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Abstract

Generalized adaptive notch filters are used for identification/tracking of quasi-periodically varying dynamic systems and can
be considered an extension, to the system case, of classical adaptive notch filters. For general patterns of frequency variation
the generalized adaptive notch filtering algorithms yield biased frequency estimates. We show that when system frequencies
change slowly in a smooth way, the estimation bias can be substantially reduced by means of post-filtering of the frequency
estimates. The modified (debiased) algorithm has better tracking capabilities than the original algorithm.
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1 Introduction
The term “generalized adaptive notch filter” (GANF)
was coined in (Niedźwiecki & Kaczmarek, 2004) and de-
notes an adaptive filtering algorithm capable of identi-
fication/tracking of quasi-periodically varying systems.
Complex-valued quasi-periodically varying systems are
governed by

y(t) =
n∑

l=1

θl(t)ϕl(t) + v(t) = ϕT(t)θ(t) + v(t) (1)

where t = 1, 2, . . . denotes the normalized dis-
crete time, y(t) denotes the system output, ϕ(t) =
[ϕ1(t), . . . , ϕn(t)]T is the regression vector, v(t) is an
additive noise and θ(t) = [θ1(t), . . . , θn(t)]T denotes the
vector of time varying coefficients, modeled as weighted
sums of complex exponentials

θl(t) =
k∑

i=1

ali(t)e
j

t∑
s=1

ωi(s)

, l = 1, . . . , n (2)

Since both the complex amplitudes ali(t) and the angu-
lar frequencies ωi(t) in (2) are assumed to vary slowly
with time, the system described by (1) - (2) changes in
a periodic-like, but not exactly periodic manner.
Denote by αi(t) = [a1i(t), . . . , ani(t)]T the vector of sys-
tem coefficients associated with a particular frequency
ωi and let βi(t) = fi(t)αi(t), where fi(t) = ej

∑t

s=1
ωi(s).
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Using the short-hand notation introduced above, system
equation (1) can be rewritten in the form

y(t) =
k∑

i=1

ϕT(t)βi(t) + v(t) (3)

When the sequence of regression vectors {ϕ(t)} is wide-
sense stationary and persistently exciting, with known
covariance matrix Φ = E[ϕ∗(t)ϕT(t)] > 0, the normal-
ized steady state single-frequency (k = 1) version of
the GANF algorithm presented in (Niedźwiecki & Kacz-
marek, 2006a) can be written down in the form

ε(t) = y(t)− ejω̂(t)ϕT(t)β̂(t− 1)

β̂(t) = ejω̂(t)β̂(t− 1) + µΦ−1ϕ∗(t)ε(t)

g(t) = Im

[
ε∗(t)ejω̂(t)ϕT(t)β̂(t− 1)

β̂H(t− 1)Φβ̂(t− 1)

]

ω̂(t + 1) = ω̂(t)− γg(t)

θ̂(t) = β̂(t) (4)

Tracking properties of this algorithm are determined by
two user-dependent tuning coefficients: the adaptation
gain 0 < µ ¿ 1, which controls the rate of amplitude
adaptation, and another adaptation gain 0 < γ ¿ µ,
which decides upon the rate of frequency adaptation.
The multiple frequency GANF algorithm can be ob-
tained in a pretty straightforward way by combining k
single-frequency identification subalgorithms, given by
(4), into an appropriately designed parallel structure -
see (Niedźwiecki & Kaczmarek, 2004) and Section 2.3.
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In a special case where n = 1 and ϕ(t) = 1, ∀t, the model
(1) - (2) becomes a description of a noisy nonstationary

multifrequency signal y(t) =
∑k

i=1 ai(t)e
j
∑t

s=1
ωi(s) +

v(t). In this case generalized adaptive notch filters turn
into “ordinary” adaptive notch filters (ANF) - the algo-
rithms used for extraction or elimination of sinusoidal
signals buried in noise - see (Tichavský & Händel, 1995),
(Tichavský & Nehorai, 1997) and the references therein.
Adaptive notch filters have many applications such as
cancellation of sinusoidal interferences or adaptive line
enhancement (Pei & Tseng, 1994). Generalized adaptive
notch filters can be applied to equalization of rapidly
fading telecommunication channels (Tsatsanis & Gian-
nakis, 1996), (Bakkoury et al., 2000).

