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Abstract

In this paper, we consider the undirected version of the well known maximum edge-disjoint paths problem, restricted to complete
graphs. We propose an off-line 3.75-approximation algorithm and an on-line 6.47-approximation algorithm, improving the earlier
9-approximation algorithm proposed by Carmi, Erlebach, and Okamoto [P. Carmi, T. Erlebach, Y. Okamoto, Greedy edge-disjoint
paths in complete graphs, in: Proc. 29th Workshop on Graph Theoretic Concepts in Computer Science, in: LNCS, vol. 2880, 2003,
pp. 143–155]. Moreover, we show that for the general case, no on-line algorithm is better than a (2 − ε)-approximation, for all
ε > 0. For the special case when the number of paths is within a linear factor of the number of vertices of the graph, it is established
that the problem can be optimally solved in polynomial time by an off-line algorithm, but that no on-line algorithm is better than
a (1.5 − ε)-approximation. Finally, the proposed techniques are used to obtain off-line and on-line algorithms with a constant
approximation ratio for the related problems of edge congestion routing and wavelength routing in complete graphs.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The fundamental networking problem of establishing point-to-point connections between pairs of nodes in order to
handle communication requests has given rise to numerous path routing problems in graph theory. The topology of the
network is modeled in the form of a graph whose vertices correspond to nodes, while edges represent direct physical
connections between nodes. This paper deals with the well established problem of handling the maximum possible
number of communication requests without using a single physical link more than once, known as the Maximum
Edge-Disjoint Paths Problem (MAXEDP). We focus on the construction of approximation algorithms for the NP-hard
MAXEDP problem in complete graphs, which are used to model networks with direct connections between all pairs
of nodes. Two basic algorithmic approaches are considered — off-line algorithms, which compute a routing for a
known set of requests provided at input, and on-line algorithms, which have to handle requests individually, in the
order in which they appear.

Problem definition. The physical architecture of the network is given in the form of an undirected graph G = (V, E),
where V denotes the set of nodes, while E represents the set of connections between them. A sequence of edges
P = (e1, e2, . . . , el) ∈ E l , such that ei = {vi , vi+1} for some two vertices vi , vi+1 ∈ V , is called a path of length
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l = |P| in G, with endpoints v1 and vl+1. The symbol P{u,v} is used to denote the set of all paths in G with endpoints
u, v ∈ V . A pair of paths P1 and P2 is called conflicting if there exists an edge e ∈ E such that e ∈ P1 and e ∈ P2.
For a given set of paths R in graph G, the conflict graph Q(R) is a simple graph with the vertex set R and edges
connecting all pairs of vertices corresponding to those paths from set R which conflict in G.

An instance I in network G is defined as any multiset of pairs {u, v}, u, v ∈ V , u 6= v, such that each element
of I represents a single communication request between a pair of nodes. An equivalent representation of instance I
may be given in the form of the instance multigraph H(I ) = (V, I ), where communication requests are treated as
edges of H(I ). A routing R of instance I in network G is a multiset of paths in G, such that there is a one-to-one
correspondence between elements {u, v} ∈ I and paths P ∈ R with endpoints u and v, P ∈ P{u,v}. The set of all
routings of instance I is denoted as R(I ). For use in further considerations, we define the following parameters for
any routing R:

• dilation d(R), defined as the length of the longest path in routing R: d(R)=maxP∈R |P|,
• edge congestion π(R), given by the formula: π(R) = maxe∈E πe(R), where πe(R) = |{P ∈ R : e ∈ P}|,
• wavelength count w(R), defined as the chromatic number of the conflict graph: w(R) = χ(Q(R)); the inequality
w(R) ≥ π(R) holds for any routing [3].

A routing R is said to consist of edge-disjoint paths if π(R) = 1, or equivalently, if the conflict graph Q(R) has no
edges. A formal definition of the MAXEDP problem, expressed in these terms, is given below.

Maximum Edge-Disjoint Paths Problem [MAXEDP]

Input: Instance I in graph G.
Solution: A set of edge-disjoint paths RS , such that RS ∈ R(IS) for some instance IS ⊆ I .
Goal: Maximise the cardinality of RS .

Notation. Throughout the paper, the complete graph with vertex set V is denoted by KV . Unless otherwise stated, we
will assume that the MAXEDP problem is considered for the instance I in the complete graph G = KV = (V, E).
The optimal solution to the MAXEDP problem is some routing ROPT ∈ R(IOPT) (IOPT ⊆ I ), while approximation
algorithms yield a solution denoted as RS ∈ R(IS) (IS ⊆ I ), of cardinality not greater than ROPT. Approximation
ratios are understood in terms of upper bounds on the ratio |IOPT|

|IS |
. The number of elements of a set or multiset, and also

the length of a path, is written as |P|. The number of edges incident to a vertex v in multigraph H is called its degree
and denoted as degH v. The symbols ∆H and χ ′

H are used to denote the maximum vertex degree and the chromatic
index of the multigraph H , respectively.

State-of-the-art results. In the case of general networks, the MAXEDP problem is closely related to a family of
unsplittable flow problems. As a consequence MAXEDP is NP-hard, difficult to approximate in polynomial time

within a constant factor, and difficult to approximate within a factor of O(log
1
3 −ε

|E |), for any ε > 0 (unless
NP ⊆ ZPTIME(n poly log n), [1]). The variant of MAXEDP defined for directed graphs is difficult even to approximate

within O(|E |
1
2 −ε), for any ε > 0 [9]. Both the directed and undirected versions are approximable within a factor of

O(|E |
1
2 ) [14].

When the graph G is the complete graph KV , the MAXEDP problem, though still NP-hard, becomes approximable
within a constant factor. The best known approximation ratio was equal to 9 both in the off-line and on-line models
of computation, owing to Carmi, Erlebach, and Okamoto [4]. A comparison of the known approximation algorithms
is provided in Table 1.

