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Abstract

In this work different theories of rods have been discussed and compared. The
investigated theories are widely used in spectral finite element modelling of rod
behaviour associated with propagation of symmetric longitudinal waves. These are
various single, two-mode and three-mode theories including the elementary, classical
Love and Mindlin-Herrmann approaches as well as new two, three and four-mode
theories proposed by the authors. Dispersion curves associated with each theory,
obtained by the use of the Hamilton’s principle, have been presented and discussed
in the paper. The investigation programme carried out by the authors aimed to
show major differences and similarities between the rod theories and to discuss
certain numerical aspects of their application. Great attention has been paid on
properties, limitations as well as difficulties associated with the use of the theories.
The results obtained from a wide program on numerical tests allowed the authors to
draw certain general conclusions that are valid not only in the field of the spectral
finite element method but also in the field of dynamics of engineering rod structures.

Key words: rod theories, elastic wave propagation, longitudinal waves

1 Introduction

The phenomenon of elastic wave propagation in structural elements has been
extensively studied by many researchers for last few decades. The biggest
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issue in accurate numerical modelling of wave propagation is structural ele-
ments comes from high frequency excitations. Such excitation regimes imply
high velocities of propagating signals. Their precise representation in space
and time requires very dense spacial and time discretisation making the dis-
cretisation process a key factor of any wave propagation analysis. Because of
that fact many different numerical methods of modelling the wave propagation
phenomenon have been reported in the literature.

Numerical methods that are currently in use to study propagation of elas-
tic waves in structural elements can be divided into frequency domain (FD)
and time domain (TD) methods. The first group of the methods covers var-
ious spectral techniques based on the frequency representation of excitation
and propagating signals and is very well established in the literature. The
application of the direct and inverse fast Fourier transforms (FFT, IFFT) for
signal transformations between the time and frequency domains is an essential
feature of these techniques.

Gopalakrishnan et al. [1] presented a methodology for development of an exact
spectral Timoshenko beam element to study wave propagation in beam struc-
tures. Rizzi and Doyle [2] used a similar spectral approach to study in-plane
stress waves propagating in infinite and semi-infinite planes. Danial et al. [3]
investigated propagation of in-plane and out-of-plane responses in a plate with
stringers as well as in a thin-walled box beam, while Martin and Doyle [4] in
their work described a method for determination of the location of an impact
force using dynamic response measurements. In his work [5] Doyle presented
a unified approach for various wave propagation problems in one-dimensional
and two-dimensional structural elements by the use of the FFT-based spec-
tral finite element method (SFEM). Propagation of flexural waves in a cracked
isotropic plate [6] and flexural-shear coupled waves in a laminated composite
beam with a crack [7] was investigated by Krawczuk et al., who employed
the same methodology to solve wave propagation problems as presented by
Doyle. Applying the same technique of the FFT-based spectral finite elements
Mahapatra and Gopalakrishnan [8] studied propagation of axial-flexural-shear
waves in thick laminated composite beams due to impact loading.

Oshima et al. [9] showed that the strip element method (SEM) formulated in
the frequency domain can be applied for propagation of stress elastic waves in
a beam composite fibre sensor. Similarly Liu et al. [10] investigated scattering
of elastic waves by rectangular flaws in anisotropic laminated plates, while Xi
et al. [11] used the same strip element technique in the frequency domain for
investigation of coupled fluid-structure interaction and its influence on prop-
agation and scattering of elastic waves in the case of a fluid-filled laminated
composite cylindrical shell.

In the case of the time domain methods many different solution techniques
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are still in use in order to study propagation of elastic waves and are reported
in the literature. The techniques that can be mentioned here include the mass
spring lattice model (MSLM) and the local interaction simulation approach
(LISA), the finite difference method (FDM), the method of finite elements
(FEM) and boundary elements (BEM) as well as the time domain spectral
finite element method (SFEM).

Simulation of ultrasonic waves in isotropic and transversely isotropic media
by the use of the mass spring lattice model was carried out by Yim and Choi
[12], while Chen et al. [13] studied propagation of surface acoustic waves in
aluminium and copper plates excited by a laser pulse. Baek and Yim [14]
employed the same technique for various wave phenomena in transversely
isotropic media. Delsanto et al. in [15] used the local interaction simulation
approach for investigation of one-dimensional uniform waveforms propagating
through a plate and in [16] presented the use of the same method in the case
of two-dimensional waveforms. In a similar way Sundararaman and Adams
[17] applying the local interaction simulation approach studied propagation of
Lamb waves in aluminium and orthotropic plates and interactions of waves
with different types of damage.

A new finite difference scheme for modelling of propagation of longitudinal and
transverse waves in a heterogeneous media presented Virieux [18, 19]. Various
aspects associated with the stability, dissipation and convergence of different
order finite difference schemes used for solving partial differential equations
discussed in his work Strickwerda [20]. Harari and Turkel [21] developed fourth
order accurate finite difference methods for solving problems of propagation of
harmonic acoustic waves. A review of higher order and optimised finite differ-
ence schemes used for numerical simulations of the propagation and scattering
of elastic, electromagnetic and acoustic waves was given by Zingg [22]. Gos-
selin et al. [23] used the finite element and finite difference methods in order
to solve the elastic and acoustic wave equations. Their results show that the
finite element method is more efficient than the method of finite differences
for the models with widely varying Poisson’s ratio.

