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Abstract

In certain applications of nonstationary system identification the model-based de-
cisions can be postponed, i.e. executed with a delay. This allows one to incorporate
into the identification process not only the currently available information, but
also a number of “future” data points. The resulting estimation schemes, which
involve smoothing, are not causal. Despite the possible performance improvements,
the existing smoothing algorithms are seldom used in practice, mainly because of
their high computational requirements. We show that the computationally attrac-
tive smoothing procedures can be obtained by means of compensating estimation
delays that arise in the standard exponentially weighted least squares, least mean
squares and Kalman filter based parameter trackers.
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1 Introduction

Consider the problem of tracking of a nonstationary discrete-time stochastic
system governed by

y(t) = ϕT(t)θ(t) + v(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized time, y(t) is the system output,
ϕ(t) = [ϕ1(t), . . . , ϕn(t)]T is the regression vector (e.g. made up of the past
input measurements), θ(t) = [θ1(t), . . . , θn(t)]T is the vector of unknown and
time-varying system coefficients, and v(t) denotes measurement noise.
The problem of estimation of the parameter vector θ(t), based on the available
data, can be solved in many different ways. When all that is known about
system parameters is that they vary slowly with time, the most frequently used
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identification algorithms are those based on the exponentially weighted least
squares (EWLS) approach, the least mean squares (LMS) approach and the
Kalman filter (KF) approach – see e.g. (Haykin, 1996) and (Niedźwiecki, 2000),
among many others.
Denote by θ̂(t) the estimate of θ(t) and by ε(t) – the one-step-ahead prediction
error evaluated at instant t

ε(t) = y(t)−ϕT(t)θ̂(t− 1) (2)

The EWLS parameter update can be summarized as follows

θ̂(t) = θ̂(t− 1) + R−1(t)ϕ(t)ε(t)

R(t) = ηR(t− 1) + ϕ(t)ϕT(t) (3)

where R(t) denotes the exponentially weighted regression matrix and η, 0 <
η < 1, is the so-called forgetting constant, which decides upon the estima-
tion memory of the EWLS algorithm. Using the well-known matrix inversion
lemma it is possible to derive recursive formula for direct updating of R−1(t),
which allows one to avoid inverting the regression matrix at each step of the
EWLS algorithm (Niedźwiecki, 2000).
The LMS algorithm

θ̂(t) = θ̂(t− 1) + µϕ(t)ε(t) (4)

can be thought of as a simplified EWLS algorithm, obtained by replacing the
time-varying and data-dependent weighting matrix R−1(t) with a constant,
scalar stepsize parameter µ > 0.
Finally, justification of the KF algorithm

θ̂(t) = θ̂(t− 1) + S(t)ϕ(t)ε(t)

S(t) =
P(t− 1)

1 + ϕT(t)P(t− 1)ϕ(t)

P(t) = (In − S(t)ϕ(t)ϕT(t))P(t− 1) + κ2In (5)

where In denotes the n× n identity matrix, comes from the area of statistical
filtering theory. When

(i) the (white) measurement noise v(t) is Gaussian: v(t) ∼ N (0, σ2
v)

(ii) the sequence of one-step parameter changes w(t) = θ(t) − θ(t − 1),
independent of {v(t)}, is made up of uncorrelated random variables with
Gaussian distribution: w(t) ∼ N (0, σ2

wIn) (random walk model)
(iii) κ2 = σ2

w/σ2
v

the KF algorithm is an optimal estimation procedure in the sense that it
provides the estimates of θ(t) with the smallest possible mean-square errors
(Lewis, 1986). One should be careful, though, not to overemphasize this feature
of the Kalman filter approach. When conditions listed above (rather naive,
from the practical viewpoint) are not met, the KF algorithm can no longer

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


be claimed optimal. It provides yet another way for recursive estimation of
time-varying system coefficients, neither more nor less appropriate than the
two approaches mentioned earlier. In typical applications the scalar coefficient
κ is treated instrumentally, as a user-dependent tuning “knob”, deciding upon
the estimation memory of the KF algorithm, i.e. it plays a similar role as η
and µ in the EWLS and LMS algorithms, respectively – see next section for
more details.
All three estimation schemes presented above are causal, i.e. at each time
instant t they provide parameter estimates that are functions of the current
and past measurements: y(s),ϕ(s), s ≤ t. While in the adaptive prediction
and adaptive control applications causality is an obvious requirement, there
are some other practical problems, such as adaptive noise canceling or adap-
tive channel equalization, where the causality constraint can be relaxed by
means of incorporating into the estimation process a certain number of “fu-
ture” measurements. Such noncausal estimation schemes are feasible whenever
the model-based decisions can be postponed, i.e. executed with a delay. For
example, when a decision delay of τ sampling intervals is tolerable, the data
set Z(t) = {y(1), ϕ(1), . . . , y(t),ϕ(t)} can be used to estimate θ(t− τ), rather
than to estimate θ(t). When appropriately designed, such estimator of θ(t−τ),
based on all past measurements and τ “future” measurements, will yield better
results than its causal counterpart.
The design platform which in a straightforward way leads to such solutions is
Kalman smoothing (KS) – an extension of the Kalman filtering approach. De-
spite the potential performance improvements, the KS algorithms are seldom
used in practice, mainly because of their high computational complexity. We
will show that computationally attractive parameter smoothing procedures
can be obtained by means of compensating estimation delays which arise in
the standard EWLS, LMS and KF algorithms.
The paper is organized as follows. Section 2 presents analysis of the estimation
delay effects occurring in the classical EWLS/LMS/KF tracking algorithms.
The ‘cheap smoothing’ algorithms are described in Section 3 and their esti-
mation properties are studied in Section 4. The simplified smoothing rules,
yielding further computational savings, are described in Section 5. Section
6 shows the results of simulation experiments and Section 7 presents some
practical recommendations. Finally, Section 8 concludes.

