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FRACTURE ENERGY OF BONDED JOINTS WITH 2D ELASTIC 
ADHESIVE LAYER 

 
 
 
 

ABSTRACT 
 
When bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the 
adhesive layer, usually, as not existing or 1D Hook elastic layer. In the case of 1D elastic layer, represented as 
Hooks spring element, is acting, only, in direction contrary to the applied load. Basing on the information 
yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint were measured, 
within this contribution, 2D Finite Element Method model is introduced. The FEM allows adhesive layer to be 
simulated as two perpendicular-acting Hook's springs, thus in-plane shear compliance is enabled. Subsequently, 
appropriate analysis were carried out. Results, in terms of plate deflection, were compared with laser 
profilometry technique and common analytical solutions. It is concluded that linear 1D model is not sufficient 
for the asymmetric bonded joint configuration since the adhesive resists actively also in the in-plane shearing 
direction. Omitting shearing compliance effect can lead to valuable misinterpretation of the fracture energy, up 
to 20% in cases studied, and thus, cannot be ignored. Finally, power law based, correction factors are given 
promising fast and reliable data correction.  
 
Keywords: bonded joints, energy release rate, finite element analysis, 2D adhesive model. 
 
 
 

INTRODUCTION 
 
 
Adhesive bonding technique is well established joining method of secondary [e.g. 1-3] and 
primary structures [e.g. 4, 5]. This is mainly due to attractive weight-to-mechanical properties 
ratio effecting in more efficient structures. The development in the adhesive science and 
technique is very complex, from e.g. adhesive formulation [6], surface preparation procedures 
[7], mechanical testing [8] and numerical modelling [e.g. 9, 10]. In the case of adhesive joint 
mechanics progress brings new knowledge about general mechanical behaviour of the bonded 
joints resulting in more complex and sophisticated models describing joint behaviour. In the 
fracture mechanics, when opening the most critical and common, mode I cleavage load is 
applied, the traditional experimental procedures use the solutions based on Euler-Bernoulli 
beam theory [e.g. 11, 12] and corrected beam theory [13]. These models do not take adhesive 
layer into account which is specifically required when compliant adhesives are used. 
Compliance effect can be introduced by treating adhesive layer as a Winkler elastic 
foundation [14, 15]. Numerical and experimental observations proves that also other effects 
affecting fracture could be present when the joint is submitted to rather simple 1D loading 
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[16, 17]. The focus is more on sophisticated codes, that on possibility to prove and test the 
results obtained. From experimental and more industrial point of view, some fast and easy 
solutions are required. In the recent contribution finite element method is implemented and 
compared with two common analytical solutions of the beams used to simulate adhesive 
joints. This are applied to the asymmetric adhesive joints (the most common) loaded in mode 
I (cleavage) fracture mechanics direction. Thus, within this contribution, adhesive layer is 
treated as: not existing – classical Euler-Bernoulli model, 1D arrangement of Hook’s spring 
elements – for Winkler model and finally as 2D elastic finite elements. Results of such made 
analysis, in terms of bonded plates deflections, are compared with newly applied laser 
profilometry technique. It was found that 1D analytical solution, when the beams deflection 
are accounted could be treated as satisfactory. However, in terms of fracture energy, the FEM 
and both analytical solutions gave different results leading to possible results 
misinterpretation. That was related to the possible 2D compliance of the adhesive when 
submitted to, theoretically, 1D loading. Finally, using power law fitting, correction factors of 
fracture energy are proposed. Factors which allows fast and reliable treatment of experimental 
results, where basic treatment must still be held within classical analytical solutions.  
 
