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Abstract  

The paper introduces an alternative method of modelling and modal reduction of continuous systems. 
Presented method is a hybrid one. It combines the advantages of modal decomposition method  and the rigid 
finite element method.  In the proposed  method continuous structure is divided into one-dimensional 
continuous elements. For each 1D element modal decomposition and reduction is applied. Interactions between 
substructures are described by lumping techniques. Presented method enables to obtain reduced, low order 
modal model of considered system. The proposed approach is illustrated by selected examples. 
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1. Introduction 

In the static and dynamic analysis of the elastic bodies the Finite Element Method (FEM) 
is widely used. The conventional discretization (Fig. 1a,c) yields to a set of ordinary 
differential equations. However, to obtain accurate results it is necessary to apply a great 
number of finite elements and to solve high order model (a big number of the second 
order differential equations). To avoid such problem, different methods of model order 
reduction can be applied. Modal decomposition and reduction is one of them [1]. 
However, in standard approach to obtain modal reduced order model it is necessary to 
derive and consider high order model by FEM. 
 In the paper a new, alternative method of model order reduction is described. It is a 
hybrid one and combines two well known approaches: modal decomposition method and 
the rigid finite element method. 
 In the proposed method the body is divided into strips (for 2D system - Fig. 1b) and 
prism (for 3D system - Fig. 1c). Each strip or prism represents one-dimensional 
distributed system and it is described by appropriate second order partial differential 
equation. However, these equations have also terms related to interactions between 
strip/prism. Hence, the given system can be described by set of a couplet second order 
partial differential equations. For each 1D element modal decomposition and reduction is 
applied whereas interactions between elements are described by lumping technique. In 
this case no complex FEM model is considered for modal decomposition. 
 Appropriate mathematical description of 2D system is presented below. 
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Figure 1. Spatial discretization of 2D and 3D body: a), c) conventional finite element 
method, b), d) proposed hybrid method 

3. Hybride model of 2D body 

Applying Rigid Final Element Method to 2D body divided into nx×ny finite elements one 
obtains appropriate system of ordinary differential equations (nx×ny second order 
equations) [1]. Such FEM model can be transformed to the continuum representation by 
letting dx→0. In that way small differences divided by dx become derivatives. 

 

 

 
             

Figure 2. Discrete model of the hybrid 2D structure: a) continuous body, b) elementary  

Thus, 2D body can be described by the following, ny partial differential equations (after 
Laplace transform with respect to time): 
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where: E – Young’s modulus, G – shear modulus, I – area moment of inertia,  
A – cross section area, κ – numerical shape factor of cross section,  
ρ – mass per unit volume, ξ, η – transverse displacements, φ – rotation (angular 
displacement), f – distributed force (excitation), τ – distributed torque moment 
(excitation), i=1,2,…,nx, j=1,2,…,ny. 

Solution of these equations with appropriate boundary conditions gives accurate 
prediction of static and dynamic response (displacement, strain, stresses etc.) for many 
2D elastic body. Applying modal decomposition for underlined parts of equations (1, 2, 
3) and applying FEM for remained parts one can obtain discrete model of the considered 
system written in the form: 
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where: )( 1 jnxjxjx mmdiag L=M , )( 1 jnyjyjy mmdiag L=M , 

)( 1 jnjr mmdiag ϕϕϕ L=M , )( 1 jnxjxjx kkdiag L=K ,  

)( 1 jnyjyjy kkdiag L=K , )( 1 jnjj kkdiag ϕϕϕ L=K , 

)( 1 xjnxjxjx ffcolyx L⋅∆⋅∆=f , )( 1 xjnyjyjy ffcolyx L⋅∆⋅∆=f , 

)( 1 xjnjj colyx ϕϕϕ ττ L⋅∆⋅∆=f , )( 1 xjnxjxjx qqcol L=q , 

)( 1 xjnyjyjy qqcol L=q , )( 1 xjnjj qqcol ϕϕϕ L=q , 
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wheras: q – modal coordinates, m – modal coefficients of inertia, k – modal coefficients 
of stiffness, Y – eigenfunction, n – number of retained modes, nx – number of ports for 
lumped interactions, j=1,…, ny, ny – number of strips, f – generalized external force, 

dxd /ΦΦ =′ , subscripts x, y, φ are related to translations in x, y directions and rotation 
respectively. 

