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Abstract

The paper introduces an alternative method of modelling and modal reduction of continuous systems.
Presented method is a hybrid one. It combines the advantages of modal decomposition method and the rigid
finite element method. In the proposed method continuous structure is divided into one-dimensional
continuous elements. For each 1D element modal decomposition and reduction is applied. Interactions between
substructures are described by lumping techniques. Presented method enables to obtain reduced, low order
modal model of considered system. The proposed approach is illustrated by selected examples.
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1. Introduction

In the static and dynamic analysis of the elastic bodies the Finite Element Method (FEM)
is widely used. The conventional discretization (Fig. la,c) yields to a set of ordinary
differential equations. However, to obtain accurate results it is necessary to apply a great
number of finite elements and to solve high order model (a big number of the second
order differential equations). To avoid such problem, different methods of model order
reduction can be applied. Modal decomposition and reduction is one of them [1].
However, in standard approach to obtain modal reduced order model it is necessary to
derive and consider high order model by FEM.

In the paper a new, alternative method of model order reduction is described. It is a
hybrid one and combines two well known approaches: modal decomposition method and
the rigid finite element method.

In the proposed method the body is divided into strips (for 2D system - Fig. 1b) and
prism (for 3D system - Fig. 1c). Each strip or prism represents one-dimensional
distributed system and it is described by appropriate second order partial differential
equation. However, these equations have also terms related to interactions between
strip/prism. Hence, the given system can be described by set of a couplet second order
partial differential equations. For each 1D element modal decomposition and reduction is
applied whereas interactions between elements are described by lumping technique. In
this case no complex FEM model is considered for modal decomposition.

Appropriate mathematical description of 2D system is presented below.
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a) finite element b) strip

Figure 1. Spatial discretization of 2D and 3D body: a), ¢) conventional finite element
method, b), d) proposed hybrid method

3. Hybride model of 2D body

Applying Rigid Final Element Method to 2D body divided into n,xn, finite elements one
obtains appropriate system of ordinary differential equations (n,xn, second order
equations) [1]. Such FEM model can be transformed to the continuum representation by
letting dx—0. In that way small differences divided by dx become derivatives.
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Figure 2. Discrete model of the hybrid 2D structure: a) continuous body, b) elementary

Thus, 2D body can be described by the following, n, partial differential equations (after
Laplace transform with respect to time):
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where: £ — Young’s modulus, G — shear modulus, / — areca moment of inertia,
A — cross section area, k — numerical shape factor of cross section,
p — mass per unit volume, & 5 — transverse displacements, ¢ — rotation (angular
displacement), f — distributed force (excitation), r — distributed torque moment
(excitation), i=1,2,...,n, j=1,2,...,n,.

Solution of these equations with appropriate boundary conditions gives accurate
prediction of static and dynamic response (displacement, strain, stresses etc.) for many
2D elastic body. Applying modal decomposition for underlined parts of equations (1, 2,
3) and applying FEM for remained parts one can obtain discrete model of the considered
system written in the form:
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Y(pj] (an ) e Y(pjn (xnr\ )
wheras: ¢ — modal coordinates, m — modal coefficients of inertia, kK — modal coefficients
of stiffness, ¥ — eigenfunction, n — number of retained modes, n, — number of ports for

lumped interactions, j=1,..., n,, n, — number of strips, ' — generalized external force,
@' =dd / dx, subscripts x, y, ¢ are related to translations in x, y directions and rotation
respectively.

It is very easy to construct the modal models because eigenvalues and
eigenfunctions related to one-dimensional second order systems are known.
Fig.3 presents general concept of developed hybrid model. Proposed approach can be
applied for modeling of 2D, 3D and 1D continuous systems. Of course, in the case of 1D
system, there are not interactions between strips/prisms. In this case the method can be
applied for modelling of discrete-distributed systems with non-self-adjoined components
— see illustrative example 2 and [2, 3, 4].
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Figure 3. General block diagram of hybrid model

3.1. Illustrative Example 1

As an simple example let us consider one-strip system - the Timoshenko beam model
(Fig. 4) which is described by the following equations (they can be obtain as the special
case of equations (1+3)):

f—KkAGn' =F = pAs’n —kAGn", (7)

1 - kAGp+KkAGn' =T = pls*p— EJo" . 8)



http://mostwiedzy.pl

A\ MOST

Vibrations in Physical Systems Vol.24 (2010) 147
x=0.1 |P=1 (input force)
y

B ol N

Figure 4. Simply supported beam with the following parameters: E =2-10",
G=7.93-10", p=8000, h=0.05, ~=0.1, x =1.2, I=1.

The results are presented in Fig. 5. Frequency characteristics of the beam are obtained
for the hybrid models with 6 retained modes and with 12 finite elements. From these one
can see that in the range of frequency related to a number of retained modes frequency
responses for reduced models have the same shape as for the reference continuous one.
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Figure 5. Verification of the reduced Timoshenko beam model

3.2. Illustrative Example 2

As the second example let us consider the rotor presented in Fig. 6a.
The difficulties in modal analysis of rotor system arise from the non-self-adjointness. To

avoid that problem the following approach is proposed. Modal reduced model is built up
for the system without gyroscopic effect.
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Figure 7. General block diagram of
hybrid model of rotor

Gyroscopic moments are then modeled by application of rigid finite element method.
Because of above reduced modal model must contain an appropriate number of inputs
and outputs needed to connect lumped elements related to gyroscopic interactions
between beams vibrating in X-Z and Y-Z planes.

Frequency characteristics of the rotor (Fig. 8) are obtained for the unit step force input
signal acting at the left disk (Fig. 6) and the displacement output signal observed at the
same point. From these one can see that in the range of frequency related to a number of
retained modes frequency responses for reduced models have the same shape as for the
reference model.

4. Conclusions

In this paper model reduction of continuous systems is presented. Two techniques:
modal decomposition and finite element approach are applied simultaneously. The final
reduced model consists of two parts - the reduced modal model and the finite element
model. General idea of such approach has been presented in simple illustrative examples.
The proposed approach enables to obtain accurate low order lumped parameter model
representation of considered system. Computer simulations and numerical calculations
proved that the proposed method is efficient and can be applied for others, more
complex systems.
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Hybrydowