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Abstract 
 

The complex multiplication is one of the basic operations in digital signal 
processing. In this work the design procedure of the complex multiplier 
based on the well-known decomposition algorithm of Skavantzos  
and Stouraitis is presented. The algorithm makes use of encoding n-bit 
numbers as polynomials of degree 7 in the ring of polynomials modulo 

 with )1( 8 −x 4n -bit coefficients. The complex multiplication is carried 
out as an eight point cyclic convolution. The design procedure is illustrated 
by the computational example and design of a small multiplier. 
 
Keywords: digital signal processing, complex multiplication, polynomial 
residue number system. 
 
Projektowanie mnożnika zespolonego  
oparte na splocie z użyciem  
wielomianowego systemu resztowego 

 
Streszczenie 

 
Mnożenie zespolone jest jedną z podstawowych operacji w cyfrowym 
przetwarzaniu sygnałów. W niniejszej pracy przestawiono  metodę 
projektowania mnożników zespolonych  opartą na znanym algorytmie 
dekompozycji  Skavantzosa and Stouraitisa. W algorytmie tym stosuje się 
kodowanie liczb n-bitowych jako wielomianów stopnia 7 w pierścieniu 
wielomianów modulo  ze współczynnikami )1( 8 −x 4n -bitowymi. 
Mnożenie zespolone jest następnie realizowane jako 8-punktowy splot 
cykliczny. Proponowaną metodę  projektowania zilustrowano przykładem 
obliczeniowym oraz przykładowym projektem mnożnika. 
 
Słowa kluczowe: cyfrowe przetwarzanie sygnałów, mnożenie zespolone, 
wielomianowy system resztowy. 
 
1. Introduction 
 

The complex multiplication is one of the basic arithmetic 
operations in digital signal processing. The most important design 
goals while designing complex multipliers can be maximization of 
the throughput while maintaining a possibly small area, or 
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minimization of the area-time complexity. The design issues also 
encompass the power dissipation in VLSI multipliers. Using  
a direct approach a binary complex  bit multiplier can be 
based on four 

nn ×
nn×  bit binary multipliers and two adders. There 

also exists an algebraic transform proposed by Blahut [1], that 
allows to save one real multiplication at the cost of two more 
additions and one subtraction. The theoretical lower bound on the 
delay for an nn × -bit binary multiplication was given by 
Winograd [2] and for the area-time complexity by Brent and Kung 
[3], but in practice they have small impact on multiplier design. 
The binary multiplication can be implemented very effectively 
using only shifts and additions, but the delay may be prohibitive. 
A common alternative to this solution is the generation of partial 
products with a subsequent addition using a two-dimensional full-
adder(FA) array and a final two-operand binary adder. Such an 
array is usually transformed into square that gives an array 
multiplier. The delay of such a multiplier consists roughly of the 
delay of the FA array that is proportional to n and the carry-
propagate adder delay. The binary adder is used commonly in the 
ripple-carry or carry look-ahead form. A faster but less regular 
multiplier can be obtained by summing the partial product with the 
use of the Wallace tree [5]. In this case the delay is proportional to 
log n. The complex multiplier considered in this paper has  
a different structure from those based on binary multipliers 
discussed above. Here the complex n-bit numbers are encoded as 
polynomials of degree seven in the rings of polynomial modulo 

. The complex multiplication is performed as an 8-point 
cyclic convolution. In the first step n-bit complex numbers are 
decomposed into n/4-bit segments. Using these segments  
the coefficients of the input polynomials are calculated. In the 
second step all 64 possible products of polynomial coefficients  
are calculated. In this step , 

)1( 8 −x

4/4/ nn × 14/4/ +× nn  and 
14/14/ +×+ nn  multipliers are needed. Using these products, the 

coefficients of the circular convolution are computed with the 
subsequent calculation of the real and imaginary parts of the 
complex product. In this paper,  is assumed. The aim of this 
work is to show the design procedure of the complex multiplier 
based on the above presented principle and consider the issue of 
its time-hardware complexity.  This algorithm may be useful as  
a design tool for large multipliers, but  the characteristic features 
of its hardware realization can also be determined  using small n. 
Therefore we shall use n = 4. This work is a revised and extended 
version of [6]. 

