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Abstract

In this paper we suggest how several competing signal smoothers, differing in design parameters, or even in design principles,
can be combined together to yield a better and more reliable smoothing algorithm. The proposed heuristic, but statistically
well motivated, fusion mechanism allows one to combine practically all kinds of smoothers, from simple local averaging or
order statistic filters, to parametric smoothers designed for different hypothetical signal and/or noise models. It also allows
one to account for the distribution of measurement noise, and in particular – to cope with heavy-tailed disturbances, such as
Laplacian noise, or light-tailed disturbances, such as uniform noise.
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1 Introduction
Consider the problem of noncausal estimation of the sig-
nal s(i) based on its noisy measurements y(i):

y(i) = s(i) + v(i), i = . . . ,−1, 0, 1, . . . (1)

where i denotes normalized time and {v(i)} is the se-
quence of independent, identically distributed (i.i.d.)
random variables, representing additive measurement
noise. To simplify our further considerations, we will
assume that an infinite observation history is available
Y = {y(i), i ∈ (−∞,∞)}. Note that for a given time
instant t, Y can be decomposed into the set of “past”
measurements Y−(t) = {y(i), i < t}, “present” mea-
surement y(t), and the set of “future” measurements
Y+(t) = {y(i), i > t}:

Y = {Y−(t), y(t),Y+(t)}.

Any estimate ŝ(t) = f [Y], that relies on both “past”,
“present” and “future” measurements, is called the
smoothed estimate. Since estimation accuracy of non-
causal estimation schemes that incorporate smoothing
exceeds accuracy of their causal counterparts, smoothing
is used in many off-line signal processing applications,
where the analyzed signals are prerecorded, rather than
acquired sequentially in a sample-by-sample manner.
Our objective will be to find the estimate ŝ(t) that min-
imizes the mean-squared error

E
{
[s(t)− ŝ(t)]2

} → min . (2)

Rather than proposing a new smoothing paradigm,
in this paper we will suggest how several competing
smoothers, differing in design parameters, or even in
design principles, can be combined together yielding a
better and more reliable smoothing algorithm.

2 Bayesian Pattern Matching
To work out a rational fusion mechanism, that could be
used to combine different smoothers, we will start from
solving a simpler problem, further referred to as pattern
matching.
Denote by T (t) = [t − m, t + m] the local evaluation
frame, centered at t and covering M = 2m + 1 time
instants. We will assume that, for all i ∈ T (t), the true
signal coincides with one of K signal patterns, further
denoted by sk(i), k = 1, . . . , K. The hypotheses

Hk : s(i) = sk(i), i ∈ T (t) (3)

will be regarded as equiprobable

π(Hk) =
1
K

, k = 1, . . . , K . (4)

We will assume that measurement noise is dis-
tributed according to the generalized Gaussian law
(Saralees, 2005)

v ∼ GN (µ, α, β) :

p(v; µ, α, β) =
β

2αΓ(1/β)
exp

{
−

( |v − µ|
α

)β
}

(5)
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where µ is the location parameter, α > 0 is the scale
parameter, β > 0 is the shape parameter, and Γ(x) =∫∞
0

e−zzx−1dz, for x > 0, denotes the Euler’s gamma
function (extension of the factorial function).
Generalized Gaussian is a parametric family of symmet-
ric distributions that includes normal distribution when
β = 2 (with mean µ and variance α2/2), and Laplace dis-
tribution when β = 1 (with mean µ and variance 2α2).
When β → ∞, the density (5) converges pointwise to a
uniform density on (µ− α, µ + α).
We will assume that µ = 0 (zero-mean measurement
noise), and that β ≥ 1 is a predetermined (user-defined)
shape parameter. We will not assume that the scale pa-
rameter α > 0 is known – in our Bayesian analysis α
will be treated as a nuisance parameter with assigned
noninformative (improper) prior distribution

π(α|Hk) = π(α) ∝ 1
α

(6)

where ∝ denotes proportionality.
Under the assumptions made, the optimal, in the mean-
squared sense, approximation of s(t) can be obtained in
the form (Lewis, 1986)

