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We are studying classical capacities of quantum memoryless multiaccess channels in geometric terms

and we are revealing a break of additivity of the Holevo-like capacity. This effect is a purely quantum

mechanical one, since, as we point out, the capacity regions of all classical memoryless multiaccess

channels are additive. It is the first such effect revealed in the field of classical information transmission

via quantum channels.
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Quantum channels [1] are among the central concepts of
quantum information theory. Many of them allow us to
transmit quantum information coherently [2] or transfer
classical information, after suitable encoding into quantum
states [3]. A multipartite generalization of communication
of both types was analyzed through memoryless quantum
channels [4,5].

Superadditivity phenomena in classical information
transmission with quantum resources were first revealed
in a decoding step of the bipartite scenario. Since the well-
known observation [6] that entangling (and—as such—
nonadditive) receiver measurements may help in an infor-
mation extraction, these phenomena have been carefully
studied [7]. In particular it implies that classical capacity
formula under product encoding (in terms of the Holevo
function) [3] requires entangling decoding. It was much
harder to identify nonadditivity in an encoding step. Since
entangling encoding may increase the probability of cor-
rect guess of sent signals [8] there is extensive research
[9,10] on additivity of the Holevo-function formula men-
tioned above [3] with respect to encoding. However, addi-
tivity of classical capacity C is an even harder problem
since channel capacities are asymptotic quantities, i.e.,
optimized over arbitrary many uses of a channel. On the
other hand, nonadditivity in quantum capacitiesQ has been
shown in multiparty scenario [11] following the entangle-
ment activation idea [12]. However, those results concern
qubits (not bits) communication and, as such, have no
classical analog to be fairly compared with. In addition
they have been reached with additional free two-way clas-
sical communication support.

Here we construct classes of multiple access (MA)
channels exhibiting superadditivity of classical capacity
regions which are true asymptotic quantities and involve
no additional resource support. This is purely quantum
phenomenon since, as we point out, the corresponding
regions for classical channels [13] are additive. This is
the first effect of this kind in quantum channels theory.

Capacity region.—is a set of all rates achievable for
channel. For two channels �1, �2 and their capacity
regions Cð�1Þ and Cð�2Þ a geometric (Minkowski) sum

Cð�1Þ þ Cð�2Þ ¼ f ~u1 þ ~u2: ~u1 2 Cð�1Þ; ~u2 2 Cð�2Þg
gives region of achievable rates in case when both channels
are used separately, i.e., input states are not correlated
across �1, �2 cut. Since the inputs may be correlated:
Cð�1Þ þ Cð�2Þ � Cð�1 ��2Þ. The converse inclusion de-
fines additivity.
Classical memoryless multiple access channel.—

has many senders and one receiver. It is given by
pðyjx1; . . . ; xnÞ. Senders do not cooperate and transmit
their messages independently [probability of sending mes-
sage (x1; . . . ; xn) has form p1ðx1Þ . . .pnðxnÞ]. The capacity
region is given by the set of inequalities [13]:

RðSÞ � IðXðSÞ: YjXðSCÞÞ; (1)

where S represents all possible subsets of senders S �
fX1; . . . ; Xng. SC stands for complement of S and RðSÞ
is sum of transmission rates RðSÞ ¼ P

Xi2SRðXiÞ from

senders Xi 2 S to the single receiver Y. Product channel
of two MA channels is given by pðyjx1; . . . ; xnÞ ¼
pðy1jx1;1; . . . ; x1;nÞpðy2jx2;1; . . . ; x2;nÞ. Capacity regions of

the channels treated separately are determined by RðS1Þ �
IðXðS1Þ: Y1jXðSC1 ÞÞ, RðS2Þ � IðXðS2Þ: Y1jXðSC2 ÞÞ. The

following inequality IðXðSÞ: YjXðSCÞÞ � IðXðS1Þ:
Y1jXðSC1 ÞÞþ IðXðS2Þ: Y2jXðSC2 ÞÞ can be proven leading to
the geometric additivity of the capacity regions. Here S ¼
S1 [ S2 with S1, S2 being the subsets of the first (second)
group of senders. The Fig. 1 illustrates additivity of the
regions for two exemplary classical channels.
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FIG. 1. (a) Two senders pass their messages to the same
receiver through independent binary symmetric channels with
HðpÞ ¼ 0:5 and HðpÞ ¼ 0. (b) XOR gate. (c) Minkowski sum of
the two previous regions illustrating the additivity rule.
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Capacity region C of quantum memoryless multiple ac-
cess channel.—In quantum case of two senders and one
receiver one defines the classical-quantum channel (cqc)
state �¼P

