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The paper continues the analysis of vacuum Rabi oscillations we started in part I �Phys. Rev. A 79, 033836
�2009��. Here we concentrate on experimental consequences for cavity QED of two different classes of
representations of harmonic-oscillator Lie algebras. The zero-temperature master equation, derived in part I for
irreducible representations of the algebra, is reformulated in a reducible representation that models electro-
magnetic fields by a gas of harmonic-oscillator wave packets. The representation is known to introduce
automatic regularizations that in irreducible representations would have to be justified by ad hoc arguments.
Predictions based on this representation are characterized in thermodynamic limit by a single parameter �,
responsible for collapses and revivals of Rabi oscillations in exact vacuum. Collapses and revivals disappear in
the limit �→�. Observation of a finite � would mean that cavity quantum fields are described by a non-
Wightmanian theory, where vacuum states are zero-temperature Bose-Einstein condensates of a N-particle
bosonic oscillator gas and, thus, are nonunique. The data collected in the experiment of Brune et al. �Phys. Rev.
Lett. 76, 1800 �1996�� are consistent with any ��400.
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I. INTRODUCTION

The first part of this work �1� was devoted to the problem
of understanding the structure and origin of decoherences
that occur if a single atom propagates through an initially
empty optical cavity. We compared theoretical predictions
with the most precise available data �2� and showed that
some of the controversial issues discussed earlier in the lit-
erature can be resolved if one correctly takes into account the
Gaussian structure of the cavity mode and the fact that the
cavity was open.

As opposed to standard cavity QED approaches, modeling
energy losses by jumps between bare energy eigenstates
�3,4�, we based our analysis on Markovian master equations
whose Davies operators describe jumps between dressed
states. Our approach is consistent with the general formalism
of Davies �5,6� or the more recent works of Scala et al.
�7–9�, where losses due to interaction with environment lead
to transitions between eigenstates of the system Hamiltonian
�guaranteeing stationarity of the asymptotic state at T
�0 K�. What is important is that the choice of dressed states
simplifies computations and naturally incorporates long-
wavelength transitions within a single dressed-state mani-
fold, an effect expected in open cavities. In order to derive
the model from a microscopic level, we assumed the system-
reservoir interaction of the form ���a+a†�+�a†a� � B,
where �, � are parameters.

The part proportional to � �let us refer to it as the Alicki
interaction term �10�� is responsible for transitions within the
same dressed-state manifold. It simultaneously makes the
coupling between the system and the reservoir more sensi-
tive to the photon number. Perhaps, it is the latter property of
the interaction that leads to apparent underestimates of the
cavity quality factor if Q is measured with relatively strong
fields, while the actual measurements of Rabi oscillations are

performed in almost exact vacuum. The problem of Q is one
of the issues that require further experimental and theoretical
studies.

Still, the list of open questions is longer, and some of
them touch the very fundamentals of quantum-field theory.
For example, it is known that different physical systems in
general correspond to different representations of Lie alge-
bras. Fields are quantized by means of harmonic-oscillator
Lie algebras, but can the cavity QED data tell us something
about their representations? It turns out that there exists a
class of physically motivated representations whose predic-
tions are characterized, in certain thermodynamic limit, by a
single parameter � that influences vacuum Rabi oscillations.

Determination of � is, in principle, within the reach of
cavity QED experiments. The first estimates on �, ��200,
were given in �11�, but the approach to decoherence was not
in that paper based on systematically derived master equa-
tions. As such, it was not reliable, a fact that motivated the
research project whose partial results were reported in �1�
and now completed in the present paper. Basing the analysis
of decoherence on the results from �1�, we will show that the
data from the experiment of Brune et al. �2� are consistent
with any ��400. We will also show that a finite value of �
implies collapses and revivals of Rabi oscillation even in
exact vacuum. The first revival time is tr= ��
+����−1��TRabi, where TRabi is the period of Rabi oscillation.

Observation of the revival in exact vacuum could be a
proof of a non-Wightmanian nature of cavity QED. Concep-
tual consequences of such a finding might be enormous
but—paradoxically—implications for agreement between
standard theory and experiment could be smaller from what
one might expect at a first glance. The reason is the corre-
spondence principle stating that the weak law of large num-
bers, N→� with Z=const, maps theories based on our re-
ducible representations into regularized forms of those based
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on irreducible representations. The limiting forms are already
regularized, that is, the automatic cutoffs occur in exactly
those places where in standard approaches one puts them by
hand. This is a strong argument in favor of field quantization
in terms of reducible representations of harmonic-oscillator
Lie algebras.

The paper is organized as follows. In Sec. II we discuss
the physical background of the reducible representation in
question. In Sec. III we show how to decompose the reduc-
ible representation into blocks that allow us to perform cal-
culations, in each block separately, by means of the methods
known from the standard formalism. In Sec. IV we describe
in detail the block structure of dressed states. We show that
the number of dressed states in a given block is s+2, where
s is a parameter that characterizes the block. In Sec. V we
generalize to the reducible representation the derivation of an
appropriate master equation; the strategy is the same as in
�1�, and only the representation of the Lie algebra is differ-
ent. As opposed to �1�, we concentrate on zero-temperature
master equation. Therefore, we had to supplement this
section by a technical appendix on T=0 irreducible-
representation solutions �given at the end of the paper�. An
extension to T�0 would be immediate, but it would simul-
taneously introduce a number of irrelevant technical details,
thus obscuring the main message of the paper. In Sec. VI we
discuss energy losses and compare the reducible treatment
with the one based on general irreducible representations.
The goal of this section is to give an alternative proof of
necessity of renormalizing the decay parameters occurring in
the master equations before one compares theory with ex-
periment. Section VII contains the main result of the paper:
experiments can, in principle, discriminate between irreduc-
ible and reducible representations, and we show how to es-
timate the relevant experimental parameters.

II. PRELIMINARIES

In order to understand the wider context of the issue, let
us return to the Hamiltonian we employed in �1�,

H = ���

2
�3 + �a†a + q��−a† + �+a��

+ ���a + a†� + �a†a�B + HR. �1�

�3, �	= ��1	 i�2� /2 are the Pauli matrices, a is the usual
harmonic-oscillator annihilation operator, the coupling pa-
rameter q is, for simplicity, assumed to be real, and B and HR
are operators whose explicit form is irrelevant since they
correspond to the reservoir. It is known, at least since the
work of Tavis and Cummings �12�, that Eq. �1� is the sim-
plest case of a more abstract Hamiltonian,

H = ���J3 + �a†a + q�J−a† + J+a��

+ ���a + a†� + �a†a�B + HR, �2�

where J3, J	 are elements of the Lie-algebra su�2�,

�J3,J	� = 	 J	, �3�

�J−,J+� = 2J3. �4�

Replacing a single two-level atom by a system of several
two-level atoms, one finds that J3, J	 are given by a higher-
spin reducible representation of su�2�.