ŝ(i) =
K∑

k=1

µk(t)sk(i) , i ∈ T (t) (7)

where

µk(t) = P (Hk|YT (t)) =

∫∞
0

p(YT (t), α,Hk)dα

p(YT (t))
(8)

denote posterior probabilities of signal patterns sk(·),
given the data YT (t) = {y(i), i ∈ T (t)}. Straightforward
calculations lead to

µk(t) =
ϕk(t)∑K

k=1 ϕk(t)
(9)

ϕk(t) ∝
∫ ∞

0

p(YT (t)|α, Hk)π(α|Hk)π(Hk)dα . (10)

2.1 Posterior Probabilities
Note that

p(YT (t)|α,Hk)

=
∏

i∈T (t)

β

2αΓ(1/β)
exp

{
−

( |εk(i)|
α

)β
}

=
[

β

2αΓ(1/β)

]M

exp

{
−

∑
i∈T (t) |εk(i)|β

αβ

}
(11)

where εk(i) = y(i)− sk(i).

Combining (11) with (4)–(6), and carrying out integra-
tion in (10), one arrives at (see Appendix)

ϕk(t) =


 ∑

i∈T (t)

|εk(i)|β


−M/β

. (12)

Note that when β →∞ (the uniform noise case), it holds
that ϕk(t) → [

maxi∈T (t) |εk(i)| ]−M .
2.2 Sliding Analysis Window
In the method described above, posterior probabilities
µk(t) are used to approximate the signal in the entire
evaluation frame T (t). To gain more flexibility, one can
repeat the pattern matching procedure for consecutive
values of t, generating a sequence of point estimates

ŝ(t) =
K∑

k=1

µk(t)sk(t) , ∀t (13)

instead of a single interval estimate (7). Sliding window
approach is computationally more involved, but yields
better approximations than the interval approach.

3 Cooperative Smoothing
Bayesian pattern matching is a good starting point for
derivation of a more realistic smoothing procedure, fur-
ther referred to as cooperative smoothing. The key ele-
ments of this new approach are: data-dependent patterns
and cross-validatory pattern assessment.
3.1 Data-Dependent Patterns
The Bayesian pattern matching approach, described in
the previous section, is certainly too rigid to be prac-
tically useful – unless some prior knowledge about s(t)
is available, the number of fixed patterns that should
be used to obtain satisfactory approximation results be-
comes impractically large. This problem can be allevi-
ated by considering patterns that are locally adapted to
the signal. Such data-dependent patterns, generated by
local smoothing procedures, will be further denoted by
ŝk(t).
As an example of a local pattern generation technique,
consider a nonparametric estimation method known as
kernel regression (Härdle, 1990). The kernel smoother is
defined as

ŝ(t) =
∑

i y(i)Kη(t− i)∑
i Kη(t− i)

(14)

where Kη(z) = 1/ηK(z/η) denotes the kernel function,
η denotes the kernel bandwidth and summation extends
to all available samples. The kernel is a nonnegative,
continuous, bounded and symmetric function, such that∫

