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Problems faced by designers of such turbines are 
associated with very small volumetric flow rate of 
working medium. It leads to small values of height of 
flow-part blades (hence to increased loss of flow rate) and  
high values of rotor speed, namely from a few dozen to 
over a hundred thousand rpm, usually. 

In all the considered variants the power plants operated 
on the Solkatherm®SES36 working medium. Calulations 
were performed in compliance with the power plant 
schematic diagram shown in Fig. 1, for four values of 
the cycle’s thermal power: 25 kW, 50 kW, 75 kW and 
100 kW. Particular variants, depending on a heat power 
value, differred from each other only by value of working 
medium flow rate, and  its parameters at turbine inlet,  as 
well as  pressure behind the turbine were the same for all 
the considered cases:

-the pressure at turbine inlet, 		  p0 = 1464 kPa,
-the temperature at turbine inlet, 	 t0 = 140 0C,
-the pressure behind the turbine, 	 p2 = 189 kPa.
Within the frame of performed design analyses the 

following types of microturbines were taken into account: 

•	single-stage axial-flow turbine,
•	two-stage axial-flow turbine,
•	four-stage axial-flow turbine,
•	single-stage radial-flow turbine,
•	single-stage radial-axial-flow turbine.
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Abstract

Fig. 1. Schematic diagram of micro-power plant cycle

Introduction

In the subject-matter literature steam micro-turbines 
are considered to be such devices which produce output 
power of the order of a few kW or even W. For last years  
greater and greater interest paid to such machines and 
their dynamic development  has been observed.  Hybrid  
co-generating systems, either three-generating or 
combined gas-steam ones can be most often met  
[1-3,10-13,16,18-21,24,25,27]. Steam turbines may find 
application to micro-power plants which co-generate 
electric power and heat. A micro-power plant based on 
water steam turbine, described in [14], can serve as an 
example. The system delivers electric power amounting 
from 0,5k W to 4,6 kW as well as heat power - from  
2 kW to 25 kW. In the literature can be met examples 
of steam micro-turbines of much lower values of output 
power, built with the use of the MEMS technology 
(Micro-Electro Mechanical System) [6÷8]. Apart 
from the traditional medium, i.e.water vapour, also  
low-boiling media, as a rule organic ones, are taken into 
consideration.  In this case the Organic Rankine Cycle 
(ORC) is dealt with.  For many years such installations 
of electric power output of the order of several hundred 
kW or MW have been used in power plants based on 
geothermal sources  [4,5,17,26]. On the market are 
already available the co-generating systems working 
on organic media, e.g.  the power plant of 300÷600 kW 
electric power  and 1500÷2800 kW heat power, or that 
of 200÷1000 kW electric power and 1000÷6000 kW 
heat power [9]. However only a few examples can be 
found of ORC installations of output power smaller than  
100 kW,  which operate in co-generating systems (e.g. the  
ORC-CHP system intended for biomass combustion [23], 
or the systems generating: 72 kW [22] or 30 kW [15] 
of electric power). Under research are: a turbine set of  
5÷12 kW electric power at 70÷115ºC inlet temperature 
of working medium (R134a, R245fa, R22, R6xx, 
R7xx)  [15], and  a power plant working on n-pentane 
and developing 1.5÷3 kW power (at 90÷100ºC vapour 
temperature) [21].
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Fig. 2. Examples of the considered constructional  types of micro-turbines:  
a) single-stage axial-flow turbine, b) two-stage axial-flow turbine,  

c) radial-axial-flow turbine,  d) radial-flow turbine

Fig. 3. Examples of flow part of micro-turbines:  a) single-stage axial-flow 
turbine,  b) two-stage axial-flow turbine
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Fig. 4. Examples of design characteristics of single-stage axial –flow turbine: turbine output power in function of velocity ratio for three assumed values of 
the angle α1, turbine output power in function of velocity ratio for three assumed values of the reactivity ρ, rotor speed in function of velocity ratio for three 

assumed values of the reactivityρ,  a) plant’s heat power – 100 kW,  b) plant’s heat power – 75 kW
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Examples of the considered design solutions are presented 
in Fig. 2. For all the variants preliminary optimization of 
main design parameters was performed and appropriate 
blade profiles were selected. Examples of the flow part of 
single-stage and two-stage axial-flow turbines are given 
in Fig. 3. 

Results of design analyses of micro-turbines 
Calculations of flow-part of turbine were performed 

by assuming different sets of values of main design 
parameters such as: velocity ratio, reactivity and 
outlet angle of guide vanes grid. Examples of design 
characteristics are presented in Fig. 4 for plant’s heat 
power values: 100 kW  and 75 kW, and in Fig. 5 for plant’s 
heat power values: 50kW and 25kW. For the greatest heat 
power value (100 kW) of the considered co-generating 
systems, the electric power value of ~11,5 kW can be 
obtained  at the rotor speed of about 45000 rpm. For the 
smallest considered heat power value (25 kW) the above 
mentioned quantities  amount to about 3.35 kW and 80000 
rpm, respectively.

Possible elaboration of  series of types of 
turbines which would be suitable for the power 
range of  25 kW ÷ 100 kW and  of  the same design 
and similar gabarites, has been also considered. 
 It was decided that all turbines, regardless of their 
power, would be built of the same rotor and the only 
difference would consist in adjusting the feeding arc of 
vane blades grid, respectively. It was assumed that the 
100 kW turbine would operate with full feeding arc, hence 

turbines of smaller power values would operate with 
smaller feeding arcs, respectively. Examples of design 
characteristics of single-stage axial-flow turbines working 
with partial feeding are presented in Fig. 6. Application 
of feeding arc makes that power values of turbines 
working with partial feeding are smaller than those of  
turbines with full feeding  (compare Fig.4 and Fig.5 with 
Fig.6), however in the variants of smaller power values 
rotor speed values were significantly lower, e.g. for   
the plant’s heat power of 25 kW, when partial feeding 
has been applied, the turbine’s electric power decreased 
from  3,35 kW to 2.65 kW, but with accompanying drop 
of rotor speed from about  80000 rpm to about 40000 rpm. 
Significantly lower production costs would be reached 
as a result of standardization, application of rotors of 
the same design to all variants, and possible selection of  
a generator intended for lower rotational speeds (definite 
influence on price of turbine set).            