Investigation on laser induced transient Lamb waves propagating in thin plate-
like and shell-like structures was carried out by Verdict et al. [24], who used the
finite element method for that purpose. Koshiba et al. [25] presented a finite
element based solution for scattering of the fundamental symmetric Lamb
wave by a wedge-shaped internal and surface cracks in an elastic plate wave
guide. A study on the effectiveness of the finite element method for modelling
propagation of guided waves in annular structures was done by Moser et al.
[26]. Yokoyama [27] employed the method of finite elements for investigation
of one-dimensional torsional plastic waves in a thin-walled tube. Also the finite
element technique was applied by Conry et al. [28], who analysed reflection
and transmission of Lamb waves by embedded and surface-breaking defects
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in thin isotropic plates. Jeong and Ruzzene [29] studied vibration and wave
propagation of cylindrical periodic grid structures by the use of the finite
element method.

Zhu et al. [30] presented in their work a general boundary element approach
for elastic wave propagation and scattering by cracks in laminated composite
plates. A hybrid boundary element approach was employed by Clio [31] in
order to investigate scattering of Lamb waves by various plate defects as well
as to study the phenomena of mode conversion due to step discontinuities.
Hayashi and Endoh [32] applied the same hybrid boundary element method
for simulation of propagation of Lamb waves in plates. A study on the use
of ultrasonic subsurface longitudinal waves for inspection of surface cracks re-
sulting from rolling contact was performed by Lu et al. [33] who also employed
the boundary element method.

The use of the spectral finite element method for various wave propagation
problems starts from the work by Patera [34] who proposed a specific spectral
approach based on the use of higher order Chebyshev or orthogonal Leg-
endre polynomials combined with discretisation typical for the finite element
method. Dauksher and Emery [35] analysed dispersion and accuracy of Cheby-
shev spectral finite element solutions in the case of one-dimensional and two-
dimensional wave equations. The spectral finite element method was also em-
ployed by Komatitsch et al. [36] for investigation of elastic wave propagation
in realistic geological structures in two-dimensional and three-dimensional ge-
ometries. Propagation of elastic in-plane waves in isotropic panels with damage
in the form of fatigue cracks was studied by Żak et al. [37], while Ostachow-
icz et al. [38] demonstrated the effectiveness of the spectral finite element
method for damage detection in various one-dimensional and two-dimensional
structural elements. The same spectral approach was used by Kudela and Os-
tachowicz [39] who investigated the influence of various material parameters
on propagation of transverse elastic waves corresponding to the fundamental
mode of Lamb waves in a laminated composite plate.

Various one or multi-mode rod theories have been applied for problems related
with propagation of elastic waves in rod structural elements. It should be noted
that in the available literature the use of both frequency domain (FD) and
time domain (TD) methods mentioned above seems to be equally reported.
For example, Baz in [40], Palacz and Krawczuk in [41], Krawczuk et al. in
[7] as well as Anderson in [42] applied the FFT-based spectral finite element
method for their research, while at the same time Bodner and Aboudi [43],
Seemann [44], Zheng et al. [45] and Kudela et al. [46] obtained their results
by the use of various time domain techniques.

In this work different theories of rods have been discussed and compared.
These are various single, two-mode and three-mode theories including the
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elementary, classical Love and Mindlin-Herrmann approaches as well as new
two, three and four-mode theories proposed by the authors. Dispersion curves
for each theory analysed in the paper have been presented and discussed and
have been obtained by the use of the Hamilton’s principle. The investigation
programme carried out by the authors aimed to show major differences and
similarities between the rod theories and to discuss certain numerical aspects
of their application. Great attention has been paid on properties, limitations as
well as difficulties associated with the use of the theories. The results obtained
from a wide program on numerical tests allowed the authors to draw certain
general conclusions that are valid not only in the field of the spectral finite
element method but also in the field of dynamics of engineering rod structures.

2 Elastic waves in rods

2.1 Theoretical background

Propagation of elastic waves in rod structural elements can be well described
by the linear theory of elasticity. In the case of isotropic materials the equation
of motion governing propagation of elastic waves can be expressed in a vector
form as (Doyle [5], Achenbach [47], Rose [48]):

µ∇2u+ (λ+ 2µ) grad div u = ρ ü (1)

where u is a displacement vector, λ and µ are Lamé material elastic constants,
ρ denotes material density and �̈ is the second time derivative.

It is most convenient to analyse this problem using the cylindrical (x, r, θ)
rather than the Cartesian (x, y, z) coordinates – see Fig. 1. In the cylindrical
coordinate system the components ux, ur and uθ of the displacement vector
u are certain scalar functions of the space coordinates x, r and θ as well as
time t.

According to Helmholtz’s theorem the field of the displacement vector u can
be thought of as a sum of two special vector fields uφ and uH such that
the vector field uφ is irrotational (rot uφ = 0), while the vector field uH is
solenoidal (div uH = 0). This is achieved by assuming that the field of the
displacement vector u is generated by a pair of potentials, i.e. scalar potential
φ and vector potential H = (Hx, Hr, Hθ):

u = uφ + uH = grad φ+ rotH , divH = 0 (2)
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with the following notation employed:

grad φ = î
∂φ

∂x
+ r̂

∂φ

∂r
+ θ̂

1

r

∂φ

∂θ

divH =
∂Hx

∂x
+

1

r

∂(rHr)

∂r
+

1

r

∂Hθ

∂θ

rotH = î
1

r

[

∂(rHθ)

∂r
− ∂Hr

∂θ

]

+ r̂

[

1

r

∂Hx

∂θ
− ∂Hθ

∂x

]

+ θ̂

[

∂Hr

∂x
− ∂Hz

∂r

]

∇2 u =
∂2u

∂x2
+
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

where î, ĵ and θ̂ are the unit vectors indicating the orientations of the x, r
and θ axes.

x

y

z

x

θ

r

l

ux

uθ
ur

P

z

y
d

Fig. 1. Geometry of a rod structural element.