K(z)dz = 1.
When the kernel nonnegativity constraint is removed,
many universal smoothers, i.e., those requiring no, or
very little, prior knowledge about the approximated sig-
nal [such as local polynomial smoothers, known also as
Savitzky-Golay smoothing filters (Orfanidis, 1996)], can
be expressed in the form (14).
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3.2 Selection of Smoothing Bandwidth
All smoothing methods are equipped with design param-
eters that allow one to to control degree of smoothing,
usually referred to as smoothing bandwidth. In kernel
regression, degree of smoothing depends on the kernel
bandwidth η.
Selection of smoothing bandwidth is certainly one of the
key problems in statistical approximation theory. From
the statistical viewpoint, selection of bandwidth param-
eters is a tradeoff between the estimation variance, which
decreases with growing bandwidth, and estimation bias,
which increases with growing bandwidth. The problem
is usually solved by considering estimates yielded by
several smoothers ŝk(t), k = 1, . . . , K, of the same kind,
but with different bandwidth settings, and selecting
the best fitting candidate, or combining all candidates
appropriately. Automatic bandwidth selectors, which
constitute the core of such schemes, are usually based
on some statistical principles, such as Akaike’s infor-
mation criterion (Cleveland & Loader, 1996), (Hurvich
& Simonoff, 1998), wavelet shrinkage (Donoho & John-
stone, 1995), intersection of confidence intervals rule
(Katkovnik, 1999), or adaptive regression by mixing
approach (Yang, 2000). However, all existing methods
of automatic bandwidth tuning are subject to at least
one of the following limitations: 1. They result in com-
petitive, rather than cooperative, smoothing schemes
(winner-take-all strategy). 2. Their application is lim-
ited to a specific family of smoothers they were derived
for. 3. They cannot account for non-Gaussian noise
distribution. 4. They are computationally very intense.
In contrast with this, the fusion mechanism proposed
below allows one to combine practically all kinds of
smoothers, from simple local averaging or order statistic
filters, to parametric smoothers designed for different
hypothetical signal and/or noise models. It is compu-
tationally simple and it allows one to account for the
distribution of measurement noise.
3.3 Preliminary Considerations
One may argue that for large smoothing bandwidths,
signal-adapted patterns are weakly correlated with mea-
surement noise, allowing one to use the same fusion
mechanism, which was developed in Section 2, namely

ŝ(t) =
K∑

k=1

µk(t)ŝk(t) , ∀t (15)

where the weights µk(t), further called credibility coef-
ficients, are evaluated according to (12), and residual
errors are given by εk(t) = y(t) − ŝk(t) , ∀t. However,
for small bandwidths, smoothers cannot be evaluated
based on the values of the corresponding residual er-
rors. Note that after setting η → 0 in (14), one ob-
tains ŝ(t) → y(t), i.e., ε(t) → 0, ∀t. This means that the
smallest-bandwidth smoother, which completely ignores
the presence of measurement noise, will always obtain
the highest score, no matter what metric is used to quan-

tify residual errors. To circumvent this problem, we will
define credibility coefficients in a slightly different way.
Denote by ŝ◦k(t) the holey smoother associated with ŝk(t),
i.e., smoother that excludes y(t) from the set of mea-
surements used for estimation of s(t)

ŝ◦k(t) = f [Y◦(t)] , Y◦(t) = {Y−(t− 1),Y+(t + 1)}.

In case of kernel smoothers, one should simply redefine
the kernel function: K◦

η (0) = 0,K◦
η (z) = Kη(z),∀z 6= 0.

A very important property of every holey smoother is
its pointwise independence of measurement noise

p(ŝ◦k(t)|v(t)) = p(ŝ◦k(t)) , ∀t . (16)

Owing to this property, the modified Bayesian-like com-
bination rule, obtained when credibility coefficients are
evaluated for matching errors

ε◦k(t) = y(t)− ŝ◦k(t) , ∀t

will not favor smoothers that “underestimate” the influ-
ence of measurement noise on the observed data.
Note that for the kernel smoother (14) it holds that
ε◦(t) = δε(t), where ε(t) = y(t) − ŝ(t) denotes residual
error and

δ =
∑

i Kη(i)∑
i K◦

η (i)
=

[
1− Kη(0)∑

i Kη(i)

]−1

> 1

is the penalty factor which grows with decreasing kernel
bandwidth.

3.4 Proposed Smoothing Formula
The proposed adaptive cooperative smoothing formula,
allowing one to combine results yielded by K competing
smoothers ŝk(t), k = 1, . . . ,K, has the form

ŝ(t) =
K∑

k=1

µ◦k(t)ŝk(t) , ∀t (17)

where

µ◦k(t) =
ϕ◦k(t)∑K

k=1 ϕ◦k(t)
, k = 1, . . . , K (18)

and the quantities ϕ◦k(t) should be evaluated according
to

ϕ◦k(t) =


 ∑

i∈T (t)

|ε◦k(i)|β


−M/β

. (19)

For large values of M , the weighted estimation formula
(17) de facto reduces itself to

ŝ(i) = ŝk∗(t)(t) , i ∈ T (t) (20)
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where
k∗(t) = arg max

1≤k≤K
µ◦k(t) .