2 Estimation delay effects in parameter tracking algorithms

Suppose that

(A1) The measurement noise sequence {v(t)} is zero-mean and white with
variance σ2

v .

(A2) The sequence of regression vectors sequence {ϕ(t)} is zero-mean, wide-
sense stationary and ergodic with the covariance matrix E[ϕ(t)ϕT(t)] =
Φ > 0.

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Then, when the forgetting constant η in the EWLS algorithm is sufficiently
close to one, the following steady-state approximation can be used (Ljung &
Gunnarsson, 1985), (Niedźwiecki, 2000)

R−1(t) ∼= (1− η)Φ−1

Similarly, when the coefficient κ in the KF algorithm is sufficiently close to
zero, one gets (Ljung & Gunnarsson, 1985), (Niedźwiecki, 2000)

S(t) ∼= κΦ−1/2

where Φ−1/2 = (Φ1/2)−1, and Φ1/2 > 0 denotes the (unique) square root of the
covariance matrix Φ : Φ1/2Φ1/2 = Φ. Using these approximations the three
estimation algorithms described above can be written down in the following
“standardized” form

θ̂(t) = θ̂(t− 1) + γAϕ(t)ε(t) (6)

where the small adaptation gain γ and the constant matrix A are given by

EWLS : γ = 1− η , A = Φ−1

LMS : γ = µ , A = In

KF : γ = κ , A = Φ−1/2

Even though derivation of the “standardized” algorithm is based on heuristic
arguments, the results of a more rigorous statistical analysis of tracking perfor-
mance of the EWLS, LMS and KF schemes, presented in (Guo & Ljung, 1995),
are consistent with the analogous results based on (6) (Ljung & Gunnars-
son, 1985), (Niedźwiecki, 2000). For this reason we will adopt (6) as the start-
ing point for our study of the estimation delay effects that occur in parameter
tracking algorithms. Later on, in Section 6, we will show that experimental
results fully confirm conclusions drawn from such approximate analysis.
Combining (6) with (1) and (2) one obtains

θ̂(t) = (In − γAϕ(t)ϕT(t))θ̂(t− 1) + γAϕ(t)ϕT(t)θ(t) + γAϕ(t)v(t) (7)

For sufficiently small values of the adaptation gain γ and for sufficiently slow
changes in θ(t) (compared to the changes in ϕ(t)), the analysis of (7) can be
carried using the averaging technique (Bai, Fu & Sastry, 1988), leading to the
following approximation

θ̂(t) = (In − γAΦ)θ̂(t− 1) + γAΦθ(t) + γAϕ(t)v(t) (8)
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Denote by θ̄(t) = E[θ̂(t)|θ(s), s ≤ t] the mean path of parameter estimates.
Using (7) one arrives at

θ̄(t) ∼= (In − γAΦ)θ̄(t− 1) + γAΦθ(t)

∼= γ
[
In − (In − γAΦ)q−1

]−1
AΦθ(t) (9)

where q−1 denotes the backward shift operator.

2.1 EWLS algorithm

Since in the EWLS case it holds that AΦ = In, the relationship (9) can be
rewritten in the form

θ̄(t) ∼= FEWLS(q
−1)θ(t) (10)

where

FEWLS(q
−1) = diag{F (q−1), . . . , F (q−1)}

and

F (q−1) =
1− η

1− ηq−1

According to (10) the mean path of the EWLS estimates {θ̄(t)} can be re-
garded a result of passing {θ(t)} through a linear lowpass filter F (q−1). This
means that for slow parameter changes the main contribution to the bias error
θ(t) − θ̄(t) is due to the lag distortions – the mean trajectory {θ̄(t)} can be
approximately viewed as a delayed version of the true trajectory {θ(t)}. The
dominant time delay τo introduced by the filter F (q−1) – called the estimation
delay in (Niedźwiecki, 2000) – can be defined in different ways.
One possibility, based on the frequency-domain concepts, is to set

τo = int[to], to =
η

1− η
(11)

where int[x] denotes the integer number that is closest to x and

to = − lim
ω 7→0

φF (ω)

ω
= − lim

ω 7→0

dφF (ω)

dω

is the nominal (low-frequency) delay of the filter F (e−jω) = AF (ω)ejφF (ω);
ω ∈ (−π, π] denotes the normalized angular frequency.
Another solution is based on the time domain arguments. One can define τo

as the average delay of θ̄(t) with respect to θ(t) for a given class of parameter
variations