 
 

EXPERIMENTAL 
 
 
Materials and preparation 
 
An asymmetric wedge configuration was used (Fig.1a.) in which a flexible, aluminium alloy 
plate (Dural or Avional AA 2024 – T3) of thickness, h = 1.5 mm, was bonded to a rigid plate 
(Hydronalium AA 5754) of thickness H = 6 mm. Young’s modulus of the thinner plate, E, 
obtained by 3-point bending, was evaluated at 68 ± 5 GPa. Poisson’s ratio, ν, obtained by 
ultra-sound TTM (through transmission method), was 0.32. Relative flexural rigidity, given 
by the ratio of the cubes of thickness multiplied by the appropriate Young’s modulus (here the 
same), leads to a value of ca. 64. The flexible adherend (length, l=120 mm) was bonded to the 
rigid member along a length, ladh=100 mm. The latter was of length, L = 180 mm. Initial 
effective crack length, a, of ca. 17.5 mm was achieved. The entire system was of width, b = 
25 mm. Prior to bonding, all substrate surfaces were prepared by polishing down to 2400 grit 
emery paper, degreasing with acetone and electrochemically treated using Phosphoric Acid 
Anodizing (PAA: 20 min, 10% wt. H3PO4, 20 V direct current, with a titanium grid and 15 
mm electrode distance). In preparation, the upper surface of the thin adherend was mirror 
finished to permit precise profilometry measurements. The aluminium plates were bonded 
together using a commercial epoxy resin (Bostik, La Défense, Paris, France) consisting of 
bisphenol A of average molecular weight < 700, cured with N(3 dimethylaminopropyl) – 1,3 
propylenediamine. This material had a Young’s modulus ca. 3.0 GPa, and Poisson’s ratio was 
assumed to be 0.37, as stated in the supplier’s data sheet. Crosslinking was effected at 
ambient temperature (ca. 23°C) for 24 hours under 0.3 bar pressure and at ca. 55 % RH. 
Samples were left for a few days in usual ambient conditions before testing. Two bondline 
thicknesses were studied: e = 0.2±0.05 mm and e = 0.8±0.05 mm. The values of thickness 
were fixed by inserting PTFE spacers at the joint extremities, prior to crosslinking. The 
bondline thickness was found to be homogeneous, as measured by optical microscopy. 
Various values of wedge thickness were employed to initiate crack propagation; for e = 0.2 
mm, 3 mm thick wedge was used. For e = 0.8 mm, wedge thicknesses, ∆w, of 6 mm was used. 
Note that the separation distance: ∆ = ∆w - e, is used in the calculations and modelling, thus 
giving: z(x = 0) =∆.  
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Profilometry 
 
After loading the adhesive joint by the wedge insertion and allowing time for any possible 
crack stabilisation, the deflection of the thin adherend was measured using a laser 
profilometer. An AltiSurf®500 surface characterization workstation (AltiMet, Thonon-Les-
Bains, France) was adopted. The AltiSurf® system was mounted on a granite base. Samples 
were mounted to the measurement sliding table, made up of two X and Y DC motorized 
tables. X and Y resolution used was 2µm. X steps were chosen to be 10µm. The extent of the 
accessible area – Scan zone, in the longitudinal and transverse directions, was limited by that 
of the (vertical) Z-axis. An AltiProbe® high-resolution white light sensor was used. This was 
fitted with an optical unit functioning on the chromatic aberration principle. The measurement 
range of this sensor was 350µm with a vertical resolution of 30 nm. Two measurements were 
made for each sample point. The first was made on the unloaded sample and the second after 
loading. The experimental set-up is shown in Fig.1. 

Profilometer sensor

 
 

Fig. 1. (a) Principle of the profilometry measurements and (b) sample during test 
 
Euler-Bernoulli model (rigid foundation) 
 
The classic method for assessment of the adhesive fracture energy, in a wedge or related test, 
is based upon the cantilever beam and employs the Euler-Bernoulli equations. In our case, the 
system is asymmetric: the lower adherend is considered rigid. We introduce Cartesian 
coordinates, (x, z), representing respectively distance from the wedge along the bondline and 
(vertical) displacement. Reduction of the bonded system, loaded after insertion of a wedge, to 
that of a cantilever beam is shown schematically in Fig.2. The brick wall shows schematically 
that the beam is considered encastré for x > a. 

 
 

Fig. 2. Representation of the adhesive joint by Euler-Bernoulli model 
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The bending moment, M, given by Fx, is related to beam curvature, 22 dxzd , by: 
 

FxEI
dx

zd
=2

2

       (1) 
 

where F is the only force acting perpendicularly to the x axis, which has its origin at the 
wedge, as shown, and EI is the product of Young’s modulus and second moment of the beam 
section. After integration and use of boundary conditions z(a) = dz/dx(a) = 0, we obtain the 
displacement, or deflection, z(x): 
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We may express the deflection at the origin, ∆, as follows: 
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The form of the beam deflection, given by equation (2) or (4), is simple. This is the main 
reason why this classical approach is so popular. The derivation represents a simple and 
efficient way of estimating the fracture properties of adhesive joints from a knowledge of ∆ 
and a. 
 