Outline of the paper. In Section 2 we deal with the off-line MAXEDP problem in complete graphs, providing a
3.75-approximation algorithm based on the simple combinatorial concept of edge-coloring. Moreover, we show that
for instances with significantly fewer than |V |

2 requests, the problem is either polynomially solvable, or admits a
polynomial-time approximation scheme. For the general case of the on-line version of the problem, in Section 3 we
provide a 6.47-approximation algorithm, and show that no algorithm is better than a 2-approximation. A summary of
the most important new results concerning the MAXEDP problem is given in Table 2. Finally, in Section 4 we discuss
the application of similar approximation techniques to other routing problems in complete graphs, and remark on their
implementation in a distributed setting.
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Table 1
A comparison of approximation algorithms presented for the MAXEDP problem in complete
graphs with previous results (updated from [4])

Principle of operation Model Approx. ratio Dilation Reference

Shortest-path-first variant of BGA Off-line 54 [5], 2001
Set tripartition Off-line 27 [5], 2001
BGA with L = 4 On-line 17 ≤4 [10], 2002
BGA with L = 4 On-line 9 ≤4 [4], 2003

BGA with L = 2 On-line 6.47 ≤2 Theorem 17
Routing by edge coloring Off-line 3.75 ≤2 Theorem 6

Table 2
New complexity results for the MAXEDP problem in complete graphs

Instance restriction Off-line complexity On-line complexity

∆H(I ) ≤
|V |

12 O(|V ||I |) Proposition 4 O(|V |) per request Corollary 18
|I | < |V | O(|V |) Proposition 3 O(|V |) per request Corollary 18
|I | < k|V |, const k O(|V |

2) Theorem 10 no (1.5 − ε)-approx. Theorem 19
|I | < |V |

s , const s ∈ (1, 2) PTAS, NPH Theorems 12 and 13

General case 3.75-approx. Theorem 6
6.47-approx. Theorem 17
no (2 − ε)-approx. Theorem 20

2. The off-line MAXEDP problem in complete graphs

In the off-line routing model, it is assumed that all pairs of vertices forming the routed instance are initially known
and all paths are determined by the routing algorithm at the same time.

2.1. Preliminaries: Bounds on solution cardinality

Factors in a multigraph. Let Fv be a set of nonnegative integers defined for each vertex v ∈ V . An F-factor in
multigraph H = (V, I ) is a set of edges of H such that the number of edges from this set which are incident to vertex
v belongs to Fv . An [a, b]-factor is defined as an F-factor such that each set Fv consists of all integers from the range
[a, b]. In further considerations we use the following result.

Proposition 1 ([8]). The problem of finding an [a, b]-factor with the maximum possible number of edges in
multigraph H = (V, I ) can be solved in O(|V ||I | log |V |) time.

Let I be an instance in graph KV . Consider an instance IOPT yielding an optimal solution to the MAXEDP problem
for instance I . It is immediately evident that any vertex v ∈ V can belong to at most degKV

v = |V | − 1 requests of
IOPT; hence IOPT is a [0, |V | − 1]-factor in H(I ) and we have the following bound.

Corollary 2. The cardinality of the optimal solution to the MAXEDP problem for I is bounded from above by the
size of the maximum [0, |V | − 1]-factor in H(I ).

Instances admitting an edge-disjoint routing. It is interesting to note that relatively wide classes of instances can be
entirely routed using edge-disjoint paths and in polynomial time. A short characterization of two classes useful in
further considerations is given below.

Proposition 3. If |I | < |V |, then the entire instance I can be routed in KV by edge-disjoint paths, and a solution
ROPT ∈ R(I ) to the MAXEDP problem, such that d(ROPT) ≤ 2, can be determined in O(|V |) time.

Proof. The proof is constructive and proceeds by induction with respect to |V |. For |V | = 2, we have |I | ≤ 1 and the
proposition is obviously true. Next, let |V | > 2 be fixed and let u ∈ V be a vertex belonging to the smallest number
of requests in I , i.e. such that u is of minimum degree in H(I ). Since |I | < |V |, it is evident that degH(I ) u = 0 or
degH(I ) u = 1. In the former case, we select an arbitrary request {v1, v2} ∈ I , and return the solution to the MAXEDP
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problem for I in KV in the form of path ({v1, u}, {u, v2}) added to the solution to MAXEDP, for instance I \{{v1, v2}}

in the complete graph KV \{u}. Thus |ROPT| = 1 + (|I | − 1) = |I | by the inductive assumption. In the latter case, let
{u, v} ∈ I be the only request involving vertex u. The sought routing then consists of the single-edge path ({u, v})

added to the solution to MAXEDP for the instance I \ {{u, v}} in KV \{u}. The described approach may easily be
implemented in the form of an algorithm with O(|V |) time complexity. �

Observe that the claim of Proposition 3 does not hold if |I | = |V | (it suffices to consider an instance composed of
|V | requests between a fixed pair of vertices). Nevertheless, if |I | ∈ O(|V |) the problem can be solved in polynomial
time (see Theorem 10).

Proposition 4. If ∆H(I ) ≤
|V |

12 , then the entire instance I can be routed in KV by edge-disjoint paths, and a solution
ROPT ∈ R(I ) to the MAXEDP problem, such that d(ROPT) ≤ 2, can be determined in O(|V ||I |) time.

Proof. First, let us observe that the size of any instance I satisfying the assumptions is bounded by |I | ≤
|V |

2 ·
|V |

12 .
The sought routing ROPT ∈ R(I ) can be formed by sequentially assigning paths to requests from I (in an arbitrary
order), in such a way as to preserve the following conditions:

1. Routing ROPT consists of edge-disjoint paths only.
2. The length of any path added to ROPT is at most 2.
3. Each vertex of graph KV is the center of at most |V |

12 paths of length 2 in ROPT.

It suffices to show that the described construction of routing ROPT is always possible. Suppose that at some stage
of the algorithm ROPT fulfills conditions 1 and 2, and the next considered request is {v1, v2}. Vertex v1 is the endpoint
of at most |V |

12 − 1 paths and the center of at most |V |

12 paths already belonging to ROPT, thus at least 3|V |

4 edges of KV
incident to v1 do not belong to any path of ROPT. The same is true for vertex v2. Thus we immediately have that the
set U of vertices connected to both v1 and v2 by edges unused in ROPT is of cardinality |U | ≥

3|V |

4 +
3|V |

4 −|V | =
|V |

2 .