τo = arg inf
τ

E[||θ̄(t)− θ(t− τ)||2]
where averaging is carried over different realizations of {θ(t)}. As shown in
(Niedźwiecki, 2000), when system parameters evolve according to the ran-
dom walk model, the average delay can be obtained by means of solving the
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following equation
τo−1∑

t=0

f(t) ∼=
∞∑

t=τo

f(t) (12)

where f(t) = Z−1[F (z−1)] = (1 − η)ηt denotes the impulse response of the
filter F (q−1). Slightly abusing the term, which was coined in statistics to
characterize distributions of random variables (note that f(t) > 0, ∀t ≥ 0
and

∑∞
t=0 f(t) = 1, i.e. f(t) can be regarded a discrete probability function

of a fictitious random variable), τo can be called the “median” of the impulse
response f(t).
Observe that (1−η)

∑τo−1
t=0 ηt = 1−ητo and (1−η)

∑∞
t=τo

ηt = ητo . Therefore (12)
is equivalent to ητo ∼= 0.5 or, after transformation, to τ0 ln η ∼= ln 0.5 ∼= −0.7.
Since for the values of η close to one it holds that ln η ∼= η − 1, one finally
arrives at

τo = int[to], to =
0.7

1− η
(13)

Using the approximation F (q−1) ∼= q−τo , i.e.

FEWLS(q
−1) ∼= GEWLS(q

−1) = q−τoIn

one can rewrite (10) in the following form

θ̄(t) ∼= GEWLS(q
−1)θ(t) = θ(t− τo) (14)

which will be a convenient starting point for our further considerations. The
“pure delay” approximation of F (q−1) is of course very crude, but it will lead
us to computationally attractive solutions.

2.2 LMS and KF algorithms

Let Q be a unitary matrix, made up of the eigenvectors of Φ, converting Φ
into a diagonal form

QTQ = QQT = In, QTΦQ = Λ

where Λ is a diagonal matrix made up of the eigenvalues of Φ: Λ = diag{λ1, . . . ,
λn}. Note that (9) can be rewritten in the form

θ̄(t) ∼= QF(q−1)QTθ(t) (15)

Depending on the algorithm used, F(q−1) is equal to FLMS(q
−1) = diag{F1(q

−1),
. . . , Fn(q−1)} where

Fi(q
−1) =

µλi

1− (1− µλi)q−1
, i = 1, . . . , n
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or to FKF(q−1) = diag{F ∗
1 (q−1), . . . , F ∗

n(q−1)} where

F ∗
i (q−1) =

κ
√

λi

1− (1− κ
√

λi)q−1
, i = 1, . . . , n

Similarly as in the EWLS case, one can use the approximations Fi(q
−1) ∼= q−τi ,

F ∗
i (q−1) ∼= q−τ∗i , where τi = int[ti], τ ∗i = int[t∗i ] and

ti =
1− µλi

µλi

, t∗i =
1− κ

√
λi

κ
√

λi

or ti =
0.7

µλi

, t∗i =
0.7

κ
√

λi

leading to
θ̄(t) ∼= QG(q−1)QTθ(t) (16)

where G(q−1) is equal to GLMS(q
−1) = diag{q−τ1 , . . . , q−τn}, or to GKF(q−1) =

diag{q−τ∗1 , . . . , q−τ∗n}.
Note that, unlike the EWLS case, different components of the vector QTθ(t)
are delayed by different amounts of time. The corresponding time constants,
τ1, . . . , τn and τ ∗1 , . . . , τ ∗n, respectively, depend both on the adaptation gains
µ, κ and – via the eigenvalues λ1, . . . , λn – on the covariance structure of the
excitation. In the special case where Φ = σ2

ϕIn, all eigenvalues of Φ (and
hence also all time delays) are identical, leading to θ̄(t) ∼= θ(t − τo), where
τo = τ1 = . . . = τn or τo = τ ∗1 = . . . = τ ∗n are the common delays. From the
qualitative viewpoint the latter result is identical with (14).

Remark

Denote by λmax and λmin the maximum and minimum eigenvalues of Φ, re-
spectively. Similarly, denote by tmax, t∗max and tmin, t∗min the corresponding
maximum/minimum delays. For small adaptation gains it holds that

tmax

tmin

∼= λmax

λmin

,
t∗max

t∗min

∼=
√

λmax

λmin

This means that the estimation delay spread will be always larger for the LMS
estimator than for the KF estimator.

3 ‘Cheap smoothing’

3.1 Algorithms

Based on (14), the approximately debiased estimate of θ(t) can be obtained
from

θ̃(t) = GEWLS(q)θ̂(t) = θ̂(t + τo) (17)

which means that the smoothing effect is achieved simply by delaying the
estimates provided by the EWLS tracker by τo sampling intervals. According
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to (17), θ̂(t) should be regarded as an estimate of θ(t− τo), rather than as an
estimate of θ(t). To use such a fixed-lag smoother one should incorporate into
the adaptive loop a decision delay equal to τd = τo sampling intervals.
In the similar way one can obtain smoothing rules for the LMS and KF esti-
mators. Let β(t) = QTθ(t) and β̂(t) = QTθ̂(t). Consider the LMS algorithm
first. According to (15), for slow parameter changes it holds that