It is very easy to construct the modal models because eigenvalues and 
eigenfunctions related to one-dimensional second order systems are known.  
Fig.3 presents general concept of developed hybrid model. Proposed approach can be 
applied for modeling of 2D, 3D and 1D continuous systems. Of course, in the case of 1D 
system, there are not interactions between strips/prisms. In this case the method can be 
applied for modelling of discrete-distributed systems with non-self-adjoined components 
– see illustrative example 2 and [2, 3, 4]. 

 
Figure 3. General block diagram of hybrid model 

3.1. Illustrative Example 1 

As an simple example let us consider one-strip system - the Timoshenko beam model 
(Fig. 4) which is described by the following equations (they can be obtain as the special 
case of equations (1÷3)): 
 ηκηρηκ ′′−==′− AGAsFAGf 2 , (7) 

 ϕϕρηκϕκτ ′′−==′+− EJIsTAGAG 2 . (8) 

FEM model of interaction 

Modal reduced model of j strip/prism 

FEM model of interaction 
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Figure 4. Simply supported beam with the following parameters: 11102 ⋅=E , 
101093.7 ⋅=G , 8000=ρ , b=0.05, h=0.1, 2.1=κ , l=1. 

The results are presented in Fig. 5. Frequency characteristics of the beam are obtained 
for the hybrid models with 6 retained modes and with 12 finite elements. From these one 
can see that in the range of frequency related to a number of retained modes frequency 
responses for reduced models have the same shape as for the reference continuous one. 
 

 

Figure 5. Verification of the reduced Timoshenko beam model 

3.2. Illustrative Example 2 

As the second example let us consider the rotor presented in Fig. 6a. 
The difficulties in modal analysis of rotor system arise from the non-self-adjointness. To 
avoid that problem the following approach is proposed. Modal reduced model is built up 
for the system without gyroscopic effect. 
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Gyroscopic moments are then modeled by application of rigid finite element method. 
Because of above reduced modal model must contain an appropriate number of inputs 
and outputs needed to connect lumped elements related to gyroscopic interactions 
between beams vibrating in X-Z and Y-Z planes. 
Frequency characteristics of the rotor (Fig. 8) are obtained for the unit step force input 
signal acting at the left disk (Fig. 6) and the displacement output signal observed at the 
same point. From these one can see that in the range of frequency related to a number of 
retained modes frequency responses for reduced models have the same shape as for the 
reference model. 

4. Conclusions 

In this paper model reduction of continuous systems is presented. Two techniques: 
modal decomposition and finite element approach are applied simultaneously. The final 
reduced model consists of two parts - the reduced modal model and the finite element 
model. General idea of such approach has been presented in simple illustrative examples. 
The proposed approach enables to obtain accurate low order lumped parameter model 
representation of considered system. Computer simulations and numerical calculations 
proved that the proposed method is efficient and can be applied for others, more 
complex systems. 
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Figure 7. General block diagram of 
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rotor 

0 500 1000 1500 2000 2500 3000 3500 4000 
-200 

-150 

-100 

-50 

frequency [rad/s] 

m
a

g
n

itu
d

e
 [

d
B

] 

a) 

continuous reference model ω=1000 [rad/s] 
reduced model - 6 modes and 5 gyrators 

0 50 100 150 200 250 300 350 400 450 500 
-180 
-160 
-140 
-120 
-100 
-80 
-60 
-40 

frequency [rad/s] 

m
a

g
n

itu
d

e
 [

d
B

] 

b) 

Figure 8. Frequency response with 
gyroscopic phenomena for reduced and non-
reduced model Ω=1000 [rad/s] (a) and 
scaled up (b) 
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Hybrydowe modele zredukowane układów ciągłych 
W artykule przedstawiono alternatywną metodę modelowania i modalnej redukcji układów ciągłych. 
Zaprezentowana metoda jest metodą hybrydową. Łączy zalety metod dekompozycji modalnej i sztywnych 
elementów skończonych. W proponowanej metodzie układ ciągły dzielony jest na jednowymiarowe 
podukłady ciągłe. Dla kaŜdego podukładu jednowymiarowego budowany jest modalny model zredukowany. 
Poszczególne modele zredukowane wiąŜe się ze sobą poprzez oddziaływania między nimi modelowane za 
pomocą metody sztywnych elementów skończonych. Zaprezentowana metoda umoŜliwia otrzymanie 
zredukowanego modelu modalnego niskiego rzędu. Proponowane podejście jest zilustrowane prostymi 
przykładami. 
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