d

{
1 − 1

Δ

[
lδ + T (1 − l)

] T∫
0

( s∫
0

[
L1(τ ) + (L11)(τ )

]
dτ

)
ds

}
� 0.

Hence d � 0, by condition (9), so p(t) = 0, t ∈ J . It proves that problem (1) has the unique
solution. It ends the proof. �
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Example. Consider the problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′′(t) = (Qx)(t), t ∈ [0, T ],
0 = x(0) − 1

3
x2

(
1

2
T

)
≡ g1

(
x(0), x

(
1

2
T

))
,

0 = x(T ) − x

(
1

3
T

)
≡ g2

(
x(T ), x

(
1

3
T

))
,

(11)

where

(Qx)(t) = −a1 cosx(t) − a2(t)x(t) − b1(t) sinx

(
1

4
t

)
+ b2(t)x

(
1

3
t

)
− k1.

Note that δ = 1
2T , γ = 1

3T . Assume that a1 > 0, a2, b1, b2 ∈ C(J, [0,∞)), k1 � 0 and

−a1 cos 1 − a2(t) − b1(t) sin 1 + b2(t) − k1 � 0, (12)

a1T
2

2
+

T∫
0

T∫
s

[
b1(τ ) + b2(τ )

]
dτ ds � 1, (13)

a1T
2

2
+

T∫
0

s∫
0

a2(τ ) dτ ds <
1

3
. (14)

Take y0(t) = 0, z0(t) = 1, t ∈ J . Then

(Qy0)(t) = −a1 − k1 < 0 = y′′
0 (t),

(Qz0)(t) = −a1 cos 1 − a2(t) − b1(t) sin 1 + b2(t) − k1 � 0 = z′′
0(t),

by (12). Moreover,

g1

(
y0(0), y0

(
1

2
T

))
= g1(0,0) = 0, g2

(
y0(T ), y0

(
1

3
T

))
= g2(0,0) = 0,

g1

(
z0(0), z0

(
1

2
T

))
= g1(1,1) = 2

3
> 0, g2

(
z0(T ), z0

(
1

3
T

))
= g2(1,1) = 0.

This shows that y0, z0 are lower and upper solutions of problem (11), respectively. It is quite easy
to see that assumptions H7, H8 hold with a = b = 1, M(t) = a1 and (Lu)(t) = b1(t)u( 1

4 t) +
b2(t)u( 1

3 t). In view of (13), assumption H3 holds. It proves that problem (11) has extremal solu-
tions in the sector [y0, z0]∗, by Theorem 2.

Now we are going to show that all assumptions of Theorem 3 are satisfied. Note that L1(t) =
a1 + a2(t), (L1u)(t) = 0, t ∈ J , and M1 = 1, N1 = 2

3 , M2 = N2 = 1, so k = 1, l = 2
3 < 1.

Moreover, Δ = 2
9T and assumption (9) holds, by (14). Hence, problem (11) has, in the sector

[y0, z0]∗, the unique solution.
For example, we take T = 1, k1 = 0, and

a1 = 1

8 cos 1
, a2(t) = 1

8
sin t, b1(t) = β sin t

sin 1
, b2(t) =

(
1

8
+ β

)
sin t + 1

8
.

Then conditions (12)–(14) are satisfied with β � 1.0143.
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4. Quasi-solutions. Unique solution

This section deals with the problem of existence of quasi-solutions for (1). The case when
problem (1) has the unique solution is also investigated.

A pair of functions y0, z0 ∈ C2(J,R) is called weakly coupled (w.c.) lower and upper solu-
tions of problem (1) if⎧⎪⎪⎪⎨

⎪⎪⎪⎩
y′′

0 (t) � (Qy0)(t), t ∈ J,

0 � g1
(
y0(0), z0(δ)

)
, 0 � g2

(
y0(T ), z0(γ )

)
,

z′′
0(t) � (Qz0)(t), t ∈ J,

0 � g1
(
z0(0), y0(δ)

)
, 0 � g2

(
z0(T ), y0(γ )

)
.

A pair (U,V ), U,V ∈ C2(J,R) is called a weakly coupled quasi-solution of problem (1) if⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U ′(t) = (QU)(t), t ∈ J,

0 = g1
(
U(0),V (δ)

)
, 0 = g2

(
U(T ),V (γ )

)
,

V ′(t) = (QV )(t), t ∈ J,

0 = g1
(
V (0),U(δ)

)
, 0 = g2

(
V (T ),U(γ )

)
.

A weakly coupled quasi-solution (Ū , V̄ ), Ū , V̄ ∈ C2(J,R) is called the weakly coupled min-
imal and maximal quasi-solution of problem (1) if for any weakly coupled quasi-solution (U,V )

of (1) we have Ū (t) � U(t), V (t) � V̄ (t) on J .

Theorem 4. Suppose that assumptions H1–H4, H7 are satisfied. Let y0, z0 ∈ C2(J,R) be w.c.
lower and upper solutions of problem (1), and y0(t) � z0(t), t ∈ J . In addition, we assume
that gi , i = 1,2 are nondecreasing with respect to the second variable and there exist positive
constants a, b such that

g1(ū, v) − g1(u, v) � a(ū − u),

g2(ū1, v1) − g2(u1, v1) � b(ū1 − v1)

for y0(0) � u � ū � z0(0), y0(T ) � u1 � ū1 � z0(T ), y0(δ) � v � z0(δ), y0(γ ) � v1 � z0(γ ).
Then problem (1) has, in the sector [y0, z0]∗ the w.c. minimal and maximal quasi-solutions.

Proof. Let us define two sequences {yn, zn} by relations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′′
n(t) = (Qyn−1)(t) + M(t)

[
yn(t) − yn−1(t)

] + (
L(yn − yn−1)

)
(t), t ∈ J,

yn(0) = −1

a
g1

(
yn−1(0), zn−1(δ)

) + yn−1(0),

yn(T ) = −1

b
g2

(
yn−1(T ), zn−1(γ )

) + yn−1(T ),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z′′
n(t) = (Qzn−1)(t) + M(t)

[
zn(t) − zn−1(t)

] + (
L(zn − zn−1)

)
(t), t ∈ J,

zn(0) = −1

a
g1

(
zn−1(0), yn−1(δ)

) + zn−1(0),

zn(T ) = −1

b
g2

(
zn−1(T ), yn−1(γ )

) + zn−1(T )

for n = 1,2, . . . . The proof is similar to the proof of Theorem 2 and therefore it is omitted. �
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Theorem 5. Assume that all assumptions of Theorem 4 and H9–H11 are satisfied. In addition,
we assume that:

H′
12: there exist constants 0 < M1 � a, 0 < M2 � b, Ni � 0, i = 1,2, such that

g1(ū, v) − g1(u, v̄) � M1(ū − u) − N1(v̄ − v),

g2(ū1, v1) − g2(u1, v̄1) � M2(ū1 − u1) − N2(v̄1 − v1)

for y0(0) � u � ū � z0(0), y0(δ) � v � v̄ � z0(δ), y0(T ) � u1 � ū1 � z0(T ), y0(γ ) �
v1 � v̄1 � z0(γ )

and

1

Δ

[
lδ + T (1 − l)

] T∫
0

( s∫
0

[
L1(τ ) + (L11)(τ )

]
dτ

)
ds < 1

with l = N1
M1

, k = N2
M2

, Δ = (1 − l)(T − kγ ) + lδ(1 − k).
Then problem (1) has, in the sector [y0, z0]∗, the unique solution.

The proof of Theorem 5 is similar to the proof of Theorem 3 and therefore it is omitted.
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