Since routing ROPT currently consists of fewer than |I | ≤
|V |

2 ·
|V |

12 paths, by the pigeonhole principle there must exist

a vertex u ∈ U such that u is the center of fewer than |V |

12 paths from ROPT. Therefore the request {v1, v2} may be
fulfilled by adding path ({v1, u}, {u, v2})

1 to routing ROPT, thus preserving the assumptions of the construction, which
completes the proof. �

2.2. An off-line 3.75-approximation algorithm

The idea of the approximation algorithms presented in this paper is based on the following observation.

Lemma 5. Given an instance I in graph KV and an edge-coloring of multigraph H(I ) using at most |V | colors, in
O(|I |) time it is possible to determine:

(i) routing R ∈ R(I ) such that d(R) ≤ 2, π(R) ≤ 2, and w(R) ≤ 3,
(ii) routing RS ∈ R(IS) for some IS ⊆ I , such that |IS| ≥

2
5 |I |, d(RS) ≤ 2, and RS uses edge-disjoint paths only.

Proof. Let ce denote the color assigned to an edge e ∈ I in the given edge-coloring of H(I ). Since ce is a value from
the range [1, |V |], it may be treated as an identifier of some vertex in graph KV . Define routing R of instance I in
graph KV as follows: R = {({v1, ce}, {ce, v2}) : e = {v1, v2} ∈ I } (see Fig. 1 for an illustration). No vertex of H(I )
may ever be incident to two edges from I of the same color; therefore each edge {v1, v2} of graph KV belongs to at
most two paths of routing R — one path in which v1 is an end vertex and v2 is a central vertex (a color of an edge
in I ), and another path in which the roles of vertices v1 and v2 are reversed. Routing R thus fulfills the following
conditions: d(R) ≤ 2 and π(R) ≤ 2. Consequently, each path of R may only conflict with at most two other paths,
and the conflict graph Q(R) is of degree bounded by ∆Q(R) ≤ 2. Graph Q(R) is thus a set of isolated vertices, paths
and cycles; hence we immediately have w(R) = χ(Q(R)) ≤ 3, which completes the proof of clause (i).

Next, notice that the three vertex cycle C3 is a connected component of Q(R) only if some three paths form a
triangle, i.e. P1, P2, P3 ∈ R and P1 = ({v1, v3}, {v3, v2}), P2 = ({v2, v1}, {v1, v3}), P3 = ({v3, v2}, {v2, v1}), for

1 Throughout the paper, we assume that edges of the form {v, v} which appear in notation when enumerating edges of paths should be treated as
nonexistent.
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Fig. 1. An illustration of Lemma 5 for instance I = {{1, 2}, {1, 2}, {1, 3}, {2, 3}, {3, 4}} in the complete graph K4: (a) an edge coloring of multigraph
H(I ), (b) a routing R of instance I in graph K and its conflict graph Q(R) (the independent set of paths forming the sought routing RS is marked
in bold).

some three vertices v1, v2, v3 ∈ V . Such a structure may, however, be easily eliminated by removing paths P1, P2, P3
from R and replacing them by the following three paths: P ′

1 = ({v1, v2}), P ′

2 = ({v2, v3}), P ′

3 = ({v3, v1}), which
satisfy the same set of requests and whose conflict graph consists of three isolated vertices. The routing RS ∈ R(IS)

sought in clause (ii) is now obtained by indicating a maximum independent set RS in conflict graph Q(R). Graph
Q(R) has |R| vertices, and once all cycles C3 have been eliminated, the independent set RS consists of at least 2

5 |R|

vertices (or equivalently, |IS| ≥
2
5 |I |). �

Theorem 6. There exists a 3.75-approximation algorithm with O(|I ||V | log |V |) runtime for the MAXEDP problem
in complete graphs. The dilation of the returned solution is not greater than 2.

Proof. Let I be an arbitrary instance in the complete graph KV , and let IOPT ⊆ I be a subset of the considered instance
whose routing is an optimal solution to the MAXEDP problem. We denote by H∗

= (V, I ∗) a multigraph H∗
⊆ H(I )

with the maximum possible number of edges, such that ∆H∗ < |V |. Since the edge set of multigraph H∗ is in fact a
maximum [0, |V | − 1]-factor in H(I ), by Proposition 1 multigraph H∗ can be determined in O(|I ||V | log |V |) time.
Moreover, by Corollary 2 we have |IOPT| ≤ |I ∗

|.
We will now show that there exists an algorithm with O(|I ||V | log |V |) runtime which finds a routing RS ∈ R(IS)

composed of edge-disjoint paths, such that IS ⊆ I ∗
⊆ I and the obtained solution is a 3.75-approximation of the

optimal MAXEDP solution, |IS| ≥
|I ∗

|

3.75 ≥
|IOPT|

3.75 . Instance IS is constructed as a subset of the edge set of multigraph
H∗. Since ∆H∗ < |V |, by a well known result owing to Shannon [13], the chromatic index χ ′

H∗ is bounded by

χ ′

H∗ ≤
3∆H∗

2 <
3|V |

2 , and an edge coloring of multigraph H∗ using not more than 3|V |

2 colors can be obtained in
O(|I ||V | log |V |) time. Without loss of generality we may assume that the colors are labelled with integers from the
range {1, . . . ,

3|V |

2 }, in such a way that a color with a smaller label is never assigned to fewer edges than a color with
a larger label. Let IC denote the subset of edges from I ∗ colored with colors from the range {1, . . . , |V |}. Due to
the adopted ordering of the color labels, we immediately have |IC | ≥

2
3 |I ∗

|. Moreover, since instance IC fulfills the
assumptions of Lemma 5, we can efficiently construct an instance IS ⊆ IC such that |IS| ≥

2
5 |IC | and IS admits a

routing RS using edge-disjoint paths. Since IS ⊆ IC ⊆ I ∗
⊆ I , we can treat RS as the suboptimal solution to the

MAXEDP problem, obtaining the following bound:

|IOPT|

|IS|
≤

|I ∗
|

|IS|
=

|I ∗
|

|IC |

|IC |

|IS|
≤

3
2

·
5
2

= 3.75

which completes the proof of the approximation ratio of the designed algorithm. �

It is interesting to note that although the off-line MAXEDP problem in complete graphs is NP-hard even for
relatively small instances (Theorem 13), the conjecture that it is APX-hard still remains open [4], and the only non-
approximability result concerns the on-line problem (Theorem 20). In fact, in the following subsection we show that
for all instances of sufficiently bounded size, the off-line MAXEDP problem is not APX-hard.