ijpiqjei�ej��ð%i�%jÞ, where ei ¼ jeiiheij
is a projector onto element of the standard basis of classical
part belongs to first (second) sender say Alice (Bob) while
fpi; %ig, fqj; %jg represent the ensembles of states send

through the channel toward the receiver Charlie. Receiver
is allowed to perform POVM measure to recover classi-
cal information encoded in quantum states. The capacity
region C for given cqc state is described by the same
formulas like in classical case 1 where IðAB: CÞ,
IðA: CjBÞ, IðB: CjAÞ are (conditional) mutual informa-
tion IðAB: CÞ ¼ Sð�AÞ þ Sð�BÞ � Sð�ABÞ [IðA: CjBÞ ¼P

jpjIðA: CjB ¼ jÞ] of shared cqc state � [4,14].

Noisy toy model channel.—Consider the case of two
senders Alice and Bob and the channel �p (depicted
schematically on Fig. 2) that allows Alice to send a four-
level quantum system while Bob is supposed to send only
one qubit system.

The capacity of the channel �p¼1, called here the toy
model channel, can be easily found as follows. Let us put
partial trace instead of depolarization (they both lead to the
same capacity regions). Now if Alice sends fixed state, say
j0i then Bob message is not affected which gives rise to the
following rate vector ðRA; RBÞ ¼ ð0; 1Þ. On the other hand
if Bob sends fixed pure state, say j0i, then Alice may not
affect it (sending j0i) or may alter with Pauli matrix �x

(sending j1i). This corresponds to the rate vector
ðRA; RBÞ ¼ ð1; 0Þ. Clearly sum of the rates cannot exceed
one (since Charlie gets only one qubit). Time sharing
eventually gives the triangle capacity region Cð�p¼1Þ ¼
fðRA; RBÞ: RA þ RB � 1g.

We also introduce a trivial identity channel �id that
transmits ideally single qubits form Alice and Bob, respec-
tively, (Alice part is intriduced for better geometrical vis-
ualization only). Obviously it has the square capacity
region Cð�idÞ ¼ fðRA; RBÞ: RA � 1; RB � 1g.

Now we shall find the capacity region Cð�p¼1 ��idÞ.
Bob may send fixed maximally entangled state, say
j�þi ¼ 1ffiffi

2
p ðj00i þ j11iÞ. Then Alice may alter it with her

four states j0i; . . . ; j3i and send four independent messages
to Charlie. She may also send one additional bit by ideally
transmitting part of �id. This gives totally 3 bits of Alice
rate ie. ðRA; RBÞ ¼ ð3; 0Þ. Again, since Charlie gets three
qubits, by Holevo bound, sum of the Alice and Bob rates
can not exceed 3 bits. By similar argumentation maximal

information that Bob can send amounts to 2 bits. Hence
Cð�p¼1 ��idÞ is described by

RB � 2; RA þ RB � 3; (2)

which is clearly grater than the geometric sum Cð�p¼1Þ þ
Cð�idÞ as illustrated in Fig. 3. This example which explores
the kind of remote dense coding on Alice part shows how
easily that nonadditivity of capacity regions of different
channels may naturally occur in MA channel.
For all �p with 0< p< 1 we have RA < 2; hence, one

can observe that nonadditivity of the capacity region takes
place also for p < 1.
Note that in the case�p¼1 we have single letter formulas

for all the three capacities, i.e., entangled signals send
across inputs of the same channels will not help. We

have CðnÞð�Þ � 1
n Cð��nÞ ¼ Cð�Þ. As we shall see subse-

quently this is not always true.
The presence of nontrivial noise: When single letter

formula does not work.—Consider a noisy version of �p,
i.e., with p 2 ð0; 1Þ. We will show that then one has