Application of Helmholtz’s theorem and substitution of Eq.(2) into Eq.(1)
leads after some simplification and rearranging of the terms related to both
potentials φ and H to Eq.(3):

grad

[

(λ+ 2µ)∇2φ− ρ
∂2φ

∂t2

]

+ rot

[

µ∇2H − ρ
∂2H

∂t2

]

= 0 (3)

which presents in fact a set of two independent equations of motion for both
potentials φ and H :

∇2φ =
1

c2l

∂2φ

∂t2
, ∇2H =

1

c2t

∂2H

∂t2
(4)
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where cl and ct defined as follows:

c2l =
λ+ 2µ

ρ
, c2t =

µ

ρ
(5)

denote the velocities of longitudinal (irrotational, voluminal, dilatational or
primary) and torsional (rotational, equi-voluminal, shear or secondary) waves
propagating in three-dimensional unbounded isotropic media, respectively.

2.2 Pochhammer frequency equation

Investigation of elastic longitudinal waves propagating in a rod structural el-
ement can be greatly simplified by the use of the assumption about the ro-
tational symmetry of the rod with respect to its longitudinal x axis. Due to
this symmetry all displacement and strain components must be independent
of the angle θ. In this case the displacement component uθ as well as the
strain components γxθ and γrθ must be equal zero, i.e. uθ = γxθ = γrθ = 0.
Moreover, it can be shown that as a direct consequence of the symmetry the
vector potential H must have only one non-zero component Hθ and the other
two components Hx and Hr vanish, i.e. Hx = Hr = 0 giving H = (0, 0, Hθ)
(Achenbach [47] and Rose [48]). In this way the non-zero components ux and ur
of the displacement vector u within the rod can be expressed in the following
way:

ux =
∂φ

∂x
+

1

r

∂(rHθ)

∂r
, ur =

∂φ

∂r
− ∂Hθ

∂x
(6)

which after substitution to Eq.(1) and some simplifications results in another
set of two independent equations of motion expressed in terms of the scalar
potentials φ and Hθ:

∇2φ =
1

c2l

∂2φ

∂t2
, ∇2Hθ −

Hθ

r2
=

1

c2t

∂2Hθ

∂t2
(7)

The second equation from this set can be simplified by taking advantage of the
fact that ∂

∂r
∇2φ = ∇2 ∂φ

∂r
− 1

r2
∂φ

∂r
and by the use of the substitution Hθ = −∂ψ

∂r

that gives:

∇2φ =
1

c2l

∂2φ

∂t2
, ∇2ψ =

1

c2t

∂2ψ

∂t2
(8)

while the components ux and ur of the displacement vector u can be finally
expressed as:

ux =
∂φ

∂x
− ∂2ψ

∂r2
− 1

r

∂ψ

∂r
, ur =

∂φ

∂r
− ∂2ψ

∂x∂r
(9)

The strain field within the rod can be easily evaluated based on Eqs.(9) and
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has the following non-zero components:

ǫxx =
∂ux

∂x
, ǫrr =

∂ur

∂r
, ǫθθ =

ur

r
, γxr =

∂ur

∂x
+
∂ux

∂r
(10)

while the stress field can be calculated from Hook’s law based on the following
very well-known formulas:

σxx = 2µǫxx + λ(ǫxx + ǫrr + ǫθθ)

σrr = 2µǫrr + λ(ǫxx + ǫrr + ǫθθ)

σθθ = 2µǫθθ + λ(ǫxx + ǫrr + ǫθθ)

τxr = µγxr

(11)

Harmonic waves that propagate within the rod along its longitudinal x axis
can be assumed as solutions of Eqs.(8) in a general complex form:

φ = φ̂(r)ei(kx−ωt), ψ = ψ̂(r)ei(kx−ωt) (12)

where φ̂(r) and ψ̂(r) are unknown functions and k denotes the wave number
while ω is the angular frequency.

Their substitution to the equations of motion (8) leads to a set of Bessel’s
differential equations for the functions φ̂(r) and ψ̂(r):

d2φ̂

dr2
+

1

r

dφ̂

dr
+ α2φ̂ = 0,

d2ψ̂

dr2
+

1

r

dψ̂

dr
+ β2ψ̂ = 0 (13)

where:

α2 =
ω2

c2l
− k2, β2 =

ω2

c2t
− k2

that has solutions in the form of Bessel functions of the first J0(αr) and J0(βr)
as well as Bessel functions of the second Y0(αr) and Y0(βr) kind. Because the
Bessel functions of the second kind exhibit singular behaviour at their origin
at r = 0 this branch of the solution is discarded leading to the following form
of the solution of the problem under investigation:

φ̂(r) = AJ0(αr), ψ̂(r) = BJ0(βr) (14)

where A and B are certain constants.