2.3. Problem complexity for bounded instances

We now deal with the MAXEDP problem restricted to instances I with relatively few requests, and study the
increasing difficulty of the problem with the increase of the bound on |I |. Considerations start with some auxiliary
notation and lemmas.
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Let I be a given instance in the graph KV and let set T ⊆ V be defined as the set of all vertices belonging to more
than |V |

24 requests, T = {v ∈ V : degH(I ) v >
|V |

24 }. The symbol E∗ is used to denote the set of edges of subgraph
KV \T ⊆ KV .

Lemma 7. The size of set T fulfills the bound |T | ≤ 48 |I |
|V |

.

Proof. By the handshaking lemma we may write:

2|I | =

∑
v∈V

degH(I ) v ≥

∑
v∈T

degH(I ) v ≥
|V |

24
|T |,

and the claim follows directly. �

Lemma 8. Assume that |I | ≤
|V |

2

1248 . If an instance IS ⊆ I admits a routing RS ∈ R(IS) whose paths are edge-disjoint
with respect to E \ E∗ (but may share edges in E∗), then IS also admits a routing whose paths are edge-disjoint with
respect to all the edges in E. Such a routing may be constructed in O(|I ||V |) time.

Proof. Consider the following construction of an instance I ∗ in graph KV \T . For successive paths P ∈ RS , we add to
I ∗ a request consisting of the first and of the last vertex from V \ T which appears in P (requests of the form {v, v}

are left out). Observe that it now suffices to show that I ∗ admits an edge-disjoint routing in KV \T , since then routing
RS may be appropriately modified to obtain the sought routing of IS which is edge-disjoint in E . More precisely, we
will prove that for all v ∈ V \ T we have degH(I ∗) v ≤

1
12 |V \ T |, and therefore that the claim holds by Proposition 4.

Let v ∈ V \ T be arbitrarily chosen. The construction of a request {u, v} ∈ I ∗, for any u ∈ V \ T , made use of
some path P ∈ RS , which may have one of two possible arrangements:

1. Vertex v is an endpoint of P . In this case, path P was used to satisfy some request from instance IS , containing
vertex v.

2. Vertex v is not an endpoint of P . By definition of instance I ∗, there must then exist an edge {v, w} belonging to
path P such that w ∈ T .

Thus, degH(I ∗) v = d1 + d2, where values d1 and d2 denote the numbers of requests {u, v} corresponding to Cases 1
and 2 above, respectively. In order to bound from above the value d1, observe that from the description of Case 1 we
have d1 ≤ degH(IS) v. Taking into account the definition of set T , we obtain:

d1 ≤ degH(IS) v ≤ degH(I ) v ≤
|V |

24
.

An upper bound on the value of d2 is obtained from the edge-disjointness condition for the set of paths RS ; clearly, d2
cannot exceed the number of connections between v and vertices from set T :

d2 ≤ |T |.

Combining the last two inequalities gives:

degH(I ∗) v = d1 + d2 ≤
|V |

24
+ |T |. (1)

Rewriting the assumption |I | ≤
|V |

2

1248 as |I |
|V |

≤
|V |

1248 and taking into account Lemma 7, we have |T | ≤
|V |

26 , which
immediately implies the following relation:

|V |

24
+ |T | ≤

|V |

12
−

|T |

12
=

|V \ T |

12
. (2)

Inequalities (1) and (2) directly lead to the sought bound degH(I ∗) v ≤
|V \T |

12 .
Taking into account Proposition 4, the new edge-disjoint routing can be computed in a time proportional to the

total length of all paths of RS , which is bounded from above by O(|I ||V |). �

We now consider the multigraph G ′ formed from KV by contracting all vertices from V \ T into a single vertex
x . Formally, G ′ has vertex set T ∪ {x}, all pairs of vertices from T are connected by single edges, and vertex x is
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connected with each vertex from T by exactly |V \ T | edges. Observe that there exists a natural bijection f from the
subset of edges E \ E∗ of KV to the set of all edges of multigraph G ′ which preserves the identifiers of vertices within
the set T . The given instance I in KV can also easily be converted into an instance I ′ in G ′ through a one-to-one
correspondence of requests, by replacing all occurrences of vertices v ∈ V \ T by occurrences of vertex x . Requests
of the form {x, x} which appear in I ′ should be treated as immediately fulfilled.

Lemma 9. Assume that |I | ≤
|V |

2

1248 . A subset of requests IS ⊆ I admits an edge-disjoint routing in KV if and only if
the corresponding subset of requests I ′

S ⊆ I ′ admits an edge-disjoint routing in G ′. Given either of these routings, the
other may be computed in O(|I ||V |) time.

Proof. (⇒) Let RS ∈ R(IS) be an edge-disjoint routing in KV . For each path P ∈ RS in the graph KV which satisfies
some request from IS , we construct a path P ′ in G ′ satisfying the corresponding request from I ′

S , by performing the
following operations. First, all edges from set E∗ are removed from P . Next, transformation f is applied to the
remaining edges of P to obtain a sequence of edges in G ′. Finally, all cycles are removed from this sequence, giving
the sought path P ′. It is easy to see that the obtained routing R′

S does indeed satisfy instance I ′

S . Moreover, since
transformation f does not merge edges into each other, routing R′

S is clearly edge-disjoint in G ′.