2 Modified GANF algorithm
2.1 Tracking properties of GANF
Tracking properties of the GANF algorithm (4) can be
analyzed using the approximating linear filter (ALF)
technique proposed in (Tichavský & Händel, 1995). De-
note by ∆ω̂(t) = ω̂(t) − ω(t) the frequency estimation
error, and let w(t) = ω(t) − ω(t − 1) stand for the true
one-step frequency change.
Consider a quasi-periodically varying system with a sin-
gle frequency mode (k = 1), governed by

β(t) = ejω(t)β(t− 1) (5)

Let b2 = βH(t)Φβ(t) = βH
o Φβo and

z(t) = Im
[
βH(t)ϕ∗(t)v(t)

b2

]

It is easy to check that {z(t)} is a real-valued white noise
with variance σ2

z = σ2
v/(2b2)

If the sequence of regression vectors {ϕ(t)}, indepen-
dent of {v(t)} and {w(t)}, is wide-sense stationary and
persistently exciting. then the frequency estimation er-
rors yielded by the GANF algorithm (4), applied to the
system governed by (5), can be approximately described
by the following linear equation (Niedźwiecki & Kacz-
marek, 2006a)

∆ω̂(t) ∼= E1(q−1)z(t) + E2(q−1)w(t) (6)

where q−1 denotes the backward shift operator,

E1(q−1) =
(1− δ)(1− q−1)q−1

1− (λ + δ)q−1 + λq−2

E2(q−1) =− 1− λq−1

1− (λ + δ)q−1 + λq−2
(7)

and λ = 1− µ, δ = 1− γ.
Suppose that the instantaneous frequency changes line-
arly with time, that is w(t) = ω(t) − ω(t − 1) = δω,∀t.
By taking expectations of both sides of (6) one arrives
at E[∆ω̂(t)] = −δωµ/γ, which shows that the frequency

estimates are in this case biased. This is a typical situ-
ation – parameter estimates yielded by causal adaptive
filters usually lag behind the true signal/system param-
eters (Niedźwiecki, 2000).
We will show that when the system frequency changes
slowly in a smooth way, the frequency bias introduced
by the GANF algorithm can be significantly reduced by
means of post-filtering of the frequency estimates.
2.2 Frequency debiasing
Derivation of the correction scheme will be based on
assumption that the true frequency trajectory {ω(t)}
can be locally (i.e. in sufficiently short time intervals)
approximated by a polynomial model

ω(t) ∼=
m∑

i=0

cit
i (8)

Note that this is a reasonable hypothesis in mobile radio
channel applications, where ω(t) is a Doppler shift along
a specific path of signal arrival and its variation is caused
by the vehicle’s speed changes.
Since under (8) the phase φ(t) =

∑t
s=1 ω(s) is also a

polynomial of t, in the signal processing case the model
(8) is usually referred to as polynomial phase. Even
though there is a number of algorithms capable of track-
ing polynomial phase signals – see e.g. (Tichavský &
Händel, 1997a) and (Tichavský & Händel, 1997b) – none
of them can be easily extended to the system case. To
the best of our knowledge the approach described below
is the first attempt to solve the parameter tracking prob-
lem for polynomial phase systems. As a byproduct of
the system-oriented analysis, we will also obtain a novel
tracking algorithm for polynomial phase signals.
Note that the ALF equation (6) can be rewritten in the
form

ω̂(t) ∼= F1(q−1)z(t) + F2(q−1)ω(t) (9)

where F1(q−1) = E1(q−1) and

F2(q−1) =
(1− δ)q−1

1− (λ + δ)q−1 + λq−2
(10)

It is straightforward to check that the nominal (low-
frequency) delay introduced by the filter F2(ejξ) =
A2(ξ)ejφ2(ξ), where ξ denotes the standard Fourier-
domain frequency variable, is equal to

τ = − lim
ξ 7→0

dφ2(ξ)
dξ

=
µ

γ
(11)