Taking into account the general form of the solutions from Eqs.(12) it can be
finally written that:

φ = AJ0(αr)e
i(kx−ωt), ψ = BJ0(βr)e

i(kx−ωt) (15)

Propagation of elastic longitudinal waves in the rod requires the fulfilment of
zero-traction boundary conditions on the rod outer surface that accompany
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the set of the equations of motion given by (8):

σrr(x, r) = τxr(x, r) = 0, for 0 ≤ x ≤ l, r = a =
d

2
(16)

where l is the length and d is the diameter of the rod.

The zero-traction boundary conditions for the stress components σrr and τxr,
after substitution of Eqs.(15) to Eqs.(10) and by the subsequent use of the
formulas from Eqs.(11) and some simplification, form a set of two homogeneous
equations expressed in terms of the two solutions from Eqs.(15).

The given set of equations has a non-trivial solution only then when its deter-
minant vanishes. In the case under consideration this condition leads directly
to a certain non-linear equation known in the literature as the Pochhammer
frequency equation for longitudinal modes propagating in rods and which links
together the angular frequency ω and the wave number k. The Pochhammer
frequency equation has the following form:

2α

a
(β2 + k2)J1(αa)J1(βa)− (β2 − k2)

2
J0(αa)J1(βa)+

−4k2αβJ1(αa)J0(βa) = 0

(17)

It is interesting to note that this equation was originally introduced by a
Prussian mathematician Leo Pochhammer [49] in 1876 who studied vibration
behaviour of circular cylinders. This equation was also studied by many other
researches (Chree [50], Love [51], Davis [52], Pao and Mindlin [53], Graff [54])
and due its complexity the roots of the equation remained unknown for many
years.

2.3 Solution of the Pochhammer frequency equation

In the current case the Pochhammer frequency equation was solved by the
use of an original and dedicated program written by the authors in Matlab
environment [55]. The values of the velocities of longitudinal cl and torsional
ct waves propagating in the rod were calculated assuming the rod made out
of aluminium with Young’s modulus E = 72.7 GPa, Poisson ratio ν = 0.33
and material density ρ = 2700 kg/m3 and of the diameter d = 0.01 m. The
values of the characteristic velocities were cl = 6.3 km/s and ct = 3.2 km/s,
respectively.

As a calculation domain the frequency range f from 0.1 Hz up to 2.0 MHz and
the phase velocity range cP from 2 km/s up to 50 km/s was chosen. The roots
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of the Pochhammer frequency equation were sought at nodes of a regular grid
of 400× 2000 nodes at the assumed accuracy level δ ≤ 0.001%.
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Fig. 2. Phase velocity cp dispersion curves for an aluminium rod (cl = 6.3 km/s,
ct = 3.2 km/s).
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Fig. 3. Group velocity cg dispersion curves for an aluminium rod (cl = 6.3 km/s,
ct = 3.2 km/s).

The solution was based on the use of a conjugate bisection method developed
by the authors (Ralston [56]). In the first step the roots were found as a
function of the phase velocity cp =

ω
k
for given values of the frequency f = ω

2π

treated as a parameter in Eq.(17). In the second step the phase velocity cp
was assumed to be a parameter and the roots were found as a function of the
frequency f . In this way the second step of calculations improved the solutions
obtained from the first step for those regions of analysis where changes in
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the phase velocity cp as a function of the frequency f were of a very high
magnitude.

The results obtained for changes in the phase velocity cp as a function of a
frequency parameter defined as fd are shown in Fig. 2, while Fig. 3 presents
changes in the group velocity cg as a function of the same frequency parameter
fd. The values of the group velocity cg =

dω
dk

were also obtained numerically
by differentiation of the wave number curves k = k(ω) with respect to the
angular frequency ω.
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B
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C

Fig. 4. Magnification of the behaviour of the second mode of the phase velocity cp
dispersion curve for an aluminium rod (cl = 6.3 km/s, ct = 3.2 km/s).

As it can be seen from Fig. 4 the phase velocity curve cp = cp(fd) for the
second propagation mode exhibits some very unusual behaviour just above
the cut-off frequency for this mode and between points A, B and C. It can
be seen that the opposite signs of the phase cp and the group cg velocities
between points A and B suggests a possibility that the direction of energy
transmission in the rod can be opposite to the direction of wave motion. Such a
phenomenon of so-called backward wave propagation was studied and reported
in the literature in the past by many researches (Meeker [57], Meitzler [58],
Alippi et al. [59], Marston [60]) and still is a subject of research especially in
the case of electromagnetic waves.

In the range of the frequency parameter fd starting from the cut-off frequency
of 3.72 MHz·mm (point B) up to 3.85 MHz·mm (points A and C) the phase
velocity curve cp is double valued, which indicates two different zones for the
values of the group velocity cg. The first branch of the phase velocity curve
cp = cp(fd) between point A and B is a high phase velocity region, where the
phase velocity cp and the group velocity cg have opposite signs. The second
branch between points B and C is a low phase velocity region, where the phase
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velocity cp and the group velocity cg have the same signs.

3 Rod theories

3.1 General considerations

The rod theories that are widely exploited in the literature and related to
propagation of elastic waves in rod structural elements can be classified and
grouped as one-mode, two-mode, three-mode and higher mode theories. A
number of theories based on different displacement fields can be obtained
based on the careful analysis of a general three-dimensional displacement field
of a rod structural element. Appropriate Maclaurin series expansion helps to
reduce the number of unknown variables to a desired and necessary number.
It should be emphasised that the reduced number of the unknown variables
simplifies not only the complexity of the displacement fields, but also reduces
the number of wave modes than are allowed by the theories limiting their
application range.