(⇐) Let R′

S ∈ R(I ′

S) be an edge-disjoint routing in G ′. For each path P ′
∈ R′

S in G ′ which satisfies some request
from I ′

S , the corresponding path P in KV is obtained as follows. First, a transformation f −1 is applied to all edges
of P ′. The obtained sequence of edges is either the sought path P , or can be converted into P by adding exactly one
edge from set E∗. The set of all paths P obtained in this way is some routing RS which clearly satisfies instance IS .
Moreover, routing RS is edge disjoint with respect to the set of edges E \ E∗. Thus, by Lemma 8, IS also admits a
routing which is edge disjoint with respect to all edges of KV , which completes the proof of the equivalence.

Since both the above transformations can be performed in a time proportional to the total length of all paths of the
routing, the O(|I ||V |) complexity bound follows directly. �

Theorem 10. An optimal solution to the MAXEDP problem in complete graphs can be determined in O(|V |
2) time

if the size of the input instance is bounded by |I | ≤ k|V |, for any constant value of parameter k > 0.

Proof. Without loss of generality we may assume that |V | ≥ 1248k, since for smaller values of |V | the problem
can be solved by exhaustive search. Thus, the assumptions of Lemma 9 are fulfilled, and the problem is reduced
to solving MAXEDP for the instance I ′ in multigraph G ′. We now replace the parallel edges of multigraph G ′ by
single edges with an associated capacity value corresponding to the original multiplicity of the edge. Multigraph G ′

reduces to the complete graph KT ∪{x} and the edge capacity function is given as c({u, v}) = 1 for all u, v ∈ T , and
c({u, x}) = |V \ T | for all u ∈ T . The considered MAXEDP problem may now be reformulated as follows: in graph
KT ∪{x} we seek a maximum sized routing R′

S ∈ R(I ′

S), where I ′

S ⊆ I ′, such that the number of paths using each
edge does not exceed its capacity, π{u,v}(R′

S) ≤ c({u, v}) for all u, v ∈ T ∪{x}. Such a network optimization problem
admits a simple Integer Linear Programming formulation. For u, v ∈ T ∪ {x}, let d({u, v}) denote the number of
times the request {u, v} appears in instance I ′. With each distinct path P in graph KT ∪{x} we associate a variable yP ,
representing the number of times path P appears in the ILP solution, and state the problem as follows:

Maximise:
∑

P yP

Subject to:
∑

P:{u,v}∈P yP ≤ c({u, v}) ∧
∑

P∈P{u,v}
yP ≤ d({u, v}), ∀u,v∈T ∪{x}

yP ∈ Z, yP ≥ 0

Now, observe that by Lemma 7 we have |T | ≤ 48k; hence graph KT ∪{x} has O(1) vertices, and consequently
also O(1) distinct paths. Thus, the above ILP problem on O(1) variables may be solved in O(|V |) time by a well
known result of Lenstra [11]. The overall O(|V ||I |) = O(|V |

2) time complexity of the solution is determined by the
procedure in Lemma 9. �

When constrained to instances I such that |I | ≤ |V |
s , for any 1 < s < 2, the MAXEDP problem becomes NP-hard

(see Theorem 13), but it is possible to construct a polynomial time approximation scheme. Before showing the latter
result we recall a simple observation about cardinalities of maximum factors in multigraphs (the proof is attributed to
folklore).
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Lemma 11. Let Ia and Ib be a maximum [0, a]-factor and a maximum [0, b]-factor in multigraph H(I ) = (V, I ),
respectively, where 2b > a ≥ b. Then |Ia |

|Ib|
≤

a
2b−a .

Proof. Consider the [0, b]-factor I ∗

b obtained from Ia as follows. For each vertex v ∈ V , we define (Ia \ I ∗

b )v ⊆ Ia
as a set of exactly max{0, (degH(Ia) v) − b} arbitrarily chosen edges adjacent to v in Ia . Factor I ∗

b is constructed as
I ∗

b = Ia \
⋃

v∈V (Ia \ I ∗

b )v . We may write:

|I ∗

b |

|Ia |
= 1 −

∣∣∣∣∣⋃
v∈V

(Ia \ I ∗

b )v

∣∣∣∣∣
|Ia |

≥ 1 −

∑
v∈V

|(Ia \ I ∗

b )v|

1
2

∑
v∈V

degH(Ia) v
≥ 1 − 2 max

v∈V

|(Ia \ I ∗

b )v|

degH(Ia) v
.

For each vertex v, we either have degH(Ia) v < b and |(Ia \ I ∗

b )v| = 0, or a ≥ degH(Ia) v ≥ b and |(Ia \ I ∗

b )v| ≤ a −b.

Therefore for all vertices we obtain
|(Ia\I ∗

b )v |

degH(Ia ) v
≤

a−b
a , and finally

|I ∗
b |

|Ia |
≥

2b−a
a . Since |Ib| ≥ |I ∗

b | and 2b − a > 0, the

claim follows directly. �

Theorem 12. The MAXEDP problem in complete graphs admits a polynomial time approximation scheme for
instances of size bounded by |I | ≤ |V |

s , for any value of parameter s < 2.

Proof. Let |I | = |V |
s , where s = 2 − ε, ε > 0. As in the proof of Theorem 10, we assume that the size of set

|V | is sufficiently large (this time |V | ≥ 1248
1
ε ), so that the assumptions of Lemma 9 hold. Once again, we will

consider the instance I ′ in multigraph G ′. Let IS ⊆ I be any maximum [0, |V \ T |]-factor in H(I ). Since for all
v ∈ V we have degH(IS) v ≤ |V \ T |, for the corresponding instance I ′

S in G ′ and all vertices v ∈ T , we also obtain
degH(I ′

S) v ≤ |V \ T |. Recall that in G ′ all vertices from set T are connected to vertex x by exactly |V \ T | edges
each; this means that I ′

S can easily be routed by edge-disjoint paths of length at most 2 using only these edges. Thus,
by Lemma 9, instance IS admits an edge-disjoint routing in KV , which may be determined in O(|I ||V |) time.