β̄(t) = E[β̂(t)|θ(s), s ≤ t] ∼= FLMS(q
−1)QTθ(t)

= FLMS(q
−1)β(t) ∼= GLMS(q

−1)β(t)

which suggests the following three-step procedure for computing “debiased”
LMS estimates

β̂(t) = QTθ̂(t)

β̃(t) = GLMS(q)β̂(t) = [β̂1(t + τ1), . . . , β̂n(t + τn)]T

θ̃(t) = Qβ̃(t) (18)

The decision delay associated with (18) is equal to τd = max{τ1, . . . , τn} sam-
pling intervals.
Similarly, for the KF estimator one obtains

β̂(t) = QTθ̂(t)

β̃(t) = GKF(q)β̂(t) = [β̂1(t + τ ∗1 ), . . . , β̂n(t + τ ∗n)]T

θ̃(t) = Qβ̃(t) (19)

and τd = max{τ ∗1 , . . . , τ ∗n}.
When the admissible delay τ is smaller than τd, one can use the following
modified versions of (17) - (19):

EWLS : θ̃(t) = θ̂(t− τ)

LMS : θ̃(t) = QGLMS(q, τ)QTθ̂(t)

KF : θ̃(t) = QGKF(q, τ)QTθ̂(t)

(20)

where

GLMS(q, τ) = diag{qmin{τ,τ1}, . . . , qmin{τ,τn}}
GKF(q, τ) = diag{qmin{τ,τ∗1 }, . . . , qmin{τ,τ∗n}}

Remark

The idea of reducing estimation bias by means of incorporating in the process-
ing loop an appropriately chosen decision delay can be traced back to Hedelin
(Hedelin, 1977). Hedelin demonstrated that delaying state estimates provided
by Kalman filter can be regarded an efficient form of smoothing. However,
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Algorithm Computational Smoothing

complexity overhead

EWLS 2n2 + 5n + 0

LMS 2n + 1 + 2n2

KF 1.5n2 + 5.5n + 2n2

Table I Computational complexity and smoothing overheads of the three
parameter estimation algorithms analyzed in the paper.

Hedelin did not show how the optimal delay(s) can be determined. The re-
sults presented above seem to be interesting from at least two reasons. First,
we have revealed the hidden ‘delay structure’ (depending on the eigendecom-
position of Φ) of the LMS and KF estimators. Second, we have shown how
the corresponding delays can be computed and compensated.

3.2 Computational complexity

Table I shows comparison of the computational complexity of the basic algo-
rithms (the number of multiply/add operations needed to complete one cycle
of computations) and the corresponding smoothing overheads (the number of
additional operations required to perform smoothing). The count was made
for the computationally efficient mechanizations of the EWLS/KF algorithms
(which differ from (3) and (5)) and takes into consideration symmetry of the
matrices R(t) and P(t). The cost of performing eigendecomposition of Φ was
not included since, assuming that the process {ϕ(t)} is stationary, such op-
eration is performed only once. Note that there is no smoothing overhead in
the case of the EWLS estimator, and that for the LMS/KF estimators the
overhead does not depend on the decision delay τd.
This should be confronted with complexity of the fixed-lag Kalman smoothing
(KS) algorithm designed for the system (1) – see Chapter 7 in (Niedźwiecki,
2000) – which is equal to (0.5τ 2 + 2τ + 1.5)n2 + (2.5τ + 5.5)n multiply/add
operations per time update. Note that in this case the smoothing overhead,
i.e. the difference between the computational complexity of the KS algorithm
and complexity of the KF algorithm (i.e. the zero-lag smoother) is equal to

(0.5τ 2 + 2τ)n2 + 2.5τn

and rapidly grows with the smoothing lag τ .
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4 Mean-square error analysis

Observe that GEWLS(q) = QGEWLS(q)Q
T and hence the relationships (17),

(18) and (19) can be written down in the following unified form

θ̃(t) = QG(q)QTθ̂(t) (21)

where, depending on the algorithm used, G(q) is equal to GEWLS(q), GLMS(q)
or GKF(q).
To compare estimation accuracy of the EWLS/LMS/KF estimators θ̂(t) and
their modified versions θ̃(t), we will assume that

(A3) {θ(t)} is a zero-mean wide-sense stationary process with a spectral
density (matrix) function Sθ(ω).

The mean-square parameter estimation error yielded by the basic algorithm
can be expressed in the form

E[||θ̂(t)− θ(t)||2] = E[||δ(t)||2] + E[||η(t)||2] (22)

where δ(t) = θ̂(t) − θ̄(t), η(t) = θ̄(t) − θ(t) and averaging is carried over
different realizations of {v(t)} and {θ(t)}. The first term on the right-hand
side of (22) constitutes the variance component of mean-square error (MSE),
whereas the second term can be recognized as its bias component. The anal-
ogous expression for the modified algorithm reads

E[||θ̃(t)− θ(t)||2] = E[||σ(t)||2] + E[||ξ(t)||2] (23)

where σ(t) = θ̃(t)−θ′(t), ξ(t) = θ′(t)−θ(t) and θ′(t) = E[θ̃(t)|θ(s), s ≤ t+τd].

4.1 Variance

We will prove that the variance components of the compared mean-square
errors are approximately the same:

Theorem

Under (A1) - (A3) it holds that

E[||σ(t)||2] ∼= E[||δ(t)||2] (24)

Proof

First, after combining (8) with (9) one arrives at

δ(t) ∼= (In − γAΦ)δ(t− 1) + γAϕ(t)v(t)

which shows that, under the small adaptation gain conditions, the sequence
{δ(t)} can be regarded as asymptotically zero-mean and asymptotically wide-
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sense stationary. Denote by Sδ(ω) the spectral density function of δ(t)

Sδ(ω) = γ2σ2
v

(
In − (In − γAΦ)e−jω

)−1
AΦAT

(
In − (In − γΦAT)ejω

)−1

and let ∆ = E[δ(t)δT(t)]. Observe that

E[||δ(t)||2] = tr{∆} =
1

2π

∫ π

−π
tr{Sδ(ω)}dω (25)

Since σ(t) = QG(q)QTδ(t) one obtains

Sσ(ω) = QG(ejω)QTSδ(ω)QG(e−jω)QT

Note that

E[||σ(t)||2] = tr{Σ} =
1

2π

∫ π

−π
tr{Sσ(ω)}dω (26)

where Σ = E[σ(t)σT(t)]. The relationship (24) follows directly from (25) -
(26) and from the identity

tr{Sσ(ω)} = tr{Sδ(ω)QG(e−jω)QTQG(ejω)QT} = tr{Sδ(ω)In} = tr{Sδ(ω)}

4.2 Bias

In order to compare the bias terms in (14) and (15) note that

η(t) ∼= Q[F(q−1)− In]QTθ(t)

Sη(ω) ∼= Q[F(e−jω)− In]QTSθ(ω)Q[F(ejω)− In]QT

where, depending on the algorithm used, F(q−1) is equal to FEWLS(q
−1),

FLMS(q
−1) or FKF(q−1). This leads to

E[||η(t)||2] =
1

2π

∫ π

−π
tr{Sη(ω)}dω =

1

2π

∫ π

−π
tr{B(ω)QTSθ(ω)Q}dω

where BEWLS(ω) = diag{B(ω), . . . , B(ω)}, BLMS(ω) = diag{B1(ω), . . . , Bn(ω)},
BKF(ω) = diag{B∗

1(ω), . . . , B∗
n(ω)} and

B(ω) =
∣∣∣1− F (e−jω)

∣∣∣
2

Bi(ω) =
∣∣∣1− Fi(e

−jω)
∣∣∣
2
, i = 1, . . . , n

B∗
i (ω) =

∣∣∣1− F ∗
i (e−jω)

∣∣∣
2
, i = 1, . . . , n

For the modified EWLS/LMS/KF estimators the analogous expression is

E[||ξ(t)||2] =
1

2π

∫ π

−π
tr{Sξ(ω)}dω =

1

2π

∫ π

−π
tr{B̃(ω)QTSθ(ω)Q}dω
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η=0.993 η=0.93
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0
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0.2

ω
0 0.02 0.04 0.06 0.08 0.1

0

0.05

0.1

0.15

0.2

ω

Fig. 1. Bias characteristics B(ω) (broken line) and B̃(ω) (solid line) for two different
values of η. Note the horizontal scale difference between the left figure and the right
figure.

where B̃EWLS(ω) = diag{B̃(ω), . . . , B̃(ω)}, B̃LMS(ω) = diag{B̃1(ω), . . . , B̃n(ω)},
B̃KF(ω) = diag{B̃∗

1(ω), . . . , B̃∗
n(ω)} and

B̃(ω) =
∣∣∣1− ejωτoF (e−jω)

∣∣∣
2

B̃i(ω) =
∣∣∣1− ejωτiFi(e

−jω)
∣∣∣
2
, i = 1, . . . , n

B̃∗
i (ω) =

∣∣∣1− ejωτ∗i F ∗
i (e−jω)

∣∣∣
2
, i = 1, . . . , n

Figure 1 shows the plots of the bias characteristics B(ω) and B̃(ω) for two
values of η (0.993 and 0.93). Note that application of the delay compensation
technique allows one to widen the stopband area of the bias characteristic
B̃(ω) compared to B(ω). The same remark applies to bias characteristics as-
sociated with the LMS and KF algorithms, irrespective of the values of µ,
κ and λ1, . . . , λn. Therefore for slow parameter changes the bias component
of the mean-square estimation error will be always smaller for the modified
EWLS/LMS/KF algorithms than for the original algorithms

E[||ξ(t)||2] < E[||η(t)||2] (27)

It should be stressed that, unlike causal estimation schemes, bias reduction is
not achieved at the cost of increasing the variance component of MSE, which
is approximately the same for the compared algorithms.

4.3 Mean-square error

Combining (22) and (23) with (24) and (27) one arrives at

E[||θ̃(t)− θ(t)||2] < E[||θ̂(t)− θ(t)||2] (28)

which means that the modified EWLS/LMS/KF algorithms will be always
more accurate than the original ones. It should be stressed that improvement
can be expected for all values of the adaptation gain γ (although for “large”
gains, which entail small delays, it may be marginal).
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5 Simplified smoothing rules

In order to use (18) or (19), one should either know or perform eigendecom-
position of the covariance matrix Φ. We will derive simplified smoothing rules
which allow one to avoid this step – at the cost of decreasing estimation ac-
curacy of the corresponding algorithms.