Using the same cylindrical coordinates (x, r, θ) expansion into a Maclaurin
series, for example, of the component ux of the rod displacement field about
r = 0 leads to the following equation:

ux(x, r, θ) = ux(x, 0, θ) +
∞
∑

n=1

∂nux(x, 0, θ)

∂rn
rn

n!
(18)

It should be mentioned here in the case the component ux the terms that are
proportional to the odd values of n are related with antisymmetric behaviour
and propagation of bending waves, while the terms proportional to the even
values of n are related to symmetric behaviour and propagation of longitudinal
waves. The same expansion into a Maclaurin series repeated for the component
ur leads to opposite conclusions (Doyle [5], Achenbach [47], Rose [48]).

A number of terms kept in the series given by (18) depends on the investi-
gated phenomena and is directly related with the total number of degrees of
freedom of any finite element approximation based on the series expansion.
The expansion of the component ux at n = 2 gives the Maclaurin series of the
following form:

ux(x, r, θ) = ux(x, 0, θ) +
∂ux(x, 0, θ)

∂r
r +

1

2

∂2ux(x, 0, θ)

∂r2
r2 + E(r3) (19)

where E(r3) represents the truncation error of the expansion proportional to
r3. At this point a step towards a finite element approximation can be made
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and then Eq. (19) can be rewritten as:

ux(x, r, θ) = ũx(x, θ) + φ̃0(x, θ) r + φ̃1(x, θ) r
2 (20)

where now ũx(x, θ), φ̃0(x, θ) and φ̃1(x, θ) may be thought of as denoting degrees
of freedom of a rod finite element associated with a Maclaurin expansion of
the component ux of the rod displacement field.

It is obvious that due to the truncation of the series (19) the obtained formula
(20) is not exact and it represents the three-dimensional displacement field
of a rod structural element in a approximated sense. However, it should be
emphasised that effective solutions of most of engineering problems involving
static or dynamic problems require finite elements that employ only the first
two or three terms of an appropriate Maclaurin series. In the case considered
above it can be noted immediately that:

ũx(x, θ) = ux(x, 0, θ)

φ̃0(x, θ) =
∂ux(x, 0, θ)

∂r

φ̃1(x, θ) =
1

2

∂2ux(x, 0, θ)

∂r2

(21)

Contrary, a great majority of problems involving propagation of elastic waves
in one or two-dimensional structural elements require much more accurate
representation of the three-dimensional behaviour of a solid element. This is
directly related with modelling of different modes of elastic waves propagating
within such three-dimensional solid structures.

The wave propagation phenomena is related with a coupled interaction of
shear and extensional waves propagating within a structure with structural lat-
eral boundaries. As a result of this coupled interaction propagation of various
modes of elastic waves can be observed. Appropriate representation of these
modes in a broad range of wave propagation frequencies requires a greater
number of terms of a Maclaurin series in order to capture the complexity of
the interaction phenomena. For that reason special types of new finite elements
are developed that are known in the literature as spectral finite elements.

3.2 Displacement fields

As mentioned before propagation of elastic longitudinal waves in rod structural
elements is associated with rod symmetric behaviour. Therefore based on Eq.
(18) and the following considerations the general form of the displacement field
of a one-dimensional rod spectral finite element for analysis of propagation of
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elastic longitudinal waves can be written in the following way:

ux(x, r) = ũx(x) + φ̃2(x) r
2 + φ̃4(x) r

4

ur(x, r) = ψ̃1(x) r + ψ̃3(x) r
3 + ψ̃5(x) r

5

(22)

where only 6 terms of the Maclaurin series expansions of the displacement
components ux and ur are used. It can be reminded here that due to the rota-
tional symmetry of the rod with respect to its longitudinal x all displacement
and strain components must be independent of the angle θ.

The function ũx(x) as well as the functions φ̃i(x) (i = 2, 4) and ψ̃j(x) (j =
1, 3, 5) defined in Eqs. (22) represent the independent nodal variables or de-
grees of freedom of the rod spectral finite element. It can be seen that in the
current formulation the rod element has as many as 6 degrees of freedom in
a single node. This number of independent nodal variables may be reduced,
however, by taking into account the zero traction condition (16) rewritten
here:

σrr(x, r) = τxr(x, r) = 0, for 0 ≤ x ≤ l, r = a =
d

2
(23)

where now l denotes the length and d is the diameter of the rod spectral finite
element – see Fig. 1.

Based on the form of the displacement field given by Eqs. (22) the displace-
ment fields for various one-mode, two-mode and other multi-mode rod theories
can be built. Additionally the use of Eqs. (23) representing the zero traction
conditions on the lateral boundaries of the rod element allows one to enrich
the displacement fields by some additional higher order terms. However, in
most cases the resulting set of two differential equations is very complicated
and cannot be solved analytically.