We now proceed to prove that IS is a sufficiently good approximation of the optimal solution to MAXEDP for
instance I . Indeed, IS is a maximum [0, |V \ T |]-factor in H(I ), while by Corollary 2 the cardinality of an optimal
solution |IOPT| is bounded from above by the size of the maximum [0, |V | − 1]-factor in H(I ). Further, note that
|T | ≤ 48|V |

1−ε by Lemma 7. Putting values a = |V | − 1 and b = |V \ T | = |V | − |T | = |V |(1 − 48|V |
−ε) in

Lemma 11, the assumption 2b > a ≥ b is fulfilled (since |V | ≥ 1248
1
ε > 96

1
ε ), and we obtain:

|IOPT|

|IS|
≤

a

2b − a
≤

|V |

2|V |(1 − 48|V |−ε) − |V |
=

1
1 − 96|V |−ε

.

Thus, for any δ > 0, the considered approach achieves an approximation ratio of 1 + δ provided that |V | >

(96(1 + δ−1))
1
ε , whereas the problem may be optimally solved by an exhaustive search for all smaller values of

|V |. �

Theorem 13. The MAXEDP problem in complete graphs is NP-hard even for instances of size bounded by |I | ≤ |V |
s ,

for any value of the parameter s > 1.

Proof. The proof proceeds by a reduction from the MAXEDP problem in complete graphs with the cardinality
restriction |I ∗

| ≤ |V ∗
|
2, which was shown to be NP-hard in [5]. Let s = 1 + ε, ε > 0. Given instance I ∗ in

graph KV ∗ , in polynomial time we construct instance I and graph KV as follows. Select V in such a way that V ∗
⊆ V

and |V ∗
| ≤ |V |

ε. Instance I is defined as: I = I ∗
∪ {{u, v} : u ∈ V ∗, v ∈ V \ V ∗

}. Observe that:

|I | = |I ∗
| + |V ∗

| · (|V | − |V ∗
|) = (|I ∗

| − |V ∗
|
2) + |V ∗

||V | ≤ |V |
1+ε,

Thus the condition |I | ≤ |V |
s is fulfilled. The proof is complete when we notice that an optimal solution ROPT to

the MAXEDP problem for the instance I in graph KV is always equal to the union of two sets of paths: the set of
all one-edge paths connecting vertices from KV ∗ with vertices from KV \V ∗ , and some optimal solution R∗

OPT to the
MAXEDP problem for the instance I ∗ in graph KV ∗ . In particular, we have: |R∗

OPT| = |ROPT|− |V ∗
|(|V |− |V ∗

|). �

A summary of the main results of the section is given in Table 2.
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3. The on-line MAXEDP problem in complete graphs

On-line algorithms for the MAXEDP problem, which are considered in this paper, are treated as a special case of
greedy algorithms. We assume that successive requests from instance I appear sequentially at input, becoming known
to the algorithm only once the previous request has been processed. The decision taken at every step as to whether
some path fulfilling the current request should be added to the constructed edge-disjoint routing RS is irrevocable and
impossible to change at a later stage of the algorithm. Approximation ratios are calculated with respect to the best
possible solution ROPT in the off-line model.

3.1. An on-line 6.47-approximation algorithm

A slight modification of the approximation algorithm provided for the off-line case (Theorem 6) allows for its
on-line operation. In the considered approach, the algorithm sequentially processes requests from instance I , treating
them as edges of the multigraph H(I ), and at every step attempts to color the edge using a color from the range
{1, . . . , |V |}. A more general version of this problem is called the maximum k-edge-colorable subgraph problem,
where the goal is to color as many edges of the input multigraph as possible using colors {1, . . . , k}, where k is a
number given at input. This problem was recently considered by Favrholdt and Nielsen [6], who introduced the class
of fair on-line algorithms, i.e. on-line algorithms which at every step consider a single edge e for coloring, and are
required to assign some color from the range {1, . . . , k} to e if at least one such color is available. They showed that
any fair on-line algorithm leads to a 1

2
√

3−3
-approximation of the solution. In fact, the obtained result is significantly

stronger; we shall reformulate it here for easier use in further considerations.

Theorem 14 ([6]). For any multigraph H = (V, I ), any fair on-line algorithm for the k-edge-colorable subgraph
problem labels a subset of edges IC ⊆ I with colors {1, . . . , k}, such that |IC | ≥ (2

√
3 − 3)|I ∗∗

|, where I ∗∗ denotes
a maximum [0, k]-factor in H.

In particular, the above theorem holds for k = |V |; thus using the notation from Theorem 6 we may write |IC | ≥

(2
√

3 − 3)|I ∗
|. As the coloring proceeds, a routing RC of instance IC is naturally defined (see Lemma 5). The sought

routing RS may be incrementally constructed using the simple greedy on-line independent set algorithm applied
to graph Q(RC ). Since graph Q(RC ) only consists of cycles, paths and isolated vertices, we obtain |IS| ≥

1
3 |IC |.

Combining the obtained relations leads to the bound:

|IOPT|

|IS|
≤

|I ∗
|

|IS|
=

|I ∗
|

|IC |

|IC |

|IS|
≤

1

2
√

3 − 3
· 3 < 6.47.

The complexity of the on-line algorithm is determined by the coloring phase: for each request, we have to check
whether any of the colors {1, . . . , |V |} is available. This may be expressed in the form of the following statement.

Corollary 15. There exists an on-line 6.47-approximation algorithm for the MAXEDP problem in complete graphs,
requiring O(|V |) time to process a single request. The dilation of the returned solution is not greater than 2.

In fact, the algorithm resulting from the above considerations can be written in a much simpler form, as described in
the next subsection.

3.2. Performance analysis of the BGA algorithm

The bounded length greedy algorithm (BGA) is an on-line strategy for the MAXEDP problem, introduced in [10].
The basic principle of its operation is that at every step, an attempt is made to route the current request by the shortest
possible path P which does not contain any of the edges already belonging to RS , and to add P to the solution
RS provided |P| ≤ L , where L is a fixed parameter of the algorithm. The computed routing RS therefore fulfills
the bound d(RS) ≤ L . The BGA strategy was last studied by Carmi, Erlebach, and Okamoto [4], who bounded its
approximation ratio for L = 4 using an unsplittable flow technique.