Then, according to (8), (9) and (11), it holds that

E[ω̂(t)|ω(s), s ≤ t] ∼= F2(q−1)ω(t) ∼= ω(t− τ) = fT(t)c

where f(t) = [1, t − τ, . . . , (t − τ)m]T and c =
[c0, c1, . . . , cm]T is the vector of unknown coefficients.
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The local estimate of c can be obtained by applying the
method of exponentially weighted least squares

ĉ(t) = arg min
c

t−1∑

i=0

ηi[ω̂(t− i)− fT(t− i)c]2

=

[
t−1∑

i=0

ηif(t− i)fT(t− i)

]−1 t−1∑

i=0

ηif(t−i)ω̂(t−i) (12)

where 0 < η < 1 denotes a forgetting constant, intro-
duced to decrease the influence of old data on the cur-
rent parameter estimates. Exponential forgetting is a
standard technique allowing one to track slow changes
of the estimated coefficients – in our case the possi-
ble slow changes in c. Replacing c0, . . . , cm in (8) with
ĉ0(t), . . . , ĉm(t), respectively, and compensating the es-
timation delay, one arrives at the following estimator

ω̄(t) = fT(t + τ)ĉ(t) (13)

which belongs to the class of exponentially weigh-
ted basis function (EWBF) estimators, described in
(Niedźwiecki, 2000).
The recursive algorithm for computation of ĉ(t) has the
form

f(t) = Af(t− 1)
ε̃(t) = ω̂(t)− fT(t)ĉ(t− 1)

k(t) =
G(t− 1)f(t)

η + fT(t)G(t− 1)f(t)

G(t) =
1
η

[
G(t− 1)− k(t)fT(t)G(t− 1)

]

ĉ(t) = ĉ(t− 1) + k(t)ε̃(t) (14)

where G(t) =
[∑t−1

i=0 ηif(t− i)fT(t− i)
]−1

and

A =




1
(
1
1

) . . . 0
...

(m
m) . . . (m

1 ) 1




The fact that the elements of f(t) are not bounded for
t 7→ ∞ may cause numerical problems. The numeri-
cally safe algorithm, which is free of the drawback men-
tioned above, can be obtained by rewriting (14) in a
different system of coordinates: c̃(t) = (AT)t−τ ĉ(t),
k̃(t) = (AT)t−τk(t), G̃(t− 1) = (AT)t−τG(t− 1)At−τ .
Using these substitutions one can rewrite (13) and (14)

in the following equivalent form

ε̃(t) = ω̂(t)− fT(τ + 1)c̃(t− 1)

k̃(t) =
G̃(t− 1)f(τ)

η + fT(τ)G̃(t− 1)f(τ)

G̃(t) =
AT

η

[
G̃(t− 1)− k̃(t)fT(τ)G̃(t− 1)

]
A

c̃(t) = ATc̃(t− 1) + k̃(t)ε̃(t)
ω̄(t) = fT(2τ)c̃(t) (15)

Note that fT(τ) = [1, 0, . . . , 0], fT(τ + 1) = [1, 1, . . . , 1]
and fT(2τ) = [1, τ, . . . , τm].
One can show that the relationship between ω̄(t) and
ω̂(t), given by (12) and (13), is asymptotically time-
invariant, i.e. in steady state it holds that

ω̄(t) = Hm,τ,η(q−1)ω̂(t) (16)

where Hm,τ,η(q−1) is a stationary rational filter. In par-
ticular (see Appendix)

H1,τ,η(q−1) =
(1− η)(a0 + a1q

−1)
(1− ηq−1)2

(17)

where a0 = 1 + η + (1− η)τ , a1 = −2η − (1− η)τ , and

H2,τ,η(q−1) =
(1− η)(a0 + a1q

−1 + a2q
−2)

2(1− ηq−1)3
(18)

where a0 = 2(η2 +η +1)+3(1+η)(1−η)τ +(1−η)2τ2,
a1 = −6η(1 + η)− 4(1 + 2η)(1− η)τ − 2(1− η)2τ2 and
a2 = 6η2 + (1 + 5η)(1− η)τ + (1− η)2τ2.
While F2(q−1) is a “lag” filter (it delays low-frequency
signal components by τ sampling intervals), the polyno-
mial approximation filters Hm,τ,η(q−1), m ≥ 1 are typ-
ical “lead” filters - at low frequencies they introduce a
positive time shift, i.e. time advance, equal to τ (it is
easy to check this property for m = 1, 2). This confirms
that bias reduction is achieved primarily by means of
delay compensation.
The ALF approximation of the debiased algorithm can
be obtained by combining (9) with (16), which results in