This problem can be avoided by a simple mathematical substitution thanks to
which the zeroth order terms for both displacement components ux and ur can
be represented as sums of all order terms. In the current case this condition
takes the following form – for clarity and simplicity of the presentation the
arguments x, r will be omitted hereinafter:

ūx = ũx − φ2 − φ4, φ2 = −φ̃2 a
2, φ4 = −φ̃4 a

4

ψ1 = ψ̃1 − ψ3 − ψ5, ψ3 = −φ̃3 a
2, ψ5 = −ψ̃5 a

4
(24)

Taking into account Eqs. (24) a new form of the displacement field of a one-
dimensional rod spectral finite element for analysis of propagation of elastic
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longitudinal waves can be expressed as:

ux = ūx + φ2

[

1−
(

r

a

)2
]

+ φ4

[

1−
(

r

a

)4
]

ur = ψ1 r + ψ3

[

1−
(

r

a

)2
]

r + ψ5

[

1−
(

r

a

)4
]

r

(25)

Particular theories of rod symmetric behaviour known from the literature can
be easily obtained based on Eqs. (23) and Eqs. (25). Different rod theories
can be associated with different forms of the functions φi (i = 2, 4) and ψj
(j = 1, 3, 5). It is very convenient to present them in the following manner:

• elementary single-mode theory:

φ2 = φ4 = ψ1 = ψ3 = ψ5 = 0 (26)
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elementary single-mode theory

Fig. 5. Dispersion curve for the velocity ratio cg/cp for the elementary single-mode
theory of rods (cl = 6.3 km/s, ct = 3.2 km/s).

• single-mode Love theory (Love [51]):

φ2 = φ4 = ψ1 = ψ3 = ψ5 = 0 (27)

with an additional equation resulting from the assumption about the cou-
pling between the longitudinal velocity u̇x and the transverse velocity u̇r
through the Poisson’s ratio effect ǫ̇rr = −ν ǫ̇xx influencing rod kinetic en-
ergy:

u̇r = −ν r du̇x
dx
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Fig. 6. Dispersion curve for the velocity ratio cg/cp for the single-mode Love theory
of rods (cl = 6.3 km/s, ct = 3.2 km/s).

• two-mode Mindlin-Herrmann theory (Mindlin and Herrmann [61]):

φ2 = φ4 = ψ3 = ψ5 = 0 (28)
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two-mode Mindlin-Herrmann theory

Fig. 7. Dispersion curve for the velocity ratio cg/cp for the two-mode Mindlin-Her-
rmann theory of rods (cl = 6.3 km/s, ct = 3.2 km/s).

• higher order two-mode theory (authors):

φ2 =
a2

2

dψ1

dx
, ψ3 =

µ+ λ

2µ+ λ
ψ1 +

λ

2 (2µ+ λ)

dūx

dx

φ4 = ψ5 = 0

(29)
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Fig. 8. Dispersion curve for the velocity ratio cg/cp for the higher order two-mode
theory of rods (cl = 6.3 km/s, ct = 3.2 km/s).

• three-mode theory (Doyle [5]):

φ4 = ψ3 = ψ5 = 0 (30)
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Fig. 9. Dispersion curve for the velocity ratio cg/cp for the three-mode theory of
rods (cl = 6.3 km/s, ct = 3.2 km/s).

• higher order three-mode theory (authors):

φ4 =
a2

4

(

dψ1

dx
− 1

2
φ2

)

, ψ3 =
µ+ λ

2µ+ λ
ψ1 +

λ

2 (2µ+ λ)

dūx

dx

ψ5 = 0

(31)
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Fig. 10. Dispersion curve for the velocity ratio cg/cp for the higher order three-mode
theory of rods (cl = 6.3 km/s, ct = 3.2 km/s).

• four-mode theory (Anderson [42]):

φ4 = ψ5 = 0 (32)
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Fig. 11. Dispersion curve for the velocity ratio cg/cp for the four-mode theory of
rods (cl = 6.3 km/s, ct = 3.2 km/s).

• higher order four-mode theory (authors):

φ4 =
a2

4

(

dψ1

dx
− 1

2
φ2

)

ψ5 =
µ+ λ

2 (2µ+ λ)
ψ1 −

1

2
ψ3 +

λ

4 (2µ+ λ)

dūx

dx

(33)
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Fig. 12. Dispersion curve for the velocity ratio cg/cp for the higher order four-mode
theory of rods (cl = 6.3 km/s, ct = 3.2 km/s).

It should be stressed out that the physical meaning of the higher order terms
φi (i = 2, 4) and ψj (j = 3, 5) must be always connected together with the form
of a particular displacement field under consideration and results from certain
mathematical manipulations that influence it. In the current approach these
terms express higher order corrections to the initially assumed distributions
of the longitudinal and transverse displacement components.

3.3 Dispersion curves

Dispersion curves for a particular rod theory carry very important information
about certain frequency characteristics of the theory, but most of all the range
of its application and agreement with the Pochhammer analytical solution. In
the case of the displacement fields presented in the previous section and asso-
ciated with the different rod theories the dispersion curves can be evaluated
based on a very simple procedure.

In a first step it is necessary to determine equations of motion associated with
the rod theory under consideration and this can be easily achieved by the
use of Hamilton’s principle. Based on the given displacement field the virtual
workW related to deformation and motion of a rod structural element may be
expressed in terms of its strain energy U , kinetic energy T as well as the work
of some external forces F . Application of Hamilton’s principle at this point
leads to a set of equations of motion that are derived for each component of
the displacement field, as presented by Doyle in [5].
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In the following step propagation of harmonic waves within a rod structural
element is assumed. This helps to transform the equations of motion from a
set of partial differential equations, defined in the time domain for each dis-
placement component, to a set of linear homogeneous equations defined in the
frequency domain but for the amplitudes of each displacement component.
This system can be solved only then when its determinant vanishes, which
leads directly to a characteristic polynomial equation. The roots of the char-
acteristic polynomial equation define dispersion relations between particular
modes of harmonic waves that can propagate within the rod, the wave number
k and the angular frequency ω of these waves.