From the point of view of a Lie-algebraic purist, Hamil-
tonian �2� mixes abstract elements J3, J	 of su�2� with a
concrete representation of another Lie algebra. Indeed, the
operators a−=a, a+=a†, a3=a†a, and a0=1 are a representa-
tion of the one-dimensional harmonic-oscillator Lie algebra
�13�, ho�1�,

�a−,a+� = a0, �5�

�a	,a0� = �a3,a0� = 0, �6�

�a3,a	� = 	 a	. �7�

The abstract Lie-algebraic generalization of Eq. �1� is thus
�14�

H = ���J3 + �a3 + q�J−a+ + J+a−��

+ ���a− + a+� + �a3�B + HR. �8�

The simplest example of a representation of Eq. �8� is a
single spin-1/2 particle interacting with a single one-
dimensional harmonic oscillator �both su�2� and ho�1� are
then given by irreducible representations�. The Tavis-
Cummings system is formally equivalent to several spin-1/2
systems interacting with a single harmonic oscillator �su�2�
is then given by a reducible representation incorporating dif-
ferent spins, but ho�1� is still represented irreducibly�. The
atom-field system we consider in the present paper is dual to
the Tavis-Cummings model: its formal equivalent is a single
spin-1/2 system interacting with several harmonic-oscillator
wave packets.

The reason for reducibility of the N-atom representation
of su�2� discussed in �12� is mathematically very deep: mul-
tiatomic Hilbert spaces are described by tensor products of
single-atom representations, but tensor products of irreduc-
ible representations of su�2� are reducible. So, physically, it
is the multiparticle structure of the N-atom system that forces
the representation of su�2� to be reducible.

Now, for a quantum optician a cavity quantum field is an
ensemble of many harmonic oscillators. The relevant alge-
braic structure is given by the multiparticle harmonic-
oscillator Lie-algebra ho�m�, with m=� not excluded,

�a−�k�,a+�k��� = 
k,k�a0�k� , �9�

�a	�k�,a0�k��� = �a3�k�,a0�k��� = 0, �10�

�a3�k�,a	�k��� = 	 
k,k�a	�k� . �11�

The standard representation employed in quantum optics has
the form typical of irreducible representations, with a0�k�
=1. But, in light of what we have written above, a multipar-
ticle system should, in general, be represented reducibly. So,
is a0�k�=1 really obvious? In what follows we will see that
various regularizations that plague quantum-field theoretic
calculations may indicate something exactly opposite. In our
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opinion the issue is essential for a correct formulation of
field quantization and is, in principle, testable in experiments
with vacuum Rabi oscillations. Let us explain this viewpoint
in more detail.

There is a simple argument showing that if the harmonic
oscillators forming the field are described by wave packets,
the resulting representation of the harmonic-oscillator alge-
bra is reducible. In order to show it, let us return to the
Alicki-type Hamiltonian H�̂=a†a � ��̂ �in fact, discussed al-
ready in �15��, where �̂=���	�
��	 is some operator. H�̂

acts in the Hilbert space of states 	�
=�n,��n,�	n ,�
,
spanned by the eigenvectors 	n ,�
,

H�̂	n,�
 = ��a†a	n,�
 = n��	n,�
 . �12�

Let us note that H�̂ acts effectively as the usual Hamiltonian
��a†a typical of the harmonic oscillator with frequency �,
but this is true only in the subspace spanned by 	n ,�
, with
fixed �. An important difference between ��a†a and H�̂ can
be seen if one computes the average

��	H�̂	�
 = �
n,�

n��	�n,�	2. �13�

If 	�
 is entangled, then different frequencies may be related
to different numbers of excitations. Although H�̂ describes a
single harmonic oscillator, the average looks as if we consid-
ered an ensemble of oscillators with different frequencies.
An interpretation of these facts is obvious: 	�
 is a single-
oscillator wave packet and � is not a parameter but an ei-
genvalue �a quantum number�. So the Alicki-type Hamil-
tonian describes the usual quantum harmonic oscillator but
with quantized �. Quantization of � becomes more natural if
one recalls that typical �’s occurring in quantum harmonic
oscillators are functions of observables �a magnetic field or
center-of-mass position operators, say�.

Now, let us rewrite H�̂ as follows:

H�̂ = �
�

��a†a � 	�
��	 �14�

=�
�

��a�
† a� = �

�

H�, �15�

where

a� = a � 	�
��	 , �16�

H� = ��a�
† a�. �17�

Decomposition �15� together with the fact that the eigenval-
ues of H� are n�� shows that H�̂ has many �but not all�
properties typical of a quantum-field Hamiltonian. The op-
erators a−���=a�, a+���=a�

† , a3���=a�
† a�, and a0���=1

� 	�
��	 form a representation of the harmonic-oscillator Lie
algebra,

�a−���,a+����� = 
�,��a0��� , �18�

�a	���,a0����� = �a3���,a0����� = 0, �19�

�a3���,a	����� = 	 
�,��a	��� , �20�

which is reducible since a0��� is a projector and not a mul-
tiple of the identity.

We have shown that a single-oscillator wave packet leads
to a reducible representation of ho�m�, where m is the dimen-
sion of the space spanned by the eigenvectors of �̂. Let us
make one point very clear already here: in this representa-
tion, m in ho�m� is not the number of oscillators but the
number of eigenvalues of �̂ in the one-oscillator wave
packet. In Sec. III we will show that a representation of
ho��� corresponding to N single-oscillator wave packets,
each of the oscillators existing in quantum superpositions of
all the possible frequencies, is a natural candidate for an
algebra of electromagnetic field operators.

Before we launch on detailed calculations, let us briefly
explain why 1�N�� reducible representations of the
harmonic-oscillator Lie algebra may be precisely what is
needed for a well defined quantum field theory. Let us con-
sider a single-oscillator Hamiltonian, but now with the
vacuum-energy term included, i.e.,

H�̂ = �
�

��

2
�a�

† a� + a�a�
† � �21�

=�
�

���a�
† a� +

1

2
a0���� . �22�

In such representations vacuum is represented by the entire
Hilbert subspace of all the states that are annihilated by all
a�. If the oscillators are bosons, the role of vacuum is played
by a zero-temperature Bose-Einstein condensate, i.e., any
state of the form

	0��
 = 	0�
 � ¯ � 	0�
 , �23�

	0�
 = �
�

�0,�	0,�
 , �24�

a�	0�
 = 0 for all � . �25�

A gas of N such noninteracting wave packets has the Hamil-
tonian

H� �̂ = �
j=1

N

H�̂
�j�, �26�

where H�̂
�j� is the Alicki-type Hamiltonian acting in the Hil-

bert space of a jth wave packet. The average energy of the
Bose-Einstein condensate �i.e., the energy of a vacuum� is

�0��	H� �̂	0��
 =
N

2 �
�

��	�0,�	2 =
ZN

2 �
�

��
�, �27�
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where Z=max��	�0,�	2
 and 
�= 	�0,�	2 /Z, lim�→� 
�=0, is
the natural ultraviolet cutoff function resulting from normal-
izability, ��	�0,�	2=1, of the condensate wave function.

The cutoff appears only because the vacuum state is
normalizable—it is hard to imagine in quantum theory a rea-
son more fundamental. However, there is a price for it:
vacuum states are in such theories nonunique �as all Bose-
Einstein condensates�. Since the existence of a unique
vacuum state is one of the Wightman axioms �16,17�, quan-
tum field theories based on this type of reducible representa-
tions of ho��� have to be non-Wightmanian. In this context it
is worth mentioning that the non-Wightmanian aspects of the
theory are not in conflict with Poincaré covariance and gauge
invariance of electrodynamics, but concrete technical forms
of these conditions are quite different from what we are ac-
customed to �see �18��.