5.1 KF algorithm

When the eigenvalues λ1, . . . , λn are not identical, one may attempt to replace
different delays in (19) with the same average delay τ ∗av = int[t∗av] where

t∗av =

∑n
i=1 t∗i
n

After replacing τ ∗1 , . . . , τ ∗n with τ ∗av in (19), one arrives at the following simpli-
fied smoothing formula

θ̃av(t) = θ̂(t + τ ∗av) (29)which resembles (17).
It turns out that for small adaptation gains the average delay can be eval-
uated without performing eigendecomposition of Φ. Actually, observe that
for small values of κ it holds that t∗i ∼= 1/(κ

√
λi) or t∗i ∼= 0.7/(κ

√
λi). Since∑n

i=1(1/
√

λi) = tr{Φ−1/2} and S(t) ∼= κΦ−1/2, the local estimate of the aver-
age delay can be obtained from

t∗av ∼=
tr{S(t)}

nκ2
or t∗av ∼=

0.7tr{S(t)}
nκ2

Since the matrix S(t), needed to evaluate t∗av, is recursively updated by the
KF algorithm, the corresponding smoothing overlay, equal to 1 multiplication
and n additions, is negligible.

5.2 LMS algorithm

To preserve low complexity of the LMS algorithm a simpler estimation scheme
is needed than the one described above. To fulfill this requirement one can
define the average delay tav in terms of the average eigenvalue of Φ, namely

tav =
1− µλav

µλav

or tav =
0.7

µλav

where

λav =

∑n
i=1 λi

n
Since λav = ρ/n where ρ =

∑n
i=1 λi = tr{Φ} = E[||ϕ(t)||2], the local estimate

of λav can be computed as ρ̂(t)/n, where ρ̂(t) denotes the local, exponentially
weighted estimate of E[||ϕ(t)||2]

ρ̂(t) = ηρ̂(t− 1) + (1− η)ϕT(t)ϕ(t) (30)
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Similarly as before η, 0 < η < 1, denotes the forgetting constant.
After replacing in (18) τ1, . . . , τn with τav = int[tav] one obtains

θ̃av(t) = θ̂(t + τav) (31)

When the average delay is computed in the way described above the smoothing
overhead is equal to n+5 operations only. Hence, the total cost of realizing the
simplified LMS-based smoother is equal to 3n+6 operations per time update.

6 Computer simulations

Three simulation experiments were arranged to check properties of the ana-
lyzed algorithms.

6.1 Example 1

The simulated two-tap finite impulse response (FIR) system was governed by

y(t) = θ1(t)u(t) + θ2(t)u(t− 1) + v(t), v(t) ∼ N(0, σ2
v)

u(t) = au(t− 1) + e(t), e(t) ∼ N(0, σ2
e), |a| < 1

where {e(t)} denotes an i.i.d. sequence, independent of {v(t)}. System param-
eters were generated using the random walk model

θ(t) = θ(t− 1) + w(t), w(t) ∼ N(0, σ2
wI2)

Note that in the case considered θ(t) = [θ1(t), θ2(t)]
T, ϕ(t) = [u(t), u(t− 1)]T

and (in steady state)

Φ = σ2
u




1 a

a 1


 , Q =

1√
2




1 1

−1 1


 , Λ = σ2

u




1− a 0

0 1 + a




where σ2
u = σ2

e/(1− a2).
The advantage of this example is that it is fully analytical and hence it allows
one to check how well experimental results fit theoretical evaluations.
For any causal estimator θ̂(t), designed for the system described above, it
holds that (Ravikanth & Meyn, 1999)

E[||θ̂(t)− θ(t)||2] ≥ cLTB
∼= σwσv tr{Φ−1/2}

where cLTB denotes the lower tracking bound – a variant of the so-called pos-
terior (or Bayesian) Cramér-Rao bound (PCRB), applicable to systems with
random coefficients.
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Similarly, for any noncausal estimator θ̃(t) one arrives at the following funda-
mental limitation (Niedźwiecki, 2007)

E[||θ̃(t)− θ(t)||2] ≥ cLSB
∼= 1

2
cLTB

where cLSB is the lower smoothing bound. The difference cLTB−cLSB
∼= 0.5cLTB

specifies the possible margin of improvement achievable by means of smooth-
ing.
Based on the approximation (6), one can derive the following unified expression
for the mean-square parameter tracking error

E[||θ̂(t)− θ(t)||2] ∼= γσ2
v

2
tr{A}+

σ2
w

2γ
tr{(AΦ)−1} (32)

which holds for all three estimation algorithms, provided that system param-
eters obey the random walk model – see (Guo & Ljung, 1995), (Niedźwiecki,
2000). According to (32), the optimally tuned KF algorithm (γopt = κopt =
σw/σv) should yield

E[||θ̂(t)− θ(t)||2]κ=κopt = σwσv tr{Φ−1/2} = cLTB

This is an expected result since, in the case considered, the KF algorithm is
the optimal estimation procedure – see comment in Section 1.
The analogous expression for the EWLS and LMS algorithms (ηopt = 0.97,
µopt = 0.0825) is

E[||θ̂(t)− θ(t)||2]η=ηopt = E[||θ̂(t)− θ(t)||2]µ=µopt = σwσv

√
ntr{Φ−1}

and gives the values larger than cLTB unless all eigenvalues of Φ are identical.
The following values were adopted: σ2

v = 1, σ2
w = 0.0001, σ2

e = 1 and a = 0.8,
resulting in σ2

u
∼= 2.78, λ1 = 0.56, λ2 = 5.0, cLTB

∼= 0.18 and cLSB
∼= 0.09.