Theorem 16 ([4]). The BGA strategy with L = 4 is an on-line 9-approximation algorithm for the MAXEDP
problem in complete graphs.
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However, it is interesting to note that further bounding of the parameter L may lead to algorithms for which a better
approximation ratio can be proven.

Theorem 17. The BGA strategy with L = 2 is an on-line 6.47-approximation algorithm for the MAXEDP problem
in complete graphs.

Proof. The proof is based on the observation that for a given input instance I , any outcome of the routing process
using BGA with L = 2 can also be reached by the algorithm described in Section 3.1. Given an ordering of requests
in instance I , let I1 be the set of requests which are assigned paths in the solution obtained by BGA and let I2 be the
set of all the remaining requests, I = I1 ∪ I2. Consider the result of the algorithm from Section 3.1 for an ordering of
requests of I which starts with all requests from I1, followed by all requests from I2. Without loss of generality, the
on-line fair edge coloring subroutine may be defined so as to mimic the behavior of BGA, i.e. if a request {u, v} ∈ I1
was routed by BGA using a path P = ({u, w}, {w, v}) of length at most 2 via some vertex w ∈ V , then the edge {u, v}

of multigraph H(I ) is labeled with color w ∈ {1, . . . , |V |}. The algorithm from Section 3.1 will therefore satisfy all
requests in I1, obtaining exactly the same routing R1 as that produced by BGA, and then will start processing the
requests from I2. Let {u, v} ∈ I2 be an arbitrary request. Since this request was not routed by BGA, it clearly means
that there does not exist a path P ∈ P{u,v} of length at most 2 which does not share any edges with paths from R1.
Note, however, that the algorithm in Section 3.1 also only uses paths of length at most 2; therefore, it will not route
this request either, and the routing obtained by both algorithms is exactly the same. This means that the worst-case
performance of BGA is not worse than the worst-case performance of the algorithm from Section 3.1, hence the
approximation ratio of BGA is at most 6.47 by Corollary 15. �

A further interesting property of the BGA strategy with parameter L = 2 is that it finds an edge-disjoint routing
of the whole instance I in the cases considered in Propositions 3 and 4 (this is immediately clear from an analysis of
their proofs).

Corollary 18. If ∆H(I ) ≤
|V |

12 , or |I | ≤ |V |−1, then the entire instance I can be routed in KV by edge-disjoint paths,
and an optimal solution such that d(ROPT) ≤ 2 is always determined by the BGA strategy with L = 2.

3.3. Non-approximability results

Whereas the hardness of approximation of the off-line MAXEDP problem in complete graphs still remains an
open question, we now show that the on-line version is not approximable within a factor of 1.5 even for instances of
linear size with respect to the number of vertices of the graph, and is not approximable within a factor of 2 for general
instances.

Theorem 19. There does not exist any on-line approximation algorithm for the MAXEDP problem in complete graphs
with an approximation ratio smaller than 1.5 − ε for any ε > 0, even when considering instances of size |I | < k|V |,
for any k ≥ 3.

Proof. For contradiction, suppose that some on-line MAXEDP algorithm A has an approximation ratio smaller
than 1.5 − ε. Given any graph KV , let instance I begin with |V | − 1 requests of the form {u, v}, for some two
distinguished vertices u, v ∈ V . At this point, the routing RS obtained by algorithm A consists of p paths, where
p ≥

2
3 (|V | − 1) (otherwise the instance is ended, and we have |ROPT| = |V | − 1 > 1.5|RS|). Instance I is

now completed by presenting a further 2(|V | − 2) requests of the form {u, w} and {v, w}, taken over all vertices
w ∈ V \ {u, v}. Since the number of paths which end in any vertex (in particular, u or v) cannot exceed |V | − 1, the
total number of paths eventually belonging to RS is bounded by |RS| ≤ p + 2((|V | − 1) − p) ≤

4
3 (|V | − 1), whereas

|ROPT| = 2(|V | − 2) + 1 = 2(|V | − 1) − 1; hence the ratio |ROPT|

|RS |
≥ 1.5 −

3
4 (|V | − 1)−1 is not less than 1.5 − ε for

sufficiently large values of |V |, |V | ≥
3
4ε−1

+ 1. �

Theorem 20. There does not exist any on-line approximation algorithm for the MAXEDP problem in complete graphs
with an approximation ratio smaller than 2 − ε, for any ε > 0.

Proof. Let A be any on-line approximation algorithm for the MAXEDP problem. Assume that instance I in graph
KV is put forward by an adaptive adversary, which at every step arbitrarily selects an element from some set S of
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distinct requests, presents it as a request to algorithm A, and updates set S depending on the outcome of the routing
process. The instance is terminated when set S is empty. Specifically, let set S initially contain exactly one request
{u, v}, for some two distinguished vertices u, v ∈ V . Suppose that the i-th element, i ≥ 1, of instance I presented
by the adversary is a request {ui , vi } ∈ S. If algorithm A routes request {ui , vi } by some path Pi , then the adversary
removes {ui , vi } from S, and inserts all edges of Pi as requests into S. However, if algorithm A does not route request
{ui , vi }, then the adversary removes {ui , vi } from S only if i ≥ |V |.

First, observe that instance I always terminates after a finite number of steps. Next, let ER ⊆ E denote the set of
all edges belonging to paths of the routing RS obtained by algorithm A for the instance I . By the definition of the
insertion operation for set S, an edge e ∈ E appears at least once as a request in instance I if and only if e = {u, v}

or e ∈ ER . Consequently, we have |ROPT| ≥ |ER |, since requests corresponding to edges from ER can be routed by
paths of length one. Next, observe that any request other than {u, v} presented to algorithm A corresponds to an edge
already belonging to a path of routing RS ; hence RS contains at most one path of length one. This in turn implies that
|ER | ≥ 2|RS| − 1, and consequently:

|ROPT| ≥ 2|RS| − 1.

Finally, taking into account that throughout the first |V | requests of I set S remains non-empty, we have |I | ≥ |V |,
and thus by Proposition 3 |ROPT| ≥ |V | − 1. We obtain the following expression:

|ROPT|

|RS|
≥ 2 −

1
ROPT

≥ 2 −
1

|V | − 1
.