In formula �27� we encounter the characteristic product of
two parameters, �=ZN. This single parameter will be, effec-
tively, the only free element in our reducible-representation
treatment of Rabi oscillations. Let us note that the �thermo-
dynamic� limit N→� with �=const implies shifting the cut-
off to infinity since Z→0 is equivalent to Z�→0 for all �’s,
with ��Z�=1. We will later see that although the thermody-
namic limit makes vacuum energy divergent, the limiting
form of vacuum Rabi oscillation is well defined and carries
information about the value of �.

III. REDUCIBLE REPRESENTATION
AND ITS DECOMPOSITION

INTO IRREDUCIBLE COMPONENTS

Let us assume that the electromagnetic field is a gas con-
sisting of N indefinite-frequency bosonic oscillators of the
type described in Sec. II. The basis in the N-oscillator Hilbert
space H is given by tensor products

	n�1
¯ n�N


 = 	n1,�1
 ¯ 	nN,�N
 , �28�

where the �’s belong to the set of all the frequencies allowed
by the cavity boundary conditions. The vacuum at zero tem-
perature is assumed to be the pure state,

	O� 
 = 	O
 ¯ 	O
 = �
�1,. . .,�N

O�1
¯ O�N

	0�1
¯ 0�N


 ,

�29�

	O
 = �
�

O�	0�
 , �30�

�
�

	O�	2 = 1. �31�

Taking a� in form �16�, we assume that the atom-light sys-
tem interacting with the reservoir will be described by the
N-wave-packet reducible representation of Hamiltonian �8�,
where

a− =
1

�N
�a� � I � ¯ � I + ¯ + I � ¯ � I � a�� = a��,

�32�

a+ =
1

�N
�a�

†
� I � ¯ � I + ¯ + I � ¯ � I � a�

† � = a��
† ,

�33�

a3 = a�
† a� � I � ¯ � I + ¯ + I � ¯ � I � a�

† a� = N� �,

�34�

a0 =
1

N
��1 � 	�
��	� � I � ¯ � I + ¯ + I � ¯ � I

� �1 � 	�
��	�� = I��, �35�

are a reducible representation of Lie algebra �18�–�21� and
J	, J3 are given, as in �1�, by the spin-1/2 representation of
su�2�. The physical meaning of this representation can be
inferred from the form of a3, which is the sum of number
operators of N independent harmonic-oscillator wave pack-
ets, and for N=1 it reduces to the single-oscillator wave-
packet representation from Sec. II. The representation was
introduced in the context of quantum optics in �15�. Prelimi-
nary results on its implications for Rabi oscillations can be
found in �11�.

Let us denote by H�1,. . .,�N
the subspace spanned by

	n�1
. . .n�N


. Obviously,

H = �
�1,. . .,�N

H�1,. . .,�N
. �36�

For any sequence of frequencies � j and for any �, one finds
that the subspace H�1,. . .,�N

is invariant under the action of
Eqs. �32�–�35�. The central elements a0= I�� satisfy

I��	n�1
¯ n�N


 =
s

N
	n�1

¯ n�N

 , �37�

where s is the number of occurrences of � in the sequence
�1 , . . . ,�N. As we can see, I�� is the operator of frequency of
successes, known from quantum laws of large numbers
�19–22�. Moreover, if s=0, i.e., when none of �1 , . . . ,�N
equals �, then

a��	n�1
¯ n�N


 = a��
† 	n�1

¯ n�N

 = 0. �38�

Note that there exist nontrivial states annihilated by creation
operators. In consequence, for any N+1 different frequencies
�1 , . . . ,�N+1, one finds

a��1

†
¯ a��N+1

† H = a��1
a��2

†
¯ a��N+1

† H = ¯ = a��1
¯ a��N+1

H = 0.

�39�

The full system-reservoir Hilbert space HS+R can also be
split into a direct sum of subspaces invariant under the action
of

H = ���

2
�3 + �N� � + q��−a��

† + �+a����
+ ���a�� + a��

† � + �N� ��B + HR. �40�

MARCIN WILCZEWSKI AND MAREK CZACHOR PHYSICAL REVIEW A 80, 013802 �2009�

013802-4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Indeed, let HA denote the two-dimensional Hilbert space of
atomic states, spanned by the excited and ground states, 	e

and 	g
. Then

HS+R = �
�1,. . .,�N

HA � H�1,. . .,�N
� HR, �41�

where

HHA � H�1,. . .,�N
� HR � HA � H�1,. . .,�N

� HR. �42�

The above observations, together with the known statistical
properties of the operator of frequency of successes, supple-
mented by the fact that the right side of

�a��,a��
† � = I�� �43�

reduces in HA � H�1,. . .,�N
� HR to multiplication by an ap-

propriate s /N, make calculations in our reducible represen-
tation as easy as those in the irreducible one.

It is interesting that the dynamics in each of the subspaces
HA � H�1,. . .,�N

� HR involves at most N different frequencies
even if the number of frequencies admitted by boundary con-
ditions is infinite. There are, of course, infinitely many such
subspaces, corresponding to all the possible distributions of
� j into N locations.

In �1� we assumed the dynamics starting with the initial
condition 	e ,0
�e ,0	. Its reducible analog is

��0� = 	e,O� 
�e,O� 	 = 	e
�e	 � �
�1,. . .,�N

�
�1�,. . .,�N�

O�1
¯ O�N

O
�1�
�

¯ O
�N�
� 	0�1

¯ 0�N

�0�1�

¯ 0�N�
	 . �44�

The indexing sequence in H�1,. . .,�N
uniquely determines the

parameter s. Assuming temperature T=0 and Eq. �44� as the
initial condition, the resulting master equation �derived later�
will involve only a subspace of H�1,. . .,�N

, namely, the one
spanned by the following s+2 orthonormal vectors:

	e,0�1,. . .,�N

 = 	e
	0�1

¯ 0� ¯ 0� ¯ 0�N

 = 	1
 , �45a�

	g,1�1,. . .,�N

�1� 
 = 	g
	0�1
¯ 1� ¯ 0� ¯ 0�N


 = 	2
 , �45b�

]

	g,1�1,. . .,�N

�s� 
 = 	g
	0�1
¯ 0� ¯ 1� ¯ 0�N


 = 	s + 1
 ,

�45c�

	g,0�1,. . .,�N

 = 	g
	0�1

¯ 0� ¯ 0� ¯ 0�N

 = 	s + 2
 .

�45d�

Clearly, 	g ,1�1,. . .,�N

�i� 
, i� �1, . . . ,s
, denotes the state of the
atom-field system in which the atom is in the lower state 	g
,
and out of s oscillators whose frequency is �, it is the ith
oscillator that is excited to the first energy level.