Winkler model (one parameter elastic foundation) 
 
Winkler approach was apparently the first developed to describe the root rotation effect [14] 
and has recently been employed to consider the influence of adhesive compliance [15]. 
Considering again Fig.2., we take a beam bonded in the range a < x < +∞, and free over 0 < x 
< a. In terms of the Winkler model, the situation can be reduced to that shown schematically 
in Fig.3., where the bonded section has some flexibility, and therefore strains to some extent 
in the direction parallel to the applied force, along z. This elastic strain may be modelled by 
Hook spring elements, of stiffness k. (The applied load per unit length and at coordinate x, 
q(x), is then given by , where z is the vertical displacement of the bonded 
element). 
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Fig. 3. Representation of the adhesive joint corresponding to Winkler model 

 
The differential equation for the part of the beam laying on the elastic foundation is then: 
 

04

4

=+ z
EI
k

dx
zd  ;   a<x<+∞                            

(5) 
 
The general solution of this differential equation involves 4 arbitrary constants, but parts of 
the solution are physically unrealistic, when k>0, leading to divergence at infinity. Terms in 
eλ(x-a ) are thus neglected, leading to: 
 

[ )(sin)(cos)( 11
)( xaBxaAexz xa

a
−+−= −+∞ λλλ ];   a<x<+∞         (6)    

     
For the region 0< x<a, we have k = 0, and therefore: 
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;   0< x<a     (7) 

 
This has a straightforward polynomial solution: 
 

22
2
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          (8)
 

 
The solution for a<x<+∞, equation (6), contains an intrinsic parameter, λ (mm-1), which we 
term wave number, by analogy with infra red spectra, acoustics and fields involving 
propagation, and because of the units: 
 

4/1
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     (9) 
 
The term k is often expressed as Eadh.b/e, where Eadh is Young’s modulus of the adhesive, e its 
initial thickness and b is joint width. Taking into account the influence of Poisson’s ratio 
(confinement), we have [15]: 
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The bracketed terms in νA are to allow for essentially plane strain conditions existing in a thin 
adhesive layer (e/b<<1). The correction is not negligible, since an adhesive could easily have 
a Poisson’s ratio of 0.4, leading to ca. twice the value of k given by the simpler, often used, 
expression. Constants A1, B1, A2, B2, C2, and D2 can be found from boundary conditions of 
geometry and continuity of functions (6) and (8) and their derivatives up to order 3. This leads 
to: 
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Finite element analysis  
 
Further contribution to the elastic foundation model of the asymmetric wedge test has been 
undertaken using the CAST3M finite element programme to simulate the experiment and 
calculate the deflection of the beam on an elastic layer. To do this, the beam is discretised 
with SEG2 - Timoshenko beam elements, to prevent for any blockage at the junction between 
the adherend and free zone (a classical numerical artefact in the finite element beam model). 
The adhesive is represented with QUA4 linear elements, which are recommended for high 
stress singularities. The simplified situation and reduction of the bonded system to the FEA 
model proposed is shown schematically in Fig.4a.  
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c) ux □e 
uz 

u

 
 
Fig. 4. 2D FEM of the adhesive joint. (a) Reduction of the adhesive joint to 2D Finite Element model. (b) Details of 

the FEA model used. (c) 2D deformation of the finite element after applying opening load 
 
The adhesive elements, of initial thickness between the adherends, e, are assumed perfectly 
clamped at the bottom face (brick wall representation in Fig.4b.). QUA4 linear elements 
provide the simplest model for a thin layer behaving linearly elastically, with tensile (kV) and 
shear (kH) rigidity. The plate-adhesive interface was modelled using the COLLER procedure 
(operator), which relates the displacement of the upper surface of the adhesive (interface with 
upper adherend) to the lower surface of the adherend (rather than the midline of the beam). 
This function allows us to bond two surfaces, leaving the possibility for edge rotations and 
displacements, without separation of the bonded elements. An additional parameter could be 
taken into account, viz. the eccentricity of the flexible adherend with respect to the adhesive 
layer. The bent beam is represented in FEA by the position of its mean plane. In practice, it is 
the bottom side of the plate that is in contact with the adherend, so that the displacement 
imposed on the adhesive would be more correctly given by: 
 