ω̄(t) ∼= K1(q−1)z(t) + K2(q−1)ω(t) (19)

where K1(q−1) = F1(q−1)Hm,τ,η(q−1) and K2(q−1) =
F2(q−1)Hm,τ,η(q−1).
Similarly as it was done in (Tichavský & Händel, 1995),
the ALF model can be used to determine the relaxing
time of the algorithm, as well as to optimize its design
parameters under various specific tracking scenarios.
It is worth noticing that the filter (15) closely resem-
bles the signal processing tool known as Savitzky-Golay
smoother (Orfanidis, 1996). In both cases signal estima-
tion is based on polynomial approximation. The differ-
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ence lies in estimation details. The Savitzky-Golay ap-
proach incorporates the method of sliding window least
squares. The resulting filter is noncausal and nonrecur-
sive. The approach presented above exploits the method
of exponentially weighted least squares and results in a
filter that is causal and recursive.
2.3 Three-step algorithm
In order to improve tracking capability of the general-
ized adaptive notch filter (4), one can run another algo-
rithm, of the same form, which incorporates the debi-
ased frequency estimates ω̄(t). Instead of presenting the
single-frequency system-oriented debiased version of the
algorithm (4), we will turn directly to the multiple fre-
quencies case (k > 1).
Denote by yi(t) = ϕT(t)βi(t) + v(t) the output of the
ith subsystem of (3), i.e. subsystem associated with the
frequency ωi. If the signals y1(t), . . . , yk(t) were avail-
able, one could design k independent GANF algorithms
each of which would take care of a particular subsys-
tem. Since θ(t) =

∑k
i=1 βi(t), the final estimation result

could be easily obtained by combining the partial esti-
mates θ̂(t) =

∑k
i=1 β̂i(t). Even though the signals yi(t)

are not available, one can easily estimate them using the
formula

ŷi(t) = y(t)−
k∑

m=1
m 6=i

ŷm(t|t− 1)

where ŷi(t|t−1) = ejω̂i(t)ϕT(t)β̂i(t−1) denotes the pre-
dicted value of yi(t), yielded by the estimation algorithm
designed to track parameters of the ith subsystem. Note
that after replacing yi(t) with ŷi(t) one obtains ε1(t) =
. . . = εk(t) = y(t)−ϕT(t)

∑k
i=1 ejω̂i(t)β̂i(t−1) = ε(t) i.e.

all subalgorithms are in fact driven by the same “global”
prediction error ε(t).
From the system-analytic point of view, the distributed
estimation scheme described above is a parallel structure
made up of k identical (from the functional viewpoint)
blocks. Each block tracks a particular frequency compo-
nent of the parameter vector θ(t). The resulting parallel-
form algorithm is summarized below. To add some extra
design flexibility, we have equipped each subalgorithm
with independently assigned adaptation gains µi and γi.

pilot filter:

ε(t) = y(t)−ϕT(t)
k∑

i=1

ejω̂i(t)β̂i(t− 1)

β̂i(t) = ejω̂i(t)β̂i(t− 1) + µiΦ−1ϕ∗(t)ε(t)

gi(t) = Im

[
ε∗(t)ejω̂i(t)ϕT(t)β̂i(t− 1)

β̂H
i (t− 1)Φβ̂i(t− 1)

]

ω̂i(t + 1) = ω̂i(t)− γigi(t)

i = 1, . . . , k

θ̂(t) =
k∑

i=1

β̂i(t) (20)

correction filter:

ω̄i(t) = Hm,τi,η(q−1)ω̂i(t) (21)
i = 1, . . . , k

frequency-guided filter:

ε̄(t) = y(t)−ϕT(t)
k∑

i=1

ejω̄i(t)β̄i(t− 1)

β̄i(t) = ejω̄i(t)β̄i(t− 1) + µiΦ−1ϕ∗(t)ε̄(t)

i = 1, . . . , k

θ̄(t) =
k∑

i=1

β̄i(t) (22)

where τi = µi/γi, i = 1, . . . , k.
Note that the frequency-guided filter does not estimate
system frequencies on its own.
When the matrix Φ is not known, or when it changes
(slowly) with time, it can be replaced in (20) and (22)
with the following estimate

Φ̂(t) = λoΦ̂(t− 1) + (1− λo)ϕ∗(t)ϕT(t)

where 0 < λo < 1 denotes a forgetting constant (e.g.
λo = 0.9).