Figure 2 shows comparison of the results yielded by different families of al-
gorithms discussed in the paper: EWLS, LMS and KF. Performance of all
estimators was quantified in terms of the associated mean-square errors. The
MSE of an estimator θ̂(t) was evaluated by means of combined time and en-
semble averaging. First, for each realization of {θ(t)}, {u(t)} and {v(t)}, the
following steady state performance index was computed

I =
1

2000

4000∑

t=2001

||θ(t)− θ̂(t)||2

The obtained results were next averaged over 200 realizations of {θ(t)} and
200 realizations of {u(t), v(t)} (i.e. over 200×200 realizations altogether). The
same set of realizations was used for different algorithms and different values
of γ.
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EWLS LMS KF
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1− η µ κ

Fig. 2. Dependence of the mean-square parameter estimation errors on the adap-
tation gains 1 − η, µ and κ for the original EWLS, LMS and KF algorithms (×),
for the modified algorithms (+), and (in the latter two cases) for the simplified
versions of the modified algorithms (∗). The lower tracking bound (LTB) and the
lower smoothing bound (LSB) are indicated by horizontal lines. Solid lines show
theoretical dependence of MSE on adaptation gains for the original algorithms.

Figure 2 shows the mean-square errors yielded by the original (causal) estima-
tors θ̂(t), the modified estimators θ̃(t) and (where applicable) the simplified
versions of the modified estimators θ̃av(t), for 20 equidistant values of the
adaptation gain γ (i.e. 1− η, µ or κ) picked from the interval [0.00125, 0.025].
Additionally, it depicts theoretical dependence of MSE on γ, and the lower
estimation bounds for tracking (LTB) and smoothing (LSB). To optimize per-
formance of the modified algorithms, estimation delays were computed using
the median-like measure, which is known to be the best choice for random
walk parameter variations (when the nominal delays were used instead, the
performance was only slightly worse).
The obtained results pretty well illustrate our main points:

• Despite the obvious differences in design principles the EWLS, LMS and
KF algoritms perform comparably.

• There is good agreement between the theoretical MSE curves and the re-
sults of computer simulations. For the EWLS and KF estimators the fit is
satisfactory in the entire range of adaptation gains. For the LMS estimator,
discrepancies between theory and experiment occur for “large” values of µ
(which is understandable, as all theoretical results were obtained under the
small gain hypothesis).

• All smoothing algorithms perform uniformly better than their filtering coun-
terparts, and all offer performance that exceeds the lower tracking bound for
a certain range of adaptation gains. The simplified LMS and KF smoothers
are less efficient than their “exact” versions.

• The optimally tuned “cheap smoothers” yield mean-square errors that are
pretty close (regarding simplicity of the solution) to the lower smooth-
ing bound, achievable by means of using the infinite-lag, genuine Kalman
smoother.
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EWLS LMS KF
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Fig. 3. Dependence of the mean-square parameter matching errors, yielded by the
EWLS, LMS and KF algorithms, on the delay τ for η = 0.98, µ = 0.02 and κ = 0.02,
respectively; the nominal delays τo, τ1, τ2 and τ∗1 , τ∗2 are marked with vertical lines.

6.2 Example 2

In our second simulation experiment sinusoidal parameter changes were en-
forced

θ1(t) = 1.5 + sin(2πt/3000), θ2(t) = 0.5 + sin(2πt/1500)

while the remaining simulation details (input, noise) were kept unchanged.
This experiment was certainly less biased as none of the estimation approaches
was “handicapped” (for random walk parameter variation the KF algorithms
are known to yield the best results). Mean-square errors were computed in
the same way as before (200 different realizations of {u(t), v(t)} were used to
compute ensemble averages).
Figure 3 illustrates the estimation delay structure of the EWLS, LMS and
KF estimators. The plots show how the ensemble averages of the parameter
matching errors

Ii(τ) =
1

2000

4000∑

t=2001

(θi(t)− θ̂i(t + τ))2, i = 1, 2

Ji(τ) =
1

2000

4000∑

t=2001

(βi(t)− β̂i(t + τ))2, i = 1, 2

depend on the delay τ for a fixed value of γ (γ = 0.02). In agreement with
theory, the smallest matching errors are obtained when the corresponding
values of τ are close to the nominal delays. Note that, exactly as predicted,
the two estimation delays are identical for the EWLS estimator and that they
differ from each other for the LMS and KF estimators.
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Fig. 4. Dependence of the mean-square parameter estimation errors on the adapta-
tion gains 1− η, µ and κ for the original EWLS, LMS and KF algorithms (×), for
the modified algorithms (+), and (in the latter two cases) for the simplified versions
of the modified algorithms (∗).