Cð1Þð�pÞ ⊊ Cð2Þð�pÞ. For simplicity we focus here on the
Alice transmission rate.
Following (1) the bound on the Alice transmission rate

in single use of the channel may be expressed by

RA � max�ðfpi;�
pðui � vÞg

¼ max

�
S

�
�p

�X
i

piui � v

��
�X

i

piSð�pðui � vÞÞ
�

(3)

since the Holevo function can be always saturated on pure
state ensembles. The maximum is taken over all Alice
ensembles fpi; uig and all Bob pure states fvg. We shall

FIG. 2. Circuit model of channel �p with depolarizing noise.
The controlled Pauli matrices �i 2 fI; �x; �y; �zg are involved.
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FIG. 3. Illustration of (a) toy model channel capacity region;
(b) identity channel capacity region; (c) Minkowski sum of the
regions (a) and (b); (d) capacity region of product of two
channels which is greater than sum (c); (e) quotient of Alice’s
Holevo-like capacity for entangled and product coding for the
noisy version of the toy model channel (see the main text).
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prove that RA is bounded by �ð1Þ ¼ Hðð2� pÞ=8; ð2�
pÞ=8; ð2� pÞ=8; ð2� pÞ=8; p=8; p=8; p=8; p=8Þ�Hð1�
ð3p=4Þ; p=4; p=4; p=4Þ. This can be seen from two facts:
(i) the total entropy, i.e., the first term in the above bound is
maximized by the Alice maximally mixed state (ii) all the
terms in the second part Sð�pðui � vÞÞ have the same
minimum for juii ¼ jii (standard orthonormal basis).
Hence maximally mixed ensamble of Alice orthogonal
states fjiig at the same time maximizes the first and mini-
mizes the second (averaged) term in (3) reaching the ex-
pected bound.

Fact (i) can be proved by the observation that total
entropy can be seen as a concave function of average state
� and so it is enough to prove that the it has a critical point,
i.e., its derivative along any (traceless) direction� vanishes
at � ¼ I=4. One can use formula [15]:

@Sð%þ ��Þ
@�

���������¼0
¼ �Tr ½�log2%�; (4)

where % ¼ �ðpÞð14 I � vÞ and � ¼ �ðpÞð� � vÞ to prove

that derivations vanishes via sequence of not difficult,
though tedious calculations which are presented elsewhere
[16].

Fact (ii) is a consequence of theorem [17] saying that
minimal output entropy of the tensor product of depolariz-
ing channel with identity channel is saturated by product
pure states and the observation that in our case a product
channel (composed of depolarizing channel and identity)
follows an entangling unitary operation.

Consider now the case when we have two uses of the
channel�p ��p and Bob sends just maximally entangled
state jcþi while Alice sends products of two maximally
mixed ensembles like the one used before. The achieved

Alice rate �0ð2Þ (we use primed Holevo function to stress
that the used ensemble may not be optimal) can be easily
computed as a Holevo function of the ensemble of 16 states
�ðei � ej � cþÞwith equal probabilities and it amounts to

�0ð2Þ ¼ �ð 38 ð2�pÞplog2 1
64 ð2�pÞpþ 1

8 ð4� 6pþ 3p2Þ�
log2

1
64 ð4 � 6p þ 3p2ÞÞ � Hð1� ð3p=4Þ;p=4; p=4; p=4Þ

where the first term contributes to superadditivity with
respect to communication form Alice to Charlie.

On Fig. 3(e) the quotient �0ð2Þ=�ð1Þ is depicted showing
that the maximal possible rate of sending information by

Alice implies nonadditivity Cð1Þð�ðpÞÞ ⊊ Cð2Þð�ðpÞÞ.
Three senders channel with classical-like type of

noise.—Here we shall consider another type of MA chan-
nel with three senders A1, A2, B and one receiver C. A1 and
A2 send qubits while B sends four-level system. The chan-
nel is depicted on Fig. 4.

We shall consider a configuration similar to one pre-
sented for case�p¼1. We introduce trivial identity channel
�id that transmits ideal single qubits from A1 and A2 to
receiver. For the case (i) when A1 and A2 sends single

selected product state we immediately get: Rð1Þ
B � 1. If

one allows (ii) entangled coding across many uses of �,

the (regularized) rate RB will be bounded by 1.81. In the
third scenario (iii) senders A1, A2 send Bell state (j�þi)
with their first (second) qubits transferred down the chan-
nel � (�id) and then transmission rate Rent