This is because for large evaluation frames even small
differences in the matching error statistics produce large
differences in the values of the corresponding credibility
coefficients. Consequently, the major contribution to ŝ(t)
in (7) is due to the “locally the best” smoother ŝk∗(t)(t).
When β = 2, maximization of µ◦k(t) is equivalent to
minimization of

∑
i∈T (t)[ε

◦
k(i)]2. This can be regarded

as a time-localized variant of the leave-one-out cross-
validation (CV) approach, introduced by (Stone, 1974)
and further developed by many authors – for more de-
tails see e.g. (Friedl & Stampfer, 2002). Our Bayesian
framework is a natural way of bringing the notion of
model credibility into cross-validatory analysis.
The asymptotic properties of CV-based selectors are
well understood (Droge, 2006). When M → ∞, cross-
validation does not guarantee statistically consistent
model/smoother selection (when used with local poly-
nomial or kernel estimators it tends to undersmooth),
but it is asymptotically optimal in the sense of Shibata
(Shibata, 1981). Of course, none of these asymptotic
statements is justifiable when M is small, which, unfor-
tunately, is the only case that has practical relevance
(to guarantee “alertness” of combination smoothers to
changing estimation conditions, we recommend to use
20 ≤ M ≤ 50).

4 Simulation results
Due to space limitations, we will present results of only
one, albeit carefully designed, simulation experiment.
The four test signals used in this experiment, called
Blocks, Bumps, HeaviSine and Doppler, respectively (see
Fig. 1), were proposed by Donoho and Johnstone in their
seminal paper on wavelet-based denoising (Donoho &
Johnstone, 1995). Since then they are commonly used for
benchmarking different smoothing techniques. The pop-
ularity of this particular set of test signals is due to the
fact that it was designed to represent various spatially
inhomogenous phenomena, which make smoothing diffi-
cult, and which are encountered in many real-world sig-
nals in such areas as telecommunications, geophysics and
biomedicine. Test signals, each containing 2048 samples,
were extended by zeros at both ends (to avoid boundary
problems) and corrupted with either Gaussian (β = 2)
or Laplacian (β = 1) white noise with intensity σ2

v = 1,
see Figs. 2 and 4, respectively. The average signal-to-
noise ratio was in all cases the same and equal to 16.9
dB.
The bank of competing smoothers consisted of 5 local
averaging filters ŝ(t) =

∑n
i=−n y(t + i)/(2n + 1) and 5

median filters 1 ŝ(t) = med{y(t−n), . . . , y(t+n)}, with

1 med{·} denotes the central value of the sequence obtained
by ordering the original sequence: med{z1, . . . , zj} is defined
as z̃(j+1)/2 for odd values of j, and (z̃j/2 + z̃j/2+1)/2 for
even values of j, where z̃i is the ith smallest sample among
{z1, . . . , zj}.
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Fig. 1. Test signals: Blocks (top left), Bumps (top right),
HeaviSine (bottom left), and Doppler (bottom right).
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Fig. 2. Test signals with white Gaussian noise, σ2
v = 1,

SNR=16.9 dB (SD(s)/σv=7).

fitting frames of lenghts Nk = 2nk + 1, k = 1, . . . , 5,
forming (approximately) a geometric progression: N1 =
5, N2 = 11, N3 = 23, N4 = 47, N4 = 95.
Three combination smoothers were considered: the
naive smoother (15), further denoted by C1, the com-
petitive smoother (20), denoted by C2, and the coop-
erative smoother (17), denoted by C3. The width M of
the evaluation frame was set equal 31 (m = 15).
The SNR scores, obtained for the Gaussian noise and
Laplacian noise, are shown in Tabs. 1 and 2, respec-
tively. All numbers were obtained by ensemble averag-
ing over 100 realizations of {v(t)}. Typical results of
smoothing are shown in Figs. 3 and 5. Note the very
good performance of the cooperative (recommended)
smoother C3, on all occasions better than performance
of the component smoothers. The competitive smoother,
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Fig. 3. Denoised test signals (Gaussian noise, C3).