IV. DRESSED STATES IN HA‹H�1,. . .,�N

Denote by ��1,. . .,�N
the projector on HA � H�1,. . .,�N

and
by ��1,. . .,�N

the one on the �s+2�-dimensional subspace
spanned by vectors �45�. The total Hamiltonian consists of
three terms: the Jaynes-Cummings atom-field part HJC=��,
the reservoir Hamiltonian HR, and the system-reservoir inter-
action. The dressed states relevant for our problem are the
eigenstates of

��1,. . .,�N
= ���1,. . .,�N

. �46�

It is instructive to write in basis �45� the matrix ��s�kl
= �k	��1,. . .,�N

	l
,

��s� =�
�

2

q
�N

q
�N

¯

q
�N

0

q
�N

�

2
0 ¯ 0 0

q
�N

0
�

2
0 ¯ 0

] ] ] � ] ]

q
�N

0 0 ¯

�

2
0

0 0 0 0 ¯ −
�

2

� . �47�

As we can see, ��s� does not explicitly depend on the con-
crete values of frequencies that index ��1,. . .,�N

, but only on
the number s of times the resonant frequency � occurs in the
indexing sequence �1 , . . . ,�N. The eigenvalues are

�	�s� =
�

2
	 q� s

N
, �48a�

�1�s� = �2�s� = ¯ = �s−1�s� =
�

2
, �48b�

�0�s� = −
�

2
, �48c�

THEORY VERSUS …. II. DIRECT TEST OF … PHYSICAL REVIEW A 80, 013802 �2009�

013802-5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


with the corresponding orthonormal eigenvectors

	�0�s�
 =�
0

0

0

0

]

0

1

�, 	�1�s�
 =�
0

1
�2

−
1
�2

0

]

0

0

� , . . . ,

	�k�s�
 =�
0

1
�k�k + 1�

]

1
�k�k + 1�

−� k

k + 1

]

0

� , �49a�

	�s−1�s�
 =�
0

1
��s − 1�s

1
��s − 1�s

]

1
��s − 1�s

−�s − 1

s

0

� , �49b�

and

	�−�s�
 =
1

�2s�
− �s

1

]

1

0
� , 	�+�s�
 =

1
�2s�

�s

1

]

1

0
� .

�49c�

To avoid possible confusion let us remember that Eqs.
�49� define an orthonormal basis in the relevant subspace of
HA � H�1,. . .,�N

and not in the full Hilbert space H. The
dressed states are related to the bare ones �Eqs. �45�� by

	�0�s�
 = 	g,0�1,. . .,�N

 , �50a�

	�+�s�
 =
1
�2
� 1

�s
�
i=1

s

	g,1�1,. . .,�N

�i� 
 + 	e,0�1,. . .,�N

� ,

�50b�

	�−�s�
 =
1
�2
� 1

�s
�
i=1

s

	g,1�1,. . .,�N

�i� 
 − 	e,0�1,. . .,�N

� ,

�50c�

	�k�s�
 =
1

�k�k + 1�
�
i=1

k

	g,1�1,. . .,�N

�i� 


−� k

k + 1
	g,1�1,. . .,�N

�k+1� 
, k = 1, . . . ,s − 1.

�50d�

V. MASTER EQUATION AT ZERO TEMPERATURE

We are looking for a density matrix ��t�, acting in HA
� H, satisfying initial condition �44�. Since our goal is to
compute the atomic ground-state probability,

pg�t� = Tr	g
�g	��t�

= �
�1,. . .,�N

�
�1�,. . .,�N�

Tr	g
�g	��1,. . .,�N
��t���1�,. . .,�N�

= �
�1,. . .,�N

Tr	g
�g	��1,. . .,�N
��t���1,. . .,�N

= �
�1,. . .,�N

Tr	g
�g	��1,. . .,�N
��t���1,. . .,�N

, �51�

we have to derive and solve an effective master equation for
the projected density matrix

��1,. . .,�N
�t� = ��1,. . .,�N

��t���1,. . .,�N
. �52�

The Jaynes-Cummings Hamiltonian can be analogously split
into

HJC = �
�1,. . .,�N

��1,. . .,�N
H �53�

= �
�1,. . .,�N

H�1,. . .,�N
. �54�
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Each block H�1,. . .,�N
can be yet further decomposed,

H�1,. . .,�N
= H�1,. . .,�N

� + H�1,. . .,�N
� , �55�

H�1,. . .,�N
� = ��1,. . .,�N

H�1,. . .,�N
. �56�

Let P���1,. . .,�N
� denote the spectral projectors of

H�1,. . .,�N
= � �

��1,. . .,�N

��1,. . .,�N
P���1,. . .,�N

� . �57�

The spectrum of H is infinitely degenerated since each
H�1,. . .,�N

� has eigenvalues described in Sec. IV, and there are
infinitely many sequences �1 , . . . ,�N corresponding to the
same s. So let

P��� = �
��1,. . .,�N

=�

P���1,. . .,�N
� . �58�

Taking into account the system-reservoir interaction Hamil-
tonian,

AB = ���a�� + a��
† � + �N� ��B , �59�

we find that the full density matrix ��t� satisfies at T=0 K
the usual Markovian master equation �23�,

�̇ = − i��,�� + �
��0

�����A����A†��� −
1

2
�A†���A���,��+� ,

�60�

where

A��� = �
��−�=�

P���AP���� . �61�

Since

���1,. . .,�N
,�� = ���1,. . .,�N

,P���� = ���1,. . .,�N
,A� = 0,

�62�

we arrive at

�̇�1,. . .,�N
= − i���1,. . .,�N

,��1,. . .,�N
�

+ �
��0

�����A�1,. . .,�N
�����1,. . .,�N

A�1,. . .,�N

† ���

−
1

2
�A�1,. . .,�N

† ���A�1,. . .,�N
���,��1,. . .,�N

�+� , �63�

with

A�1,. . .,�N
��� = �

��1,. . .,�N
� −��1,. . .,�N

=�

��1,. . .,�N

�P���1,. . .,�N
�AP���1,. . .,�N

� � . �64�

There are no jumps between energy eigenstates belonging to
subspaces indexed by different sequences �1 , . . . ,�N. Em-
ploying Eqs. �50� and the explicit form of A, we obtain

A�1,. . .,�N
��+�s� − �0�s�� =

�

�2
� s

N
	�0�s�
��+�s�	 ,

�65a�

A�1,. . .,�N
��+�s� − �−�s�� =

�

2
	�−�s�
��+�s�	 , �65b�

A�1,. . .,�N
��−�s� − �0�s�� =

�

�2
� s

N
	�0�s�
��−�s�	 ,

�65c�

A�1,. . .,�N
��+�s� − �k�s�� = A�1,. . .,�N

��k�s� − �−�s��

= A�1,. . .,�N
��k�s� − �0�s�� = 0,

k = 1, . . . ,s − 1. �65d�

An important and rather unexpected result is that jumps in-
volving 	�k�s�
, k=1, . . . ,s−1, are not allowed �24�. This is
why the master equation for ��1,. . .,�N

�t� reads as

�̇�1,. . .,�N
= − i���1,. . .,�N

,��1,. . .,�N
� + ���+�s� − �0�s���2 s

N
�1

2
	�0�s�
��+�s�	��1,. . .,�N

	�+�s�
��0�s�	

−
1

4
�	�+�s�
��+�s�	,��1,. . .,�N

�+� + ���−�s� − �0�s���2 s

N
�1

2
	�0�s�
��−�s�	��1,. . .,�N

	�−�s�
��0�s�	

−
1

4
�	�−�s�
��−�s�	,��1,. . .,�N

�+� + ���+�s� − �−�s��
�2

2
�1

2
	�−�s�
��+�s�	��1,. . .,�N

	�+�s�
��−�s�	

−
1

4
�	�+�s�
��+�s�	,��1,. . .,�N

�+� , �66�
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and, up to the presence of s /N in terms involving �2, is
identical to the last equation from the Appendix in �1�. In
consequence, we can directly apply the results from �1� to
Eq. �66�. One of the consequences of Eq. �66� is the time
independence of

p�1,. . .,�N
= Tr ��1,. . .,�N

�t�

= Tr ��1,. . .,�N
��t�

= Tr ��1,. . .,�N
��t� , �67�

where p�1,. . .,�N
is the probability of finding the sequence

�1 , . . . ,�N if one randomly and independently selects each
�. The probability of finding � equals Z�= 	O�	2, so
p�1,. . .,�N