Figure 4 shows the plots of the mean-square estimation errors obtained for dif-
ferent estimation algorithms (no theoretical curves are shown as in this case
they are not available). Nominal delays were used for the purpose of smooth-
ing; when the median-like delays were used instead, the performance was only
slightly worse. From the qualitative viewpoint the obtained results are similar
to those presented earlier. Note that the potential rates of the MSE reduction,
achievable by means of smoothing, are higher for the deterministically (slowly)
time-varying system than for the system with randomly drifting coefficients.

6.3 Example 3

Assumption (A2) restricts analysis carried out in Sections 3, 4 and 5 to dy-
namic models with a finite impulse response structure, where the regression
vector has the form ϕ(t) = [u(t − 1), . . . , u(t − n)]T. When the class of con-
sidered parametrizations is extended to nonstationary ARX (autoregressive
with exogenous input) models, where ϕ(t) = [y(t − 1), . . . , y(t − r), u(t − 1),
. . . , u(t− p)]T, r + p = n, the covariance matrix of ϕ(t) is not time-invariant
any more (unless all autoregressive coefficients are constant).
Since EWLS is a local, i.e. finite-memory estimation procedure, one may ar-
gue (although it would be difficult to prove this in a formal way) that for
the proposed debiasing technique to be effective, only a local stationarity of
{ϕ(t)} is needed. Of course, this remark applies also to the LMS/KF-based
smoothers, but unlike the EWLS case, where the smoothing formula does not
depend on the eigenstructure of the covariance matrix of {ϕ(t)}, in order
to use the proposed LMS and KF algorithms in a covariance-nonstationary
environment, one would need to perform on-line estimation and eigendecom-
position of the matrix Φ(t), which is not a computationally “cheap” solution
any more. Even though the simplified LMS/KF-based smoothers are free of
the drawback mentioned above, they can be expected to be less efficient than
the EWLS-based smoother.
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Fig. 5. Left plot shows dependence of the mean-square parameter matching errors,
yielded by the EWLS algorithm (applied to identification of an AR signal) on the
delay τ for η = 0.98; the nominal delay τo is marked with a vertical line. Right plot
shows dependence of the mean-square parameter estimation errors on the adaptation
gain 1− η for the original EWLS algorithm (×) and for its modified version (+).

The purpose of our third example was to show that even when the assumption
(A2) is violated, the EWLS cheap smoother works pretty well. The identifi-
cation task was to estimate time-varying autoregressive (AR) coefficients of a
nonstationary AR signal governed by

y(t) = θ1(t)y(t− 1) + θ2(t)y(t− 2) + v(t)

where
θ1(t) = 0.5 sin(2πt/1000), θ2(t) = 0.5 sin(2πt/750)

In this case ϕ(t) = [y(t− 1), y(t− 2)]T.
Figure 5 shows how the ensemble averages of the parameter matching errors
I1(τ) and I2(τ), computed for 200 different realizations of {v(t)}, depend on
the delay τ for η = 0.98. Note good agreement between the nominal delay
(derived under the assumption that the covariance matrix of ϕ(t) is time-
invariant) and the true delay.
The plots of the mean-square estimation errors, displayed in Figure 5, confirm
usefulness of the proposed smoothing technique. Application of the simplified
versions of the LMS-based and KF-based smoothers also yielded satisfactory
results, but the obtained improvements were less significant than those offered
by the EWLS-based scheme.

7 Practical recommendations

From the three estimation schemes, discussed in the paper, the EWLS ap-
proach seems to be the most appealing one. Since the EWLS-based cheap
smoother simply delays the estimates provided by the EWLS tracker, it does
not incur additional computational costs and can be easily extended to a more
general class of system models.
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The main advantage of the LMS algorithm is its low computational com-
plexity, linear in the number of estimated coefficients. Note that only the
simplified smoothing formula preserves this feature of LMS. Additionally, one
should remember that when the eigenvalue disparity index of Φ is large, LMS
algorithms may suffer from very slow initial convergence, which is a serious
drawback in many applications; in contrast with this the EWLS/KF algo-
rithms are known of fast initial convergence.
Even though when identification is carried for a system with randomly drifting
coefficients the KF-based smoother outperforms the EWLS-based smoother,
this fact is of little practical significance. This is because the RW model usually
provides just a crude local approximation to a true parameter variation, i.e.
in majority of cases RW is an instrumental model only.
From the two ways of determining the estimation delay we recommend the
frequency-domain approach, as it is not focused on any particular class of pa-
rameter variations. The median-like delay measure was optimized for random
walk parameter trajectories and it usually slightly underestimates the true
delay in other cases.

8 Conclusion

We have shown that accuracy of the classical EWLS, LMS and KF parameter
tracking algorithms can be considerably improved by means of compensating
estimation delays. The resulting parameter smoothing algorithms are com-
putationally inexpensive. They can be used in all applications of adaptive
filtering which allow one to postpone the model-based decisions, i.e. execute
them with a delay.
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