Similar design calculations were carried out for the 
remaining constructional types of  turbines in question; 
their results are presented in Tab. 1. For the presented 
solutions suitable electric generators were selected; their 
main particulars are attached also in Tab. 1. 

For the variant of 100 kW heat power of the power 
plant the largest electric power values (~ 12,3 kW) were 
obtained in the case of application of the radial turbine 
or two-stage axial-flow turbine. In most considered cases 
the radial-flow turbine as well as two-stage axial-flow 
turbine turned out to be the most profitable as regards the 
obtained electric power value. From this point of view the 
radial–axial–flow turbine appeared the worst. 
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Fig. 5. Examples of design characteristics of single-stage axial-flow turbine:  turbine output power in function of velocity ratio for three assumed values of 
the reactivity ρ, rotor speed in function of velocity ratio for three assumed values of the reactivity ρ, 

   a) plant’s heat power –  50 kW,        b) plant’s heat power –  25 kW
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Summary
Calculations of  a few dozen of variants of turbines 

of various constructional types and different values of 
main design parameters, were performed.  The following 
turbines were taken into consideration: single-stage 
axial-flow turbines, two-stage axial-flow turbines, 
radial-flow turbines and radial-axial-flow turbines. It 
was demonstrated that in the case of co-generating 
micro-power plant  working with low-boiling medium (in 
accordance with  the ORC principle) the following electric 
power values are possible to be obtained depending on   
a heat power value of the system:

-10,4 kW ÷ 12,8 kW	 (for 100 kW heat power),
 -7,6 kW  ÷ 9,4 kW	(for 75 kW heat power),
 -5,0 kW  ÷ 6,1 kW	(for 50 kW heat power),
  -2,4 kW ÷ 3,3 kW	(for 25 kW heat power).
Rotor speed values of the considered micro-turbines 

were relatively high as they amounted to from 21000 
rpm to 134 000 rpm depending on working medium mass 
flow rate, constructional type of turbine and choice of its 
main design parameters. For many variants one managed 
to select suitable electric generators. However, because 
of high rotational speeds, novel innovative design, 
material and technological solutions should be applied 
in developing power plants of the kind. 
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             Fig. 6. Examples of design characteristics of single-stage axial-flow turbine with partial feeding: turbine output power in function of velocity ratio 
for three assumed values of the reactivity ρ,  rotor speed in function of velocity ratio for three assumed values of the reactivity ρ

plant’s heat power – 75 kW,  feeding arc of ~ 0,75
plant’s heat power – 50 kW,  feeding arc of ~ 0,50
plant’s heat power – 25 kW,  feeding arc of ~ 0,25
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No. Type of turbine Particular Unit

Power plant 
of

 100 kW heat 
power 

Power plant of
 75 kW heat power

Power plant of
50 kW heat power

Power plant of
 25 kW heat power

Full feeding Partial feeding Full feeding Partial feeding Full feeding Partial feeding

1 single-stage 
axial-flow

Average diameter [m] 0,055 0,048 0,055 0,035 0,055 0,025 0,055

Length of rotor blade [m] 0,0058 0,005 0,0058 0,0037 0,0058 0,0027 0,0058

Power of turbine [W] 11688 8768 7586 5826 5098 3248 2577

Rotational speed [rpm] 40000 46000 40000 63000 40000 76000 40000

Length of generator [m] 0,12 0,1 0,1 0,085 0,10 0,085 0,085

Outer diameter of generator’s stator [m] 0,06 0,055 0,060 0,055 0,055 0,055 0,055

2 two-stage 
axial-flow

Average diameter [m] 0,04 0,035 0,04 0,029 0,04 0,02 0,04

Length of rotor blade (1st stage) [m] 0,0042 0,0036 0,0042 0,0029 0,0042 0,0021 0,0042

Length of rotor blade (2nd stage) [m] 0,0046 0,0038 0,0046 0,0031 0,0046 0,0023 0,0046

Power of turbine [W] 12273 9241 8756 6167 5794 3102 2927

Rotational speed [rpm] 33600 38500 33600 47000 33600 67000 33600

Length of generator [m] 0,126 0,12 0,12 0,100 0,0120 0,085 0,085

Outer diameter of generator’s stator [m] 0,07 0,060 0,060 0,055 0,055 0,055 0,055

3 radial-axial-
flow

Outer diameter of rotor blades grid [m] 0,0517 0,0402 - 0,0324 - 0,0224 -

Power of turbine [W] 10426 7643 - 4974 - 2367 -

Rotational speed [rpm] 62081 78846 - 96566 Max. catalogue 
value:  80 000

136565

Length of generator [m] 0,12 0,1 - - -

Outer diameter of generator’s stator [m] 0,055 0,055 - - -

4 radial-flow

Outer diameter of rotor blades grid, d1 [m] 0,061 0,053 - 0,043 - 0,03 -

Power of turbine [W] 12306 9231 - 6154 - 3077 -

Rotational speed [rpm] 49076 56663 - 69397 - 98143

Length of generator [m] 0,12 0,1 - 0,085 - -

Outer diameter of generator’s stator [m] 0,06 0,055 - 0,055 - -

Tab. 1. Specification of main particulars of turbo-generators 
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