( ) yuxhuu xzx ++= θ2
                (12) 

 
where ux is the local beam displacement along x and θz is the local beam rotation. The mesh 
was constructed of 50 finite elements (FE), element length increasing with distance, x , from 
the crack front in both directions. The first element was of length s1=100 µm. The FEA model 
is shown in Fig.4b. and a schematic representation of finite element deformation in Fig.4c. 
 
 
 

RESULTS AND DISCUSSION 
 
 
Crack length estimation from profilometry measurements 
 
A very sensitive profilometry sensor was used (N.B. the z-range was 350 µm). As a 
consequence, deflection of the entire plate could not be not measured (simultaneously). 
Deflection measurements were therefore restricted to the immediate neighbourhood of the 
zone within which the crack front was expected to be, so called scan zone (Fig.5.). At this 
stage, the x axis refers uniquely to the range of scan, and not wedge position. The 
profilogramme shown includes displacements from both free and bonded parts of the joint, 
which are separated by a bold line.  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. Budzik, J. Jumel, M.E.R. Shanahan; Fracture energy of bonded joint with 2D elastic… 11 

0

20

40

60

80

100

120

140

160

180

200
e=0.2 mm
∆=2.8 mm

z 
(µ

m
)

Scan zone (mm)
18           16            14           12           10             8             6             4             2             0

Beginning of the test End of the test 
x, z (t=0) x, z (t=end) 

BONDED ZONE 

FREE ZONE 

 
Fig. 5. Profilogramme of the zone in the vicinity of crack front 

 
These measurements correspond to the centre line of the flexible adherend (in the plane of 
symmetry). Note the slight negative deflection, or compression of the adhesive layer, some 
way into the bonded zone, due to the relative rigidity of the thin adherend resisting the 
bending moment. Further on, there is recovery (less compression). There is a wave 
component to the deflection and this is the qualitative, physical explanation of the presence of 
trigonometric functions in equation (6). The free zone part of the graph was used to estimate 
the actual crack position. This was done using a 3rd order polynomial fit, in keeping with both 
the basic Euler-Bernoulli and Winkler model equations for this part of the joint - equation (8). 
The results of the fitting are represented on Fig.6. for the cases studied.  
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Fig. 6. Polynomial fit of crack length. (Left) For the thin adhesive layer, a = 43 mm. (Right) For thicker bondline  

a = 68 mm 
 

Polynomial functions thus obtained were extrapolated to give the z deflection corresponding 
to the wedge thickness, thus allowing the approximate crack length to be deduced. This 
operation leads to 43 mm and 68 mm of the crack length for the thinner and thicker of 
bondline respectively. 
 
Comparison of models with profilometry 
 
In Fig.7., we present the z deflection vs x for the bonded zone for various cases studied (note 
the different scales). No results are shown for the Euler-Bernoulli model within the bonded 
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zone, since the hypothesis is of an encastré beam, and therefore we would simply have z = 0. 
However, as clearly shown by the profilometry results, and in qualitative agreement with the 
Winkler theory, there is a distinct dip in the profile near the bond edge, restored further into 
the joint. There are, however, quantitative differences between the experimental deflections 
and those expected from Winkler theory, especially for the thicker bondline, when the 
adhesive is playing a more important role. As can be seen, the agreement for both models is 
good outside the bonded area, although the Winkler model generally overestimates slightly, 
showing higher deflections than given by experiment. In the bonded zone the Winkler model 
gives an approximate account of what occurs: it is clearly a great improvement on the 
encastré analysis. In both cases FEM results gives better approximation of the experimental 
results. However, at this point, we can assume that Winkler model could be treated as 
sufficient enough to predict joint behaviour. 
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Fig. 7. Bonded zones deflections for two cases studied, a) thin bondline, b) thick bondline 

 
Fracture Energy 
 
For most purposes, the most important parameter estimated from fracture tests is the energy 
release rate, which, while the crack is propagating, equates with fracture energy. In general, 
the elastic adhesive fracture energy can be found from the classical energy balance 
expression: 
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                (13),
 

 
where U is the elastic energy stored and b is beam width. 
 