500 1000 1500 2000
−10

−5

0

5

10

15

20

25

500 1000 1500 2000
−10

0

10

20

30

40

50

60

500 1000 1500 2000
−20

−15

−10

−5

0

5

10

15

500 1000 1500 2000
−15

−10

−5

0

5

10

15

Fig. 4. Test signals with white Laplacian noise, σ2
v = 1,

SNR=16.9 dB (SD(s)/σv=7).

which can be regarded as a simplified version of the
cooperative smoother, yields consistently worse results
than C3, which shows clearly the benefits of weighting.
Finally, the naive smoother C1, incorporating unmodi-
fied credibility coefficients µk(t), performs considerably
worse than C2 and C3. This demonstrates the impor-
tance of the pointwise independence condition enforced
in the modified scheme.
Combination of linear (averaging) and nonlinear (me-
dian) smoothers allows one to obtain estimation proce-
dure that can be used to smooth discontinuous signals,
i.e., procedure that attenuates measurement noise but,
at the same time, does not distort step-like signal fea-
tures. As a matter of fact, when applied to Blocks, Heav-
iSine and Doppler, our simple ad hoc smoother (which
was not optimized in any way) is doing a remarkably
good job as it outperforms the state-of-the-art wavelet

500 1000 1500 2000
−10

−5

0

5

10

15

20

25

500 1000 1500 2000
−10

0

10

20

30

40

50

60

500 1000 1500 2000
−20

−15

−10

−5

0

5

10

15

500 1000 1500 2000
−15

−10

−5

0

5

10

15

Fig. 5. Denoised test signals (Laplacian noise, C3).

shrinkage procedure SureShrink proposed in (Donoho &
Johnstone, 1995). For Gaussian noise the corresponding
SNR scores achieved by SureShrink are equal to 24.6 dB
(Blocks), 26.0 dB (HeaviSine) and 21.2 dB (Doppler) for
the family of Haar wavelets, and 22.8 dB, 28.6 dB and
23.8 dB, respectively, for Daubechies D4 wavelets – see
Table 2 in (Donoho & Johnstone, 1995). The low score
achieved by the proposed smoother for Bumps is caused
by insufficient spatial resolution of component filters –
when the smoothing range of the highest-resolution fil-
ters is lowered from N1 = 5 to N1 = 3, the peak clipping
effect is much reduced and the SNR score rises from 18.6
dB to 21.9 dB, the result comparable with those yielded
by SureShrink (20.4 dB for Haar wavelets and 22.9 dB
for D4 wavelets).
Of course, a more systematic study, carried out for dif-
ferent time scales and different signal-to-noise ratios, is
needed to check whether the simple smoothing algorithm
described above is a serious competitor to wavelet-based
smoothers. Our purpose here was only to demonstrate
the potential of cooperative approach to smoothing. The
material presented in this section is therefore just an ex-
ample of using this technique.

5 Conclusion
We have shown how several competing smoothers, differ-
ing in design parameters, or even in design principles, can
be combined together yielding a better and more reliable
smoothing algorithm. The proposed fusion mechanism
was inspired by solution to the problem of Bayesian pat-
tern matching, where signal approximation is obtained
as a weighted combination of a certain number of fixed
signal “patterns”. The new scheme is computationally
simple and can be used to combine practically all kinds
of smoothers. It also allows one to account for the dis-
tribution of measurement noise.
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APPENDIX
derivation of (12)

Let

γk =
∑

i∈T (t)

|εk(i)|β , c =
1
K

[
β

2Γ(1/β)

]M

.

Putting π(α) = 1/α, one arrives at

J =
∫ ∞

0

p(YT (t)|α,Hk)π(α|Hk)π(Hk)dα

= c

∫ ∞

0

α−(M+1)exp
{−γkα−β

}
dα .

Using the substitution x = γkα−β , one obtains

J =
c

β
γ
−M/β
k

∫ ∞

0

x(M−β)/βe−xdx = c′γ−M/β
k

where c′ = (c/β)Γ(M/β). Since c′ is a constant indepen-
dent of k, it can be omitted in definition of ϕk(t), which
leads to (12).
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