The dispersion curves for each rod theory discussed in this paper were obtained
by use of the Mathematica package [62] that was applied for all required ana-
lytical manipulations, while for necessary numerical calculations related with
evaluation of the dispersion curves the authors employed the Matlab package
[55].

The above mentioned procedure is discussed here in more details for the two-
mode Mindlin-Herrmann theory of rod behaviour from the previous section
of the paper. In the case of the two-mode Mindlin-Herrmann theory taking
into account Eqs. (25) as well as the relations given by Eqs. (28) leads to the
displacement field in the following simple form:

ux = ūx

ur = ψ1 r
(34)

for which the strain energy U and the kinetic energy T can be evaluated from:

T =
1

2

∫∫∫

V
ρT̃dV, U =

1

2

∫∫∫

V
ŨdV (35)

where ρ is the rod material density and V denotes the volume of the rod:

T̃ =

(

∂ūx

∂t

)2

+ r2
(

∂ψ1

∂t

)2

Ũ = (λ+ 2µ)

(

∂ūx

∂x

)2

+ r2
(

∂ψ1

∂x

)2

+ 4λ
∂ūx

∂x
ψ1 + 4 (λ+ µ)ψ2

1

(36)

The application of Hamilton’s principle and integration by parts of Eqs. (35)
leads to equations of motion associated with the two-mode Mindlin-Herrman
theory of rod behaviour. These equations can written as a set of two following
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partial differential equations:

ρ
∂2ūx

∂t2
= (λ+ 2µ)

∂2ūx

∂x2
+ 2λ

∂ψ1

∂x

a2ρ
∂2ψ1

∂t2
= a2µ

∂2ψ1

∂x2
− 4λ

∂ūx

∂x
− 8 (λ+ µ)ψ1

(37)

The equations (37) describe motion of rod structural elements according to
the two-mode Mindlin-Herrmann theory and couple spacial changes in the
displacement components ūx and ψ1 with changes in time t. However, in order
to obtain the dispersion curves, which express changes in the phase cp and
group cg velocities as a function of the angular frequency ω or the frequency
f = ω

2π
, for the two modes of elastic longitudinal waves associated with the

Mindlin-Herrmann theory of rods, the equations of motion (37) must be trans-
formed from the time domain into the frequency domain. For that purpose it
is convenient to assumed that the displacement components ūx and ψ1 can be
expressed as solutions of the equations of motion:

ūx = 〈ūx〉 exp [−i (kx− ωt)]

ψ1 = 〈ψ1〉 exp [−i (kx− ωt)]

(38)

where i =
√
−1 is the imaginary unit and ω and k denote the angular frequency

and the wave number, respectively.

A system of two linear homogeneous equations can be obtained for each har-
monic amplitude component 〈ūx〉 and 〈ψ1〉 by simple substitution of Eq. (38)
into Eq. (37) and some simplifications:

{

ρ ω2 − k2 (λ+ 2µ)
}

〈ūx〉 −
{

2λ ik
}

〈ψ1〉 = 0

{

4λ ik
}

〈ūx〉 −
{

8λ+ (8 + a2k2)µ− a2ρ ω2
}

〈ψ1〉 = 0

(39)

This system has a non-trivial solution only then when its determinant vanishes,
which leads to a characteristic polynomial equation associated with the current
problem:

µ (λ+ 2µ) a2k4 + (a2ρ ω2 − 8 (λ+ µ)) ρ ω2 +

+ (8µ (3λ+ 2µ)− (λ+ 3µ) a2ρ ω2) k2 = 0
(40)

being the 4-th order polynomial equation with respect to the wave number k
and being a function of the angular frequency ω. This characteristic polynomial
equation has 2 real and positive roots that are related with the two modes of
elastic longitudinal waves that can propagate within a rod structural element
and allowed by the two-mode Mindlin-Herrmann theory. These roots can be
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calculated numerically for any chosen value of the angular frequency ω and
thanks to the obtained relation k = k(ω) the phase velocity cp =

ω
k
as well as

the group velocity cg =
dω
dk

can be easily calculated and plotted, as presented
in Fig. 7.

Exactly the same procedure was used in order to calculate the remaining dis-
persion curves associated with the other rod theories presented and discussed
in the previous section of the paper.

3.4 Comparison of rod theories

It can be expected that various rod theories known from the literature and
employed to study propagation of elastic longitudinal waves in rod structural
elements agree with the Pochhammer analytical solution within a limited fre-
quency range. Depending on the rod theory this frequency range is different
and may cover propagation of one, two or even more wave modes. For the rod
theories discussed in the previous section of this paper this is very well seen in
Figs. 5-12, which present dispersion curves for the ratio of the group velocity
cg to the phase velocity cp.

It is very well seen from Figs. 5-12 that the agreement between the Pochham-
mer analytical solution and particular rod theories increases with the number
of additional higher modes used by the theories. It should be mentioned that
for the four-mode theories the dispersion curve for the fourth wave mode is
not observable and lies beyond the investigated frequency range.

It is interesting to note that the additional modes have the greatest influence
on the behaviour of the dispersion curves related with propagation of the fun-
damental wave mode and within the frequency range up to the first cut-off
frequency. It can be explained by the fact that the behaviour of the fundamen-
tal mode within this frequency range is described by all degrees of freedom
used by different rod theories, while above it the same number of degrees of
freedom is available to describe the behaviour of not only the fundamental,
but also all higher wave modes.