3 Computer simulations
Two simulation experiments were arranged to check the
system tracking capabilities of the GANF algorithm (20)
- (22). The simulated system, inspired by channel esti-
mation applications, was governed by

y(t) = θ(t)u(t) + v(t), θ(t) = aej
∑t

s=1
ω(s)

i.e. it was a single-tap FIR system (n = 1) with a single
frequency mode (k = 1). The weighting coefficient had
a constant value a = 2− j. The white 4-QAM sequence
was used as the input signal (u(t) = ±1±j, σ2

u = 2) and
the noise was complex Gaussian with variance σ2

v = 0.1
(SNR=20 dB) or σ2

v = 2 (SNR=7 dB).
In the first experiment the instantaneous frequency was
changed in a linear way: ω(t) = π/4 − 0.0001t. The
second experiment was more “realistic”: the instanta-
neous frequency was changed in a sinusoidal fashion:
ω(t) = [1 + 0.03 sin(πt/2000)] ·(π/4). Note that sinu-
soidal changes only locally can be approximated by the
polynomial model (8). All filters were allowed to reach
their steady state behavior before the frequency changes
were enforced. The obtained results are summarized in
Figures 1 and 2.
Figure 1 shows typical trajectories of frequency esti-
mates yielded by the original GANF algorithm (20),
and by its debiased versions (22) based on the first-
order (µ = 0.02, γ = 0.0004, η = 0.95) and second-order
(µ = 0.02, γ = 0.0004, η = 0.97) polynomial approxi-
mations. Different values of η were adopted for m = 1
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Fig. 1. True signal frequency changes (thin lines) and typi-
cal trajectories of frequency estimates yielded by the GANF
algorithm (thick lines), and by its frequency-debiased ver-
sions based on the first-order (medium-thick lines) and sec-
ond-order (lines with dots) polynomial approximations.

and m = 2 to guarantee that the compared adaptive fil-
ters have the same equivalent estimation memory – see
(Niedźwiecki, 2000) for more details. Note how a clearly
visible delay of the estimated trajectories, with respect
to the true trajectories, is reduced by means of debias-
ing.
Tracking capabilities of the compared algorithms were
measured in terms of the accumulated frequency estima-
tion errors Σω =

∑4000
t=2001[ω̂(t)−ω(t)]2 and the accumu-

lated excess prediction errors Σε =
∑4000

t=2001[| ε(t)|2−σ2
v ].

All filters were allowed to reach their steady state behav-
ior before their analysis/comparison was carried out. To
reduce the number of degrees of freedom, the frequency
adaptation gain γ was set to µ2 – see (Niedźwiecki &
Kaczmarek, 2006b). The forgetting factor η was fixed at
η = 0.95 for m = 1, and at η = 0.97 for m = 2.
Figure 2 shows how ensemble averages of both error
statistics (obtained for 25 different realizations of mea-
surement noise) depend on the choice of µ. As expected
debiasing based on the first-order (linear) polynomial
approximation yields improved tracking results, both in
terms of the minimum achievable errors and, more im-
portantly, in terms of the algorithm’s robustness to the
choice of µ. Usefulness of the second-order (parabolic)
approximation depends on the signal-to-noise ratio. For
high SNR (20dB) application of the second-order ap-
proximation further improves tracking results. However,
this is not true any more for low SNR (7dB). This is not
a surprise as high-order polynomial approximations are
known to be sensitive to noise.