4=n

 
2. The complex multiplication  algorithm   

for n-bit numbers 
 

Consider multiplication yxz ⋅=  of two n-bit complex numbers 
with ir jxxx +=  and ir jyyy += . In order to decrease the 
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wordlength the real and imaginary parts are decomposed into 1-bit 
segments in the following manner [4] 
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After such decomposition the complex numbers can be 

expressed as 7th order polynomials. This makes possible to 
represent the multiplication of complex numbers as  
a multiplication of polynomials. The complex number x can be 
defined in the polynomial form as follows [4]: 
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with  2222 jk += . 

The polynomial coefficients can be expressed as  linear 
combinations of the individual segments 
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These coefficients can be computed by equating the respective 

expressions:  
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The same scheme of decomposition for the second complex 

number y is used. The respective polynomial obtained for y will be 
denoted as V(k). Then the product of x and y can be computed as 

  

18)()()(
−

⋅=
x

kVkWkQ ,           (6) 
 

which is equivalent to 8-point circular convolution, where 
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and  
2/2/2/2/ 754310 qqqqqqQre +−−−+= ,        (8a) 

 
2/2/2/2/ 765321 qqqqqqQim −−−++= .       (8b) 

 
The relationships (8a) and (8b)  can be obtained by inserting 

2222 jk +=  into (7). 
The coefficients of Q(k) are the entries on the main diagonal of 

the matrix Q  defined as 
TGZQ ⋅=                  (9) 
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and  

VWZ ⋅= ,               (11) 
 

where [ ] .7,...,2,1,0,  ,     
8

== − jiwW ji
 and V  is a diagonal 

matrix  with  being the elements of the 
coefficient vector of the complex number y, appearing as  in (5).  

),...,,( 710 vvvdiag iv

iw
 
3. Realization of the algorithm for n = 4 
 

The algorithm consists of the following steps: 
i)  computation of  and  , i = 0,1,...,7, iw iv

ii)  calculation of the matrix Z (products , i , j = 0, 1, 2,..., 7), ji vw ⋅

iii) computation of , i = 0, 1, 2,...,7,  iq
iv) determination of  and  by (8a) and (8b), respectively. reQ imQ
 
3.1. Computation of  and  iw iv
 

The coefficients , , i = 0,1,...,7 can be computed as given 
in (4), , , k = 0,1,2,...,7, are 1-bit. Thus  and  may be 
at most 2-bit with the extra sign bit. The sign-magnitude form is 
assumed. The coefficients are computed using logic functions. The 
logic equations are given only for , i = 0,1,...,7, since  for  
they have the same form with ,  replaced with , . 

iw iv
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3.2. Calculation of the matrix Z 
 

In this step all products , i, j=0, 1, 2,...,7 have to be 
computed. The operands can be classified in the following manner 

ji vw ⋅

i)  1-bit unsigned  20 , ww
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ii)  2-bit unsigned  1w
iii) 1-bit signed , , ,  3w 4w 6w 7w
iv)  2-bit signed  5w

Due to the sign-magnitude representation, the signs can be 
multiplied separately, hence three types of simple multipliers are 
needed, namely 1-bit multiplier (Type I), 2×1-bit multiplier (Type 
II), a 2×2-bit multiplier (Type III), signed 1-bit multiplier (Type 
IV) and signed 2×2-bit multiplier (Type V). The respective logic 
functions have the following  form: 

 
Type I: (1×1-bit  unsigned arguments)      
 

)0()0()0( bahI =  
 
Type II: (2×1-bit  unsigned arguments)    
 

)1()0()1( bahII = ,    )0()0()0( bahII =
 
Type III: (2×2-bit unsigned arguments)     
 

)0()1()1()2( abahIII = ,   )1()0()1()0()0()1()1( baabaahIII += ,  
 

)0()0()1()0( baahIII = , 
  
Type IV: (1×1-bit signed arguments) 
    

2 1 )1( signsignhIV ⊕= ,   , )0()0()0( bahIV =
 
Type V: (2×1-bit  signed arguments) 
     

2 1 )1( signsignhIV ⊕= ,   , )0()0()0( bahI =
 

The sizes and signs of  for  all combinations of i and j are 
given in Table 1.  

ji vw ⋅

 
Tab. 1. The bit sizes and signs of the partial products 
Tab. 1. Rozmiary w bitach i znaki iloczynów częściowych 
 