B becomes 2>
1:81 leading to expected nonadditivity. (i) Follows from
Holevo bound for lines A1 and A2 and fact that the addi-
tional information which unitary operation (up or down)
was performed can only increase the capacity of �; (iii) we
get immediately by superdense coding. Note that thanks to
numerical analysis of (i) and (iii) for the channel �p¼0:5, we
found even if B achieves maximal transmission rate, both
A1 and A2 can still get some nonzero rates.
Here we present only the main parts underlying estima-

tion of the regularized rate RðnÞ
B (ii). Technical details were

presented elsewhere [16]. Receiver output is invariant
under the von Neumann measurement in standard basis
on system B that proceeds the action of �p; therefore,
message B may always be chosen to be in the standard
basis and we may simulate channel �p as a classical
channel �p: B � B1 � B2 followed by unitarity U ¼
U1 �U2, where Ui works on subsystem AiBi (i specifies
sender A1 or A2). After unitarity we trace out subsystem
B1B2. Channel �

p maps index i 2 B to ð0; iÞ or ði; 0Þ with
the probability p (respectively, 1� p). Suppose now we
have n copies of �p at our disposal. Sender Ai is allowed to
prepare any state j�Ai

i 2 A�n
i on his subsystem. At the

same time sender B sends random vector variable
ðb1; . . . ; bnÞ which is mapped to ðb11; . . . ; bn1Þðb12; . . . ; bn2Þ.
All possible codings determined by choices of j�Ai

i and
further (random) unitary action are of the form

Bn
i 3 ðb1i ; . . . ; bni Þ � �

ðb1i ;...;bni Þ
i 2 A�n

i i ¼ 1; 2: (5)

Hence the receiver gets eventually the product state �1 �
�2. His task is to perform collective POVM on the letter to
get maximum information about Bn. The result of POVM

is recorded in B̂n. Using techniques similar to those from
classical source coding with side information [13] and
exploiting separable correlations among Bn, Bn

i , ðAiÞ�n
one gets

RðnÞ
B � max

pðBnÞ
1

n
ðHðBnÞ �HðBnjBn

2Þ þ nÞ (6)

� max
pðBÞ

IðB: B2Þ þ 1: (7)

FIG. 4. Circuit model of channel �p. Up unitarity (between A1

and B) occur with probability 1� p and down with p. The cross
sign stands for partial trace.
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Without loss of generality we assume that p � 0:5 [16].

Therefore, thanks to numerical calculation, we get RðnÞ
B <

1:81 for all p � 0:5. The result is independent on n, hence
we get finally that regularized RB < 1:81

Conclusions.—We provided constructions of MA chan-
nels that exhibit superadditivities of classical capacity
regions. First they are nonadditive in the sense that

Cð1Þ ⊊ Cð2Þ, i.e., entanglement across two inputs of the
same channel helps. Even more striking, unlike bipartite
channel capacities [18], the presented capacity regions
break additivity rule if supplied with identity channel.
We showed that both types of nonadditivity have no clas-
sical analog. The results are first examples of nonadditivity
of classical capacities where (i) no additional resources are
involved, (ii) classical analogs are additive. They also
provide first quantum improvement of bits transmission
rate that does not require quantum memory, since entan-
glement particles are sent ‘‘in parallel.’’ The cumulative
bipartitelike rate (RA þ RB) is still additive here; however,
the proof of the results shows that multiparty scenarios
may be arena of efficient applications of tools known from
bipartite case. The simplicity of our initial (toy model)
channel breaking additivity with identity channel resem-
bles classical butterfly-effect with two senders and two
receivers [19]. Note that one can ask the same question
for other multiuser scenarios. In particular, general ques-
tions about additivity of entanglement assisted classical
capacities is open [22] (extension of our approach to that
case does not work). Analysis of the presented effects in
continuous variable domains is an interesting issue which
will be considered elsewhere.

This work was prepared under the EU IP SCALA. We
thank L. Pankowski for drawing our attention to classical
butterfly effect. For numerical calculations GSL v1.9 and
CGAL v3.3.1 were used.

Note added.— Some time after posting the present result
[16] concerning classical capacities C, we learned of an
analogous result for quantum capacity Q in a fundamental
one-sender–one-receiver scenario [20]. The recent surpris-
ing result [21] breaks additivity of bipartite Holevo ca-
pacity in the single-use regime. Here we deal with channel
capacities which by definition are asymptotic quantities.
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