 
In the present context, we may express the strain energy release rate in the case of the classic 
Euler-Bernoulli beam model (EB) as: 
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For the Winkler (W) solution, we have [15]: 
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For the finite element solution (FEA), we use the classic energy balance equation (13). The 
energy release rate calculated is the change in the elastic energy (stored within the flexible 
beam (U)) while the crack propagates by δa, from position ai to the position ai+1, thus: 
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In Table 1, the energy release rate values are presented for the situations discussed above, and 
for values of the various parameters studied experimentally. Assuming that the FEA model 
gives the best approximation to the real energy release rate, in our case at least, the standard 
Euler-Bernoulli analysis overestimates energy release rate (and therefore fracture energy in 
the case of a propagating crack). This is particularly noticeable in the first example given in 
Table 1, in which the overestimation is nearly 16% (note that this case corresponds to the 
smaller of the crack lengths).  
 

Table 1. Results of the analysis performed 
 

Input data Euler-Bernoulli 
GEB (Jm-2) 

Winkler 
GW (Jm-2) 

2D FEA 
GFEA (Jm-2) 

e=0.2 mm 
∆=3 mm 
a=43 mm 

 
197.4 

 
162.3 

 
172.4 

e=0.8 mm 
∆=6 mm 
a=68 mm 

 
117.4 

 
103.6 

 
105.5 

 
The Winkler model tends to underestimate energy release rate, but at most by less than 10%. 
Again taking the FEA model as the standard, we can show graphically the approximate error 
introduced by the models used. This representation for the experimental data is given in Fig.8. 
in the form of absolute errors, following the equations: (Gmodel-GFEA/GFEA)·100%.  
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Fig. 8. Absolute error of the analytical solutions on fracture energy of asymmetric joint 
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Finally, for the most common situations (λa<100), we can draw correction curves for the 
Euler-Bernoulli and Winkler models. These are shown in Fig.9. Naturally, when Euler-
Bernoulli model is used the wave number, λ vanish. 
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Fig. 9. Correction factors curves for the models studied 
 
 
 

CONCLUSIONS 
 
 
New experimental technique was introduced, laser profilometry, to study joint behaviour and 
shearing effect in asymmetric bonded joints. This technique allows detailed studies of the 
bonded zone in the vicinity of the crack front when joint is submitted to mode I loading. 
Finite Element Model was built and compared with two commonly used analytical solutions: 
Euler-Bernoulli and Winkler. It was concluded that complex: shearing – cleavage compliance 
effects the adhesive and fracture properties of the joint. Analytical models used nowadays 
requires introduction of appropriate correction factors. These, following power law fitting 
(using Matlab®2008a, Curve Fitting Toolbox) were found:

 
 

 
a) for Euler-Bernoulli to Winkler correction the factor is: 
 

038.172.26 302.1 +⋅= −− a
G
G

Winkler

BE λ
    (17) 

 
b) for Euler-Bernoulli to Finite Element Analysis results the factor is: 
 

04.144.25 479.1 +⋅= −− a
G
G

FEM

BE λ
    (18) 
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c) for Winkler to Finite Element Analysis results the factor is: 
 

137.17065.0 3116.0 +⋅−= −a
G

G

FEM

Winkler λ
    (19) 

 
All factors were achieved with coefficient of determination, R2 higher than 99% and provide 
easy way for raw fracture test data manipulation. Moreover, they allow efficient joint design 
with the minimal introduced errors. The new introduced here corrections emphasize another 
effect: the adhesive layer impact on the joint properties. The correction is function of two 
parameters: a and λ. While change of the crack length with time: a = f(t) is usual situation, 
correction could be used in case of second possible situation, namely change of the adhesive 
properties, viz. λ = f(t). In particular situation this allow e.g. any adhesive degradation to be 
taken into account. 
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