 0w  
1
 w 2w  

3w  
4w  

5w  
6w  

7
 w

0v  1,+ 2,+ 1,+ 1,± 1,- 2,- 1,- 1,± 

1
 v 2,+ 3,+ 2,+ 2,± 2,- 3,± 2,- 2,± 

2v  1,+ 2,+ 1,+ 1,± 1,- 2,- 1,- 1,± 

3
 v 1,± 2,± 1,± 1,± 1,± 2,± 1,± 1,± 

4v  1,- 2,- 1,- 1,± 1,+ 2,+ 1,+ 1,± 

5
 v 2,- 3,± 2,± 2,± 2,+ 3,+ 1,± 2,± 

6v  1,- 2,- 1,- 1,± 1,+ 1,± 1,+ 1,± 

7v  1,± 2,± 1,± 1,± 1,± 2,± 1,± 1,± 

 
 

3.3. Computation of , i = 0, 1, 2,...,7 iq
 

The computation of , i =0, 1, 2,...,7. by (9)  requires  
8-operand signed addition for each i.  The operands are at most  
3-bit with the sign and varying weights as it is seen in the rows of 
the matrix G. The computation of  involves the terms with  
a fixed sign and terms with a variable sign. The use of 2’s 
complement is ineffective due to the small number of nonzero bits 
in the individual terms hence the grouping of addends is 
performed in such a manner, that two groups are formed, one with 
a fixed positive sign and the other with a fixed negative sign. The 
variable sign terms are attached to both groups and they are 
redirected to the proper group in dependence of the sign. This 
redirection is performed by simple demultiplexers controlled by 
the sign of the term. 

iq

iq

The general formula for the computation of  can be written as iq
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Hence, for instance, for  we receive the sums of the positive 

and negative terms of , , , respectively: 
0q
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In the above formulas the dashed symbols represent the 

negation and )(⋅S -denotes the sign of the term in parentheses  
with 0 for the positive sign and 1 for the negative sign. After the 
computation of (13a) and (13b),  is  transformed into its 2's 
complement form  and the  addition is made. The structure 
of  an such adder is shown in Fig 1. 

−
0q

−+ + 00 qq

 
 

 
 
Fig. 1.  The full adder (FA) array for the computation of   0q
Rys. 1.  Sumator do obliczania współczynnika  0q

 
The adders for  and - as given by (8a) and (8b), 

respectively, have been designed in the standard form [5] of   
6-operand Wallace trees and the final carry-propagate adder has  
the ripple-carry form.  

reQ imQ

 
4. Numerical example 
 

Assume two 4-bit complex numbers x=5+j12 and y=12+j9, with 
the product 17739 jyxz +−=⋅= . 

As shown above the numbers  can be represented in the form of 
polynomials W(k) and V(k) with the coefficients computed by (4). 
The product of these polynomials allows to obtain the Q(k) 
polynomial that represents the product of two complex numbers. 
In the first step we have to decompose in accordance with (1) and 
(2) the real and imaginary parts of both numbers. For n=4 such 
decomposition leads to the segmentation of real and imaginary 
parts of both numbers into 1-bit segments. For the assumed 
complex numbers we obtain 

 
)21212021(21202120 01230123 ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅= jx  
)21202021(20202121 01230123 ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅= jy  
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Thus we get  
1     ,0     ,1     ,0 0123 ==== rrrr xxxx  

1     ,1     ,0     ,1 0123 ==== iiii xxxx  
0     ,0     ,1     ,1 0123 ==== rrrr yyyy  

1     ,0     ,0     ,1 0123 ==== iiii yyyy  
 
The coefficients of W(k) and V(k)  are 
 

.0,1
   ,2   ,0

,1   ,1
,1   ,0

00716

00514

22332

22130

=−=−=−=
−=−==−=
−=+−===

=+===

iri

irr

iri

irr

xxwxw
xxwxw
xxwxw

xxwxw
 

and 

.1   ,0
  ,1  ,0

,1   ,1
     ,1   ,1

00716

00514

22332

22130

−=−==−=
−=−==−=
−=+−===

=+===

iri

irr

iri

irr

yyvyv
yyvyv
yyvyv

yyvyv
 

 
The circular matrix W  has the following form 
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0     1      1     1-    0    2-  1-   0  
0     0     1     1      1-   0    2-   1-
1-    0    0     1      1     1-  0     2-
2-   1-   0    0      1     1     1-   0  
0     2-  1-   0     0     1     1      1-
1-    0    2-  1-    0    0     1      1  
1-    1-   0    2-   1-   0    0      1  
1      1     1-   0    2-   1-   0     0  

 

W

 

 
and the V(k) coefficients have the values 
 

( ). 1  ,0  ,1  ,0  ,1  ,1  ,1  ,1),,,,,,,( 76543210 −−−=vvvvvvvv
 

In the next step by using (11) we obtain the matrix Z  
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   0   0    1-  0    0    2-  1-  0  
0   0    1-  0    1     0    2-  1-
1    0    0   0    1-   1-  0    2-
2   0    0   0    1-   1     1-  0  
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  1-   0    1    0   2    1-   0    0  

Z

 

 
Then making use of (9)  we obtain the coefficients of Q(k) 
 

( )
( 32  ,14  ,78  ,49  ,34  ,75  ,32  ,12

,,,,,,, 76543210

−−−−=
== qqqqqqqqQ

)
. 