Therefore, for all values of |V | ≥ ε−1
+ 1, we have |ROPT|

|RS |
≥ 2 − ε, which completes the proof. �

Even in the on-line model, the gap remaining between the 2-non-approximability result of Theorem 20 and the
6.47-approximation algorithm from Theorem 17 is quite substantial. A partial attempt to bridge it may be performed
by considering the non-approximability of specific classes of on-line algorithms. For example, the BGA algorithm
and similar strategies are never better than 3-approximate for certain classes of instances [4].

4. Final remarks

The technique adopted in the proof of Theorem 6–which may basically be thought of as routing by edge coloring–
provides efficient approximation algorithms for a number of routing problems in complete graphs and similar
extremely dense topologies. When applying this approach, the approximation ratio may vary depending on the
considered problem, and is usually given in the form of the product of two parameters M1 · M2, where M1 denotes
the relative loss in the first phase of the algorithm (determining an edge coloring), and M2 is the relative loss in the
second phase (post-processing the edge coloring).

For the MAXEDP problem, the applied techniques constitute a substantial improvement on earlier results, see
(Table 1). We now give two more examples of routing problems for which fixed-ratio approximation algorithms can
be similarly obtained.

The edge congestion routing problem. For a given instance I in graph KV , we consider the problem of finding a
routing ROPT ∈ R(I ), such that edge congestion π(ROPT) is the minimum possible [2,3]. Approximation ratios are
considered in terms of upper bounds on the ratio π(RS)

π(ROPT)
.

Theorem 21. There exists an off-line (3+
1

OPT
)-approximation algorithm with O(|I |2) runtime for the edge congestion

routing problem in complete graphs. The dilation of the returned solution is not greater than 2.

Proof. Let I be an arbitrarily chosen instance in graph KV , and let ROPT ∈ R(I ) be any routing of I with minimum
possible edge congestion. Note that for each vertex v ∈ V , each of the degH(I ) v paths with one endpoint in v

contributes by exactly 1 to the load of some edge incident to v. Thus, by the pigeon-hole principle the following

inequality holds for any routing of instance I , and therefore also for routing ROPT: π(ROPT) ≥ d
∆H(I )
|V |−1 e. We will now

present an algorithm for constructing routing RS ∈ R(I ) such that π(RS) ≤ 3π(ROPT) + 1. First, obtain an edge-

coloring of multigraph H(I ) using at most 3
2∆H(I ) colors in O(|I |2) time [7]. Let Ii , for 1 ≤ i ≤ d

3
2

∆H(I )
|V |

e, denote
the subset of instance I consisting of those requests which were assigned a color from the range [(i − 1)|V |+ 1, i |V |]
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in the edge-coloring of H(I ); obviously, I =
⋃d

3
2

∆H(I )
|V |

e

i=1 Ii . Since by definition of Ii multigraph H(Ii ) = (V, Ii ) has
a known edge coloring using at most |V | colors, by Lemma 5 there exists a routing Ri ∈ R(Ii ) such that π(Ri ) ≤ 2.

The sought suboptimal solution RS ∈ R(I ) is defined as RS =
⋃d

3
2

∆H(I )
|V |

e

i=1 Ri . It is apparent that:

π(RS) ≤

d
3
2

∆H(I )
|V |

e∑
i=1

π(Ri ) ≤ 2d
3
2

∆H(I )

|V |
e ≤ 3d

∆H(I )

|V |
e + 1 ≤ 3π(ROPT) + 1

which completes the proof of the approximation ratio of the algorithm. �

In the above example, the value of the approximation ratio results from the inequality π(RS) ≤ M2dM1π(ROPT)e,
for values of approximation parameters M1 = 1.5 and M2 = 2, respectively. It is easy to see that applying the same
approach in the on-line model does not affect the value M2 = 2; however the simple online greedy edge-coloring
algorithm for multigraph H(I ) may require 2∆H(I ) colors [7]; hence M1 = 2. Consequently, we have the following
corollary.

Corollary 22. There exists an on-line 4-approximation algorithm for the edge congestion routing problem in complete
graphs, requiring O(|I |) time per request. The dilation of the returned solution is not greater than 2.

The wavelength routing problem. The wavelength routing problem for complete graphs, motivated by applications in
all-optical networks [12], is defined similarly to edge congestion routing, but using the wavelength count w(R) as a
minimization parameter. For a given instance I in graph KV , we seek a routing ROPT ∈ R(I ), such that w(ROPT) is
the minimum possible [2,3]. Approximation ratios are expressed in terms of upper bounds on the ratio w(RS)

w(ROPT)
. The

problem can be solved by an approach analogous to that described in the proof of Theorem 21, leading to an inequality
of the form w(RS) ≤ M2dM1w(ROPT)e. The value of M1 remains unchanged and is equal to M1 = 1.5 in the off-line
case and M1 = 2 in the on-line case. Moreover, since routings Ri which appear in the proof have a conflict graph with
connected components which are cycles, paths, or isolated vertices, they may be colored in a greedy manner using 3
colors, and we have M2 = 3. These observations may be written in the form of the following corollaries.

Corollary 23. There exists an off-line (4.5 +
1.5
OPT

)-approximation algorithm with O(|I |2) runtime for the wavelength
routing problem in complete graphs. The dilation of the returned solution is not greater than 2.

Corollary 24. There exists an on-line 6-approximation algorithm for the wavelength routing problem in complete
graphs, requiring O(|I |) time per request. The dilation of the returned solution is not greater than 2.

Finally, let us remark on a general property of all the approximate solutions obtained using the proposed approach:
in all cases, the dilation is bounded by a value of 2. Using paths with at most 1 intermediate nodes between the
communicating pair of endpoints is advantageous from the point of view of resource usage, and additionally simplifies
the routing process. Indeed, if the on-line version of the routing algorithm is considered in a distributed setting, each
node can independently decide whether it may participate in the routing of a given communication request. Thus each
request can be processed in O(1) synchronous rounds, achieving a time-optimal routing process.
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