Σ̄ω Σ̄ε

0.02 0.04 0.06 0.08 0.1
0

0.01

0.02
SNR=20dB

0.02 0.04 0.06 0.08 0.1
0

50

100
SNR=20dB

0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

SNR=7dB

0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

SNR=7dB

0.02 0.04 0.06 0.08 0.1
0

0.01

0.02
SNR=20dB

0.02 0.04 0.06 0.08 0.1
0

50

100
SNR=20dB

0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

SNR=7dB

µ

0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

SNR=7dB

µ

Fig. 2. Dependence of the averaged sums of the squared fre-
quency estimation errors Σ̄ω and excess prediction errors Σ̄ε

on the adaptation gain µ. Comparison involves the estimates
yielded by the original GANF algorithm (×) and by its fre-
quency-debiased versions proposed in the paper, based on
the first-order (◦) and second-order (+) polynomial approx-
imation. The top four plots corresponds to linear frequency
changes and the bottom four plots – to sinusoidal changes.
All plots were evaluated on a grid of 90 equidistant values
of µ.

4 Conclusion
We have shown that when system frequencies change in
a smooth way, the frequency estimates yielded by the
GANF algorithm can be effectively debiased. The pro-
posed solution is a cascade of three filters. The “pilot”
generalized adaptive notch filter provides preliminary
(biased) frequency estimates. The estimates yielded by
the pilot algorithm are passed through a correction fil-
ter and fed into the third algorithm - the “frequency-
guided” generalized adaptive notch filter. Frequency de-
biasing allows for improvement of the tracking perfor-
mance of generalized adaptive notch filters.
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APPENDIX

According to (12) and (13) the steady state relationship
between ω̄(t) and ω̂(t) can be written down in the form

ω̄(t) =
∞∑

i=0

hm, τ,η(t, i)ω̂(t− i) (23)

where
hm, τ,η(t, i) =

= ηifT(t + τ)

[ ∞∑

i=0

ηif(t− i)fT(t− i)

]−1

f(t− i) (24)

To avoid matrix inversion in (24), we will express
hm, τ,η(t, i) in terms of the orthonormal basis func-
tions f̃0(i), . . . , f̃m(i) of the subspace F spanned by
f0(i), . . . , fm(i). Denote by f̃(i) = [f̃0(i), . . . , f̃m(i)]T
the basis vector of F which fulfills the following weighted
orthonormality condition

∞∑

i=0

ηif̃(i + 1)f̃T(i + 1) = Im+1 (25)

where Im+1 is the (m + 1)× (m + 1) identity matrix.
To evaluate h1, τ (t, i) and h2, τ (t, i) we need to know the
first three orthogonalized basis functions of the subspace
spanned by powers of time. Using the Gram-Schmidt
procedure one arrives at

f̃0(i) =
√

1− η

f̃1(i) =
√

1− η

η
[(1− η)(i− 1)− η]

f̃2(i) =
√

1− η

2η
[(1− η)2(i− 1)2

+ (3η2 − 2η − 1)(i− 1) + 2η2] (26)

Suppose there exists a nonsingular (m + 1) × (m + 1)
matrix D(t) such that D(t)f(t− i) = f̃(i+1), ∀t, i. Then
(24) can be rewritten in the form

hm,τ,η(t, i) = ηifT(t + τ)DT(t)×

×
[ ∞∑

i=0

ηiD(t)f(t− i)fT(t− i)DT(t)

]−1

D(t) f(t− i)

= ηif̃T(1− τ)

[ ∞∑

i=0

ηif̃(i + 1)f̃T(i + 1)

]−1

f̃(i + 1)

= ηif̃T(1− τ)f̃(i + 1) = hm,τ,η(i) (27)
which is much easier to handle.
Consider the case where m = 1 (linear approximation).
Let

A =

[
1 0

−1 1

]
, B =

[
1 0

0 −1

]
,

C =
√

1− η

η

[ √
η 0

(1− η)τ − 1 1− η

]

Observe that: Af(t) = f(t − 1), Bf(t) = f(−t) and
Cf(t) = f̃(t), ∀t. Therefore, for all t, it holds that
CBAt+1f(t− i) = CBf(−i− 1) = Cf(i+1) = f̃(i+1),
which means that one can set D(t) = CBAt+1. In the
analogous way one can construct the matrix D(t) for
m > 1.
Combining (26) with (27) one obtains

h1,τ,η(i) = ηi(1− η)
[
1− (1− η)τ + η

η
[(1− η)i− η]

]

which leads, after applying the Z-transform, to (17). In
the similar way, after elementary but tedious calcula-
tions, one arrives at (18).
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