 
Finally by (8a) and (8b), we get the real and imaginary parts of the 
product 

392/2/2/2/ 754310 −=+−−−+= qqqqqqQre
, 

and  
1772/2/2/2/ 765321 =−−−++= qqqqqqQim

. 
 

5. Analysis of hardware amount and delay 
 

The multiplier in the proposed configuration consists of four 
main blocks. The first block (CC)  computes the  and  

coefficients, 

iw iv

7,...,2,1,0=i , the second block (WV) performs the 
multiplications , jivw 7,...,2,1,0, =ji , the third block (Q) 
calculates the  coefficients,  and finally the fourth 
one (PR) determines  and . The hardware amount of the  
4-bit multiplier can be expressed in the following manner: 

iq 7,...,2,1,0=i
reQ imQ

 
PRUWVCCMULT AAAAA +++= .             (14) 

 
The area of CC block, ACC is neglected as its area is very small. 

The WV block requires 4 22×  multipliers ( 7.98 GE) , 16 - 12 ×  
multipliers(2.66 GE) and 16 - 11×  multipliers (1.33 GE) , and 22 . 

11×  signed multipliers (4.33 GE)  and 6 12 ×  signed 
multipliers(5.66 GE). In total, the WV  block uses 224.88 GE 
which corresponds to 24.98 ( with =9GE [7]). The adders 
that compute , i=1,2,..7, require approximately 1120  and 
the two adders for the final calculation of  and , call for 78 

. Hence,we finally obtain about 222.98 . 

FAA FAA

iq FAA

reQ imQ

FAA FA

The 
A

44×  complex multiplier delay at the logical level can here 
be estimated in the following manner: 

 
PRQWVACCMULT ttttt +++=             (15) 

 
where FACC tt 7.0≅ , FANANDINVWV tttt 7.02 3 ≅⋅+= , FAPR tt 8= ,  

. FAqq ttt
i

 10)( max ==

Finally we obtain FAMULT tt   4.19= . 
 
6. Conclusions 
 

The design procedure of a complex multiplier based on 
Skavantzos and Stouraitis decomposition algorithm is presented. 
For larger complex multipliers this algorithm represents  
a decomposition tool, i.e. instead of 4 -bit binary multipliers, 
64 

nn ×
4/4/ nn × -bit, 4/14/ nn ×+  or 14/14/ +×+ nn -bit 

multipliers can be applied. The obtained results indicate that the 
hardware structure may be more regular than in the case of direct 
decomposition of the large multiplier. This is due to the realization 
of  addition because after computation of partial multiplication 
results, irrespective of the multiplier size, 8 multi-operand parallel 
additions and next two 6-operand additions in parallel have to be 
carried out. The multiplier implementation with the use of the 
presented procedure becomes more effective with the growth of n, 
since the part connected with the realization of partial 
multiplications becomes dominant. The algorithm is not suitable 
for small n, because of  relatively large number of additions. 
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	The algorithm consists of the following steps: 
	The coefficients  ,  , i = 0,1,...,7 can be computed as given in (4),  ,  , k = 0,1,2,...,7, are 1-bit. Thus   and   may be at most 2-bit with the extra sign bit. The sign-magnitude form is assumed. The coefficients are computed using logic functions. The logic equations are given only for  , i = 0,1,...,7, since  for   they have the same form with  ,   replaced with  ,  . 
	c)  , 
	Due to the sign-magnitude representation, the signs can be multiplied separately, hence three types of simple multipliers are needed, namely 1-bit multiplier (Type I), 2(1-bit multiplier (Type II), a 2(2-bit multiplier (Type III), signed 1-bit multiplier (Type IV) and signed 2(2-bit multiplier (Type V). The respective logic functions have the following  form: 
	 
	and the V(k) coefficients have the values 
	 . 
	 
	In the next step by using (11) we obtain the matrix   
	  
	 
	Then making use of (9)  we obtain the coefficients of Q(k) 
	 
	Finally by (8a) and (8b), we get the real and imaginary parts of the product 