=Z�1
¯Z�N

. Now, let

��1,. . .,�N
�t� = ��1,. . .,�N

�t�/p�1,. . .,�N
�68�

be a normalized solution of Eq. �66�, with the initial condi-
tion

��1,. . .,�N
�0� = 	e,0�1,. . .,�N


�e,0�1,. . .,�N
	

= 1
2 �	�+�s�
��+�s�	 + 	�−�s�
��−�s�	

− 	�+�s�
��−�s�	 − 	�−�s�
��+�s�	� . �69�

The parameters �1=���+�s�−�0�s���2, �2=���−�s�
−�0�s���2, and �3=���+�s�−�−�s���2 /2 are related to the
system-reservoir interaction Hamiltonian in a way that is
identical to what was found in �1�. In order to have a well-
defined limit N→� we assume they are independent of s.
However, in Eq. �66� �1 and �2 are additionally multiplied
by s /N, a fact that introduces an s dependence into �1�s�
=�1s /N, �2�s�=�2s /N, keeping �3 independent of s. Apply-
ing the damping-basis method �see Appendix A�, we find

��1,. . .,�N
�t� = −

1

2

1

�1�s� − �2�s� + �3
e−���1�s�+�3�/2
t�− ��1�s� − �2�s� + �3�	�+�s�
��+�s�	 + �3	�−�s�
��−�s�	

+ ��1�s� − �2�s��	�0�s�
��0�s�	
 +
1

2

�1�s� − �2�s� + 2�3

�1�s� − �2�s� + �3
e−��2�s�/2�t�	�−�s�
��−�s�	 − 	�0�s�
��0�s�	�

+ 	�0�s�
��0�s�	 −
1

2
e−2iq�s/Nte−���1�s�+�2�s�+�3�/4
t	�+�s�
��−�s�	 −

1

2
e2iq�s/Nte−���1�s�+�2�s�+�3�/4
t	�−�s�
��+�s�	 .

�70�

The conditional probability of finding the atom in its ground
state, under the condition that the sequence is �1 , . . . ,�N,
reads as

pg�s,t� = Tr	g
�g	��1,. . .,�N
�t�

= 1 −
1

4

�1�s� − �2�s� + 2�3

�1�s� − �2�s� + �3
e−��2�s�/2�t

−
1

4

�1�s� − �2�s�
�1�s� − �2�s� + �3

e−���1�s�+�3�/2
t

−
1

2
e−���1�s�+�2�s�+�3�/4
t cos 2q�s/Nt . �71�

It is instructive to confront formula �71� with the one we
would have obtained in the formalism from �1� if, at T=0,
we employed an irreducible representation with a0=Z1 for
some constant Z�0, i.e., with �a ,a†�=Z1 �if Z�0, then a
is a creation operator�. We first define ã=a /�Z, ã†=a† /�Z
and then perform calculations with H expressed in terms of
these new operators and appropriately rescaled parameters
�see Appendix A�. The probability is �25�

pg
irr�t� = 1 −

1

4

�1Z − �2Z + 2�3

�1Z − �2Z + �3
e−��2Z/2�t

−
1

4

�1Z − �2Z
�1Z − �2Z + �3

e−���1Z+�3�/2�t

−
1

2
e−���1Z+�2Z+�3�/4�t cos 2q�Zt . �72�

Obviously, Z occurs in Eq. �72� in the same place as s /N in
Eq. �71�. This is consistent with the fact that in subspaces
characterized by s, the right-hand side of an analogous com-
mutator involves s /N. All irreducible representations imply
the same physical result provided one defines observable pa-
rameters by their renormalized forms: qph=q�Z, �1,ph
=�1Z, �2,ph=�2Z, and �3,ph=�3.

Returning to the reducible representation, the ground-state
probability we are looking for is the weighted sum,

pg�t� = �
�1,. . .,�N

p�1,. . .,�N
Tr	g
�g	��1,. . .,�N

�t�

= �
s=0

N �N

s
�Z�

s �1 − Z��N−spg�s,t� . �73�

This is basically the final formula that should be compared
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with experiment. Before we do that, however, we have to
relate the bare parameters �1, �2, �3, and q to their physical
renormalized counterparts.

In order to do so, we consider the asymptotic limit N
→�. The weak law of large numbers �Feller’s theorem
�26,27�� implies

lim
N→�

pg�t� = 1 −
1

4

�1Z� − �2Z� + 2�3

�1Z� − �2Z� + �3
e−��2Z�/2�t

−
1

4

�1Z� − �2Z�

�1Z� − �2Z� + �3
e−���1Z�+�3�/2�t

−
1

2
e−���1Z�+�2Z�+�3�/4�t cos 2q�Z�t . �74�

The result is practically identical to Eq. �72�. q�Z� is the
effective physical coupling, where Z�= 	O�	2 is the probabil-
ity of finding the mode �. Defining Z=max��Z�
, we first of
all note that the formula involves an automatic cutoff 
�

=Z� /Z, 0�
��1. The observable parameters are identified
with qph=q�Z, �1,ph=�1Z, �2,ph=�2Z, and �3,ph=�3. The
reducible-representation asymptotic formula reconstructs ex-
actly the standard one following from the analysis given in
�1� if we assume that 
�=1 for frequencies belonging to the
optical regime. The formula for pg�t�, valid for all values of
1�N��, finally becomes

pg�t� = �
s=0

N �N

s
�Zs�1 − Z�N−s

��1 −
1

4

s

NZ
��1,ph − �2,ph� + 2�3

s

NZ
��1,ph − �2,ph� + �3

e−��2,ph�s/NZ�/2�t

−
1

4

s

NZ
��1,ph − �2,ph�

s

NZ
��1,ph − �2,ph� + �3

e−���1,ph�s/NZ�+�3�/2
t

−
1

2
e−���s/NZ���1,ph+�2,ph�+�3�/4
t cos 2qph� s

NZ
t� .

�75�

The limit limN→� pg�t� reconstructs Eq. �72� with Z=Z. The
larger N, the less important the exact value of Z. For N of the
order of 105 or higher, plots of pg�t� are insensitive to
changes in Z if the product �=NZ is kept constant. Such a
limit, N→�, �=const, is precisely a thermodynamic limit
with fixed effective number � of oscillators that interact with
the two-level system �compare Eq. �89��. The thermody-
namic limit implicitly removes the cutoff since Z=� /N→0,
Z=max��Z�
, ��Z�=1, implies shifting cutoff to infinity.

Requirements of mathematical consistency imply that N is
finite. For physical reasons, however, N must be very large,
and thus Z is small but nonzero.