It should be noticed that for all higher order rod theories investigated (Love
in Fig. 6, two-mode in Fig. 8, three-mode in Fig. 10, four-mode in Fig. 12) the
agreement between the dispersion curves from the Pochhammer analytical
solution and the dispersion curves obtained from the rod theories is much
better than in the case of ordinary higher-mode theories (elementary in Fig.
5, two-mode Mindlin-Herrmann in Fig. 7, three-mode in Fig. 9 and four-mode
in Fig. 11).

The applicability of the higher order three and four-mode rod theories extends
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also to the frequency range that covers the first and the second cut-off fre-
quency, respectively. The reason for that becomes obvious if one refers back
to the zero-traction boundary conditions expressed by Eqs. 8. The fulfilment
of these conditions allows one to enrich the displacement fields of higher order
theories by two higher order terms making the obtained solution closer to the
Pochhammer analytical solution. These higher order terms may be thought
of as being equivalent to two additional but dependent degrees of freedom.
However, the zero-traction boundary conditions are not fulfilled for ordinary
higher-mode theories, although the theories make use of similar higher order
terms in their displacement fields. The influence of the higher order terms
is especially well illustrated in the case of the higher order two-mode theory
presented in Fig. 8 and the three and four-mode theories presented in Fig. 9
and Fig. 11 in the frequency range up to the first cut-off frequency.
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Fig. 13. Relative errors for various rod theories measured against Pochhammer
analytical solution for the first propagation mode (cl = 6.3 km/s, ct = 3.2 km/s).

It should be understood that the usefulness of a particular rod theory to study
various wave propagation problems in rod structural elements depends most
of all on the frequency range of interest. For that reason even the lower-mode
theories (elementary or Love) can be successfully applied in all such cases,
where the bandwidth of excitation is narrow and the excitation frequencies
are low. At the same time the higher-mode theories or higher order theories
can be used for much wider bandwidths of high frequency excitations. It can
be noticed from Figs. 5-12, however, that even higher order and higher-mode
theories discussed in this paper are applicable for the excitation frequencies
slightly above the first cut-off frequency. For the higher order four-mode theory
this frequency range covers also the second cut-off frequency and in the case
of the aluminium rod under investigation can be estimated as 5.0 MHz·mm.

Changes in the relative error δ are illustrated in Fig. 13 as a function of the
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frequency parameter fd for each rod theory discussed in the paper calculated
against the Pochhammer analytical solution for the fundamental propagation
mode. This relative error was evaluated based on the appropriate ratios of the
group velocity cg and the phase velocity cp as:

δ =
(

c1

c2
− 1

)

× 100% (41)

where c1 denotes the velocity ratio cg
cp

obtained by the use of a selected rod

theory, while c2 refers to the velocity ratio cg
cp

obtained from the Pochhammer

analytical solution.

According to the results presented in Fig. 13 it can be found out that in
the case of the aluminium rod under consideration the elementary and Love
theories of rod behaviour can be practically used up to 1.4 MHz·mm and 1.9
MHz·mm, respectively. This bandwidth for applications of the theories ensures
that the relative error δ, between the results based on the theories and the
Pochhammer analytical solution stays below 5%. In a similar manner it can be
found out that for the two-mode Mindlin-Herrmann theory, the higher order
two-mode and the three-mode theories the appropriate values of the frequency
parameters are 1.7 MHz·mm, 3.5 MHz·mm and 2.0 MHz·mm. It is worth to
point out that the relative error δ for these rod theories increases greatly with
an increase in the frequency parameter fd and has its maximum value at
the first cut-off frequency denoted as point B in Fig. 13. After this point the
relative error δ decreases.

For the four-mode as well as higher order three and four-mode rod theories
the relative error δ never reaches the value of 5% within the frequency range
assumed. The greatest relative error δ equal to 4% is associated with the
use of the four-mode theory, while in the case of the higher order three and
four-mode theories the values of the relative error δ are around 3% and 0.1%,
respectively.

In general, it can be said that within the investigated frequency range all higher
order theories give better results than equivalent ordinary theories, therefore
in order to ensure low levels of modelling errors it should be recommended to
employ rather higher order lower-mode theories of rod behaviour than ordinary
higher-mode theories.

4 Conclusions

This paper presents results of analytical and numerical investigation and com-
parison of different theories that are widely used in spectral finite element
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modelling of rod behaviour associated with propagation of symmetric longitu-
dinal waves. This analysis comprised various single, two-mode and three-mode
theories including the elementary, classical Love and Mindlin-Herrmann ap-
proaches known from the literature as well as new two, three and four-mode
theories proposed by the authors. Appropriate dispersion curves associated
with each theory, obtained by the use of the Hamilton’s principle, have been
presented and discussed in the paper.

As expected the investigated rod theories employed to study propagation of
elastic longitudinal waves in rod structural elements show a good agreement
with the Pochhammer analytical solution within different and limited fre-
quency ranges. Depending on the theory this frequency range varies and may
cover propagation of one, two or even more wave modes. The investigation
programme carried out by the authors showed major differences and similar-
ities between the theories and great attention has been paid on properties,
limitations as well as difficulties associated with the use of the theories.
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Sańchez-Sesma: The spectral element method for elastic wave equations
– Application to 2-D and 3-D seismic problems. International Journal
for Numerical Methods in Engineering, 45, 1139-1164, 1999.
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