Let us now assume that the cavity is identical to the one
employed in �2�. The mode has a Gaussian structure, so we
have to correct Eq. �75� in a way described in detail in �1�.
Denoting by d and w the cavity length and the Gaussian
width, respectively, we get the effective probability

p̃g�t� = �
s=0

N �N

s
�Zs�1 − Z�N−s

��1 −
1

4

s

NZ
��1,ph − �2,ph� + 2�3

s

NZ
��1,ph − �2,ph� + �3

e−��2,ph�s/NZ�/�2��w/d��t

−
1

4

s

NZ
��1,ph − �2,ph�

s

NZ
��1,ph − �2,ph� + �3

e−���1,ph�s/NZ�+�3�/�2��w/d�
t

−
1

2
e−���s/NZ���1,ph+�2,ph�+�3�/�4��w/d�
t cos 2qph� s

NZ
t� ,

�76�

where t in Eq. �76� is the effective time �1�. Analogously, the
Gaussian-mode correction to the irreducible case reads as

0 0.00002 0.00004 0.00006 0.00008
t�s�

0.2

0.4

0.6

0.8

1

p�
g
�
t

�

FIG. 1. Probability p̃g�t� �Eq. �76�� of finding the atom in the
lower state 	g
 for �=1 �dotted�, �=100 �dashed�, and �=400
�solid�, with N=105 for all the three cases. t is the effective time.
The filled circles represent an analogous probability obtained for
irreducible representations. Error bars taken from the experiment of
Brune et al. provide a natural measure of distance between predic-
tions of the alternative theories. For higher values of �, say �
=1000, the reducible representation becomes indistinguishable from
the irreducible one. The remaining parameters are q=47�103 Hz,
�1=�2=83.912 Hz, and �3=0.07q.
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p̃g
irr�t� = 1 −

1

4

�1Z − �2Z + 2�3

�1Z − �2Z + �3
e�−��2Z/�2��wd��t


−
1

4

�1Z − �2Z
�1Z − �2Z + �3

e−���1Z+�3�/�2��w/d��t

−
1

2
e−���1Z+�2Z+�3�/�4��w/d��t cos 2q�Zt . �77�

Figure 1 shows the time dependence of p̃g�t� for N=105 and
various values of �. Even more suggestive is the plot of the
difference 	p̃g

irr�t�− p̃g�t�	 �Fig. 2� compared with the error
bars taken from the data of Brune et al. �2�. It is clear that
this concrete experiment cannot discriminate between the
limit N→� �i.e., the standard theory based on irreducible
representations� and the alternative non-Wightmanian theory
with any finite ��400.

VI. ENERGY DECAY

Identification of physical parameters with the renormal-
ized ones is supported by the analysis of energy losses. In
irreducible representations with �a ,a†�=Z1, the average en-
ergy of the atom-field system inside of the cavity, at T=0,
E�t�=���t�irr=� Tr ���t� �see Appendix A for the explicit
form of ��t��, is given by

��t�irr = −
�

2
+

1

2��
�1Z − �2Z

�1Z − �2Z + �3

+ q�Z
�1Z − �2Z + 2�3

�1Z − �2Z + �3
�e−���1Z+�3�/2�t

+
1

2

�1Z − �2Z + 2�3

�1Z − �2Z + �3
�� − q�Z�e−��2Z/2�t. �78�

In �1� we showed that best fits to experimental data are found
for �1=�2. Inserting �=�1=�2 into Eq. �78�, we get

��t�irr = −
�

2
+ �e−��Z/2�t + q�Ze−��Z/2�t�e−��3/2�t − 1� .

�79�

It is evident that the energy damping parameter is �Z and not
just �.

The reducible-representation result is similar,

Tr ���1,. . .,�N
�t� = −

�

2
+

1

2
��

�1�s� − �2�s�
�1�s� − �2�s� + �3

+ q� s

N

�1�s� − �2�s� + 2�3

�1�s� − �2�s� + �3
�

�e−���1�s�+�3�/2
t +
1

2

�1�s� − �2�s� + 2�3

�1�s� − �2�s� + �3

��� − q� s

N
�e−��2�s�/2�t �80�

=��s,t� . �81�

As before, the right-hand side depends on s and not on the
exact form of the sequence �1 , . . . ,�N. Repeating the reason-
ing from the previous sections, we find

��t� = �
s=0

N �N

s
�Zs�1 − Z�N−s��s,t� . �82�

Figure 3 compares the two expressions for various values of
� after having renormalized the parameters.

VII. VACUUM COLLAPSES AND REVIVALS FOR ς��

The discussed Rabi-oscillation data do not distinguish be-
tween the two alternative forms of field quantization: one can

0 0.00002 0.00004 0.00006 0.00008
t�s�

0.02

0.04

0.06

0.08

0.1

�
p�
g
�
t

�
�
p�
gi
r
r
�
t

�
�

FIG. 2. The difference 	p̃g
irr�t�− p̃g�t�	, with p̃g

irr�t� and p̃g�t�,
given by Eqs. �77� and �76�, respectively. t is the effective time. �
=400 �solid�, �=1000 �dashed�, and �=5000 �dotted�, N=105. Stars
represent the error bars taken from the experiment of Brune et al.
The curves remain practically unchanged for higher N, so the plots
survive the thermodynamic limit with �=const.

0 0.0002 0.0004 0.0006 0.0008 0.001
t�s�

0.2

0.4

0.6

0.8

1
�A�

0 0.0002 0.0004 0.0006 0.0008 0.001
t�s�

0.2

0.4

0.6

0.8

1
�B�

FIG. 3. Comparison of ��t�irr

�dashed� and ��t� �solid� for �a�
�=10 and �b� �=400 �curves are
indistinguishable�. The other pa-
rameters are N=105, �1,ph=�2,ph

=0.1qph, �3=0.001qph, and qph

=47�103 Hz.
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always increase the value of � and produce a theory indistin-
guishable from the standard one within some given error
bars. However, monitoring the oscillation long enough we
can determine the value of �, provided ���.

For a finite N, the eigenvalues s /N are distributed around
the most probable value s /N�Z �i.e., s���, resulting in dis-
tribution of Rabi frequencies even in exact vacuum. In con-
sequence, instead of a single-frequency oscillation we obtain
beats analogous to those occurring in Rabi oscillations in the
presence of a coherent light. Rabi frequency in exact reso-
nance and in a subspace characterized by s equals

2q� s

N
= 2q�Z� s

NZ
= 2qph� s

�
, �83�

so that the most probable Rabi frequency is 2qph. The first
revival of a collapsed vacuum Rabi oscillation will have its
maximum when phases of neighboring and dominating os-
cillating terms differ by the factor of 2�. This means that the
revival time, tr, can be determined from

2qphtr − 2qph�� − 1

�
tr = 2� . �84�

We find

tr = �� + ���� − 1���/qph. �85�

If we take dissipation into account, the revival can be seen
only if the oscillation occurring in Eq. �75� is still visible.
The amplitude of oscillation is described, at s��, by

� =
1

2
e−���1,ph+�2,ph+�3�/4�tr �86�

or

� = �1,ph + �2,ph + �3 = −
4

tr
ln 2� �87�

with 0���1 /2. Actually, due to interference effects the
amplitude of the revival is some ten times smaller than �.
The dependence of � on � is shown in Fig. 4. Figure 5 shows
the revival of the decayed pg�t�. The parameters used in Fig.
1 imply ��10−20, so the effect would not be visible in ex-
periments where error bars grow with time similarly to those
from �2�. Moreover, the data monitor oscillations for four
Rabi periods, whereas for �=400, assuming the most opti-
mistic scenario, the first revival should be seen after approxi-
mately 800TRabi.

VIII. FINITE N OR N\�?

Cavity boundary conditions imply that there are infinitely
many �’s. The probability of finding a given � is Z�

= 	O�	2. Physical intuition suggests that Z=max��	O�	2

should be a small but nonzero number. Summability of prob-
abilities to 1 implies that Z�→0 if �→�. On the other hand,
evidently Z��Z for optical frequencies since 
�=Z� /Z
plays a role of a cutoff that, in the optical regime, should
satisfy 
��1 �see, for example, a discussion of this point in
�28��.

One of the important properties of field quantization in
terms of reducible representations is the correspondence
principle with standard regularized quantum optics �it is be-
yond the scope of the present paper, but computation of, say,
resonance fluorescence in the reducible-representation for-
malism indeed introduces 
� in those places where one puts
cutoff by hand in the standard formalism�. What is interest-
ing is that the role of correspondence principle is played by
the weak law of large numbers.

The weak law, N→� with Z�=const, replaces all s /N by
probabilities Z�. At the level of representation, the weak law
follows from spectral representations of central elements
a0���= I�� occurring at right-hand sides of the commutator
�a�� ,a���

† �=
���I�� �recall that I�� are the frequency-of-success
operators known from quantum laws of large numbers�. The
reducible representation may be regarded as a “quantized”
form of the standard naively regularized irreducible represen-
tation �a� ,a��

† �=
���Z�1, where Z� is a regularizing func-
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FIG. 4. Plot of �=�1,ph+�2,ph+�3 as a function of �. In order to
observe the revival, the value of � should be greater than experi-
mental errors.
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FIG. 5. Probability of the
atomic ground state as a function
of the effective time t for �1=�2

=83.912 Hz, �3=10 Hz, and �
=400 �these parameters yield �
�0.23�. Revival time �85�, tr

�0.017 s, is indicated by the ver-
tical line. It approximately deter-
mines the moment of maximal
visibility of the revival.
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tion. The naive regularization is known to be in conflict with
Poincaré covariance of canonical commutation relations. The
replacement of the function Z� by the operator I�� leads to the
correct behavior of the commutator under Poincaré transfor-
mations �18,29–31�.

The thermodynamic limit, N→� with �=NZ=const, is
different. Since Z=� /N, the bare charge satisfies

q =
qph

�Z
=�N

�
qph. �88�

The Jaynes-Cummings interaction �see Eq. �32��

q�+a�� + H.c. =�N

�
qph�+

1
�N

�a� � I � ¯ � I + ¯

+ I � ¯ � I � a�� + H.c.

=
qph

��
�+�a� � I � ¯ � I + ¯

+ I � ¯ � I � a�� + H.c. �89�

shows that the physical coupling parameter is, in fact, inde-
pendent of N,

qph

��
=

q
�N

�90�

for any N. Let us stress that although we do not yet have
exact results on the existence of the thermodynamic limit, all
numerical experiments show quick convergence, with grow-
ing N, of pg�t� to a function whose shape is characterized by
�.

Thermodynamic limits typically make some quantities di-
vergent whereas some other quantities are well defined �think
of a glass of water—the density of water will correctly be-
have in the limit, but the water mass will become infinite�. A
similar situation is encountered in our treatment of cavity
QED. The probability pg�t� becomes well defined even if N
tends to infinity with � kept constant, but the vacuum energy
diverges. So, physically we have to assume that N is large
but finite, similar to Z, which is small but nonzero.

IX. OVERVIEW AND CONCLUSIONS

All quantum optical experiments suggest that the idea of
replacing classically oscillating amplitudes, ��e−i�t, by quan-
tum harmonic-oscillator operators, a�e−i�t, is correct. What
is important is that the representations of harmonic-oscillator
Lie algebras we know from quantum mechanics textbooks
correspond physically to quantum oscillators whose � is a
classical parameter. �Heisenberg, Born, and Jordan were not
aware, in 1925, of the role of eigenvalues for quantum
theories—the point was understood by Schrödinger in 1926
�32�.� Simultaneously, for physical reasons the frequency �
is in actual oscillators a function of observables �for ex-
ample, end points of a nanoscale pendulum are given by
atomic center-of-mass wave packets and, hence, its length is
unsharp—the pendulum exists in a quantum superposition of
different lengths l or, equivalently, of the corresponding fre-
quencies �=�g / l�.

Attempts of taking this observation into account lead to
oscillator wave packets existing in superpositions of different
�’s. The frequencies are given by eigenvalues of an operator
�̂ that, in simplest models, commutes with other oscillator
observables �in yet more realistic cases the operators �̂ will
not commute with other observables�. Since all �’s can be
associated with a single oscillator, there is no relation be-
tween the number �typically infinite� of field modes and the
number N of oscillators �that can be finite�.

For those who are trained on the usual Heisenberg oscil-
lator, the conclusion seems counterintuitive: now a single
oscillator may contain many modes, and a single-mode prob-
lem may involve many oscillators. An algebraic implication
is that once we replace � by �̂, a new representation of the
harmonic-oscillator Lie algebra arises. The representation is
reducible, and the commutator �a� ,a�

† � is no longer propor-
tional to the identity but is a nontrivial operator that com-
mutes with all the operators of the algebra. The vacuum av-
erage of this operator plays a role of a regularizing function
that, at least in all the applications considered so far, appears
in exactly those places where one expects regularization to
occur. Simultaneously, at the level of spectra, instead of
regularizing functions Z� one finds the eigenvalues s /N, s
=0,1 , . . . ,N, of the operator �a� ,a�

† �. The eigenvalues s /N
are not distributed uniformly. The weak law of large numbers
implies that for a large N they concentrate around the prob-
ability Z�= 	O�	2 of finding the eigenvalue � in vacuum. The
maximal value Z=max��Z�
 is a parameter that characterizes
the structure of the vacuum state. The product �=ZN repre-
sents an effective number of field oscillators that interact
with the two-level atom. Since for physical reasons Z should
be small, then keeping � fixed we have to assume that N is
large. Actually, it is so large that the thermodynamic limit,
with �=const, should be applicable. In relativistic version of
the theory both Z and N are relativistically invariant.

As we can see, there are reasons to regard the reducible
representation of harmonic-oscillator algebras as physically
justified. Now we face two questions. First, can the available
data really prove that the representation of the Lie algebra is
the one we know from standard quantum optics? The answer
is probably no since the limit N→� is a correspondence
principle with the standard theory, so one can always in-
crease N to approach the standard theory within given ex-
perimental error bars. So the second question is as follows:
Does there exist a phenomenon whose observation could
prove that N and � are finite? The answer is, in principle,
positive. For example, monitoring a decayed Rabi oscillation
in exact vacuum we expect its revival after, approximately,
2�TRabi. Current data suggest ��400.

It is also worth mentioning that the parameters Z and N
alone may not be measurable since Z gets hidden in the
renormalized charge eph=e�Z �note the analogy between Z
and the renormalization constant Z3�. Once incorporated into
renormalized parameters, Z disappears from large-N
asymptotic formulas, but what remains are the “cutoff” func-
tions 
�=Z� /Z. The thermodynamic limit turns out to re-
move the cutoff. In effect, the standard steps of the renormal-
ization procedure are here interpretable in physical terms. If
we could confirm that physical � and N are finite, we would
have a proof that physical vacua are more similar to realistic
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Bose-Einstein condensates than to “unique and Poincaré in-
variant cyclic vectors” typical of Wightmanian axiomatics.
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APPENDIX A: T=0 SOLUTION IN IRREDUCIBLE
REPRESENTATIONS

For T=0.8 K the proportionality factor � linking transi-
tions up and down between dressed states from the same
manifold equals exp�−2�q /kT��0.999 997 but vanishes for
T=0 �compare Fig. 10 in �1��. The case T=0 was not inter-
esting from the point of view of the analysis given in �1�, so
we made there the approximation �=1. In consequence, an
appropriate T=0 formula for pg

irr�t�=Tr	g
�g	��t� is missing
in �1�. Below we give a detailed derivation of the solution
corresponding to T=0. This supplements �1�, simultaneously
showing how to solve the master equations occurring in the
present paper, since mathematically they are identical.

The irreducible representation is �a ,a†�=1; if �a ,a†�
=Z1, Z�0, we redefine a /�Z→a, a† /�Z→a†. The T=0
master equation reads

�̇ = − i��,�� + �1� 1
2 	�0
��+	�	�+
��0	 − 1

4 �	�+
��+	,��+


+ �2� 1
2 	�0
��−	�	�−
��0	 − 1

4 �	�−
��−	,��+


+ �3� 1
2 	�−
��+	�	�+
��−	 − 1

4 �	�+
��+	,��+
 . �A1�

Equation �A1�, written as �̇=L�, defines the operator L. The
eigenvectors L� j =� j� j define the so-called damping basis
�33�,

�1 = − ��1 − �2 + �3�	�+
��+	 + �3	�−
��−	

+ ��1 − �2�	�0
��0	, �1 = −
�1 + �3

2
, �A2a�

�2 = 	�−
��−	 − 	�0
��0	, �2 = −
�2

2
, �A2b�

�3 = ��1�2 + �2�3�	�0
��0	, �3 = 0, �A2c�

�4 = 	�+
��−	, �4 = − i��+ − �−� −
�1 + �2 + �3

4
,

�A2d�

�5 = 	�+
��0	, �5 = − i��+ − �0� −
�1 + �3

4
, �A2e�

�6 = 	�−
��0	, �6 = − i��− − �0� −
�2

4
, �A2f�

�7 = 	�−
��+	, �7 = i��+ − �−� −
�1 + �2 + �3

4
,

�A2g�

�8 = 	�0
��+	, �8 = i��+ − �0� −
�1 + �3

4
, �A2h�

�9 = 	�0
��−	, �9 = i��− − �0� −
�2

4
. �A2i�

The initial condition

��0� = 	e,0
�e,0	

=
1

2
	�+
��+	 +

1

2
	�−
��−	 −

1

2
	�+
��−	 −

1

2
	�−
��+	

�A3�

=−
1

2

1

�1 − �2 + �3
�1 +

1

2

�1 − �2 + 2�3

�1 − �2 + �3
�2 +

1

�2��1 + �3�
�3

−
1

2
�4 −

1

2
�7 �A4�

leads, in exact resonance, to

��t� = −
1

2

1

�1 − �2 + �3
e−���1+�3�/2�t�1

+
1

2

�1 − �2 + 2�3

�1 − �2 + �3
e−��2/2�t�2 +

1

�2��1 + �3�
�3

−
1

2
e−2iqte−���1+�2+�3�/4�t�4 −

1

2
e2iqte−���1+�2+�3�/4�t�7,

�A5�

pg
irr�t� = 1 −

1

4

�1 − �2 + 2�3

�1 − �2 + �3
e−��2/2�t

−
1

4

�1 − �2

�1 − �2 + �3
e−���1+�3�/2�t

−
1

2
e−���1+�2+�3�/4�t cos 2qt . �A6�

APPENDIX B: QUANTUM WEAK LAW OF LARGE
NUMBERS

Consider some projector Pk= 	k
�k	 and a state vector 	�

=�k�k	k
. The probability of observing a property repre-
sented by Pk is 	�k	2 and the eigenvalues of Pk are 0 �“fail-
ure”� and 1 �“success”�. Now let us consider a system of N
copies of 	�
, i.e.,

��� = ��� � ¯ � ���

N

.

�B1�

The operator that counts the number of successes in N inde-
pendent measurements of Pk is

N̂k = Pk � 1 � ¯ � 1 + ¯ + 1 � ¯ � 1 � Pk. �B2�

Denoting P1= Pk, P0=1− Pk, we obtain spectral representa-

tion of N̂k in the form
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N̂k = �
s=0

N

�
A1+¯+AN=s

sPA1
� ¯ � PAN

, Aj = 0,1. �B3�

Let f : �0,1�→R be some function. Spectral theorem defines

f�N̂k /N� as

f�N̂k/N� = �
s=0

N

�
A1+¯+AN=s

f�s/N�PA1
� ¯ � PAN

. �B4�

For N→� the average

��	f�N̂k/N�	�
 = �
s=0

N

f�s/N��N

s
��	�k	2�s�1 − 	�k	2�N−s

�B5�

converges to f�	�k	2� �by virtue of the law of large numbers
for the binomial distribution�. The latter implies also that

lim
N→�

�f�N̂k/N�	�
 − f�	�k	2�	�
� = 0. �B6�

An analogous proof can be formulated for projectors Pk pro-
jecting on higher dimensional subspaces, for example, for
Pk=1 � 	k
�k	. Attempts of formulating a quantum analog of
the strong law of large numbers lead to infinite tensor prod-
ucts, N=�, and thus to nonseparable Hilbert spaces. Field
quantization in terms of reducible representations of the
harmonic-oscillator Lie algebra involves only a finite N even

if the number of frequencies allowed by given boundary con-
ditions is infinite.

APPENDIX C: NAIVE REGULARIZATION VERSUS
RELATIVISTIC COVARIANCE

Let a�k� be a scalar field annihilation operator that
transforms covariantly under Lorentz transformations:
U�L�†a�k�U�L�=a�L−1k�, with U�L�†U�L�=1. The standard
commutator �a�k� ,a�k��†�=Z
�k−k��1, where Z is a
constant and 
�k−k�� is a relativistically invariant Dirac
delta, is relativistically covariant. The proof is trivial:
on one hand, U�L�†�a�k� ,a�k��†�U�L�= �U�L�†a�k�U�L� ,
U�L�†a�k��†U�L��= �a�L−1k� ,a�L−1k��†�. On the other hand,
U�L�†Z
�k−k��1U�L�=Z
�k−k��1=Z
�L−1k−L−1k��1 since
delta is invariant by assumption. The proof fails if Z is re-
placed by a nontrivial function Z�k�, i.e., in naive regulariza-
tions.

However, since U�L�†	k
= 	L−1k
, a replacement of Z�k�
by I�k�=1 � 	k
�k	 or by a similar object, removes the diffi-
culty: U�L�†I�k�U�L�= I�L−1k�. Simultaneously, in all aver-
ages the weak law of large numbers effectively replaces I�k�
by Z�k� �see Appendix B�. Another conclusion is that, as
opposed to naive regularization, spectra of Hamiltonians do
not depend on Z�k� but on relativistically invariant eigenval-
ues s /N �think of the dressed states we have described in the
present paper�. This is why, following Finkelstein �34�, we
speak of regularization by quantization. For more details on
relativistic aspects see, e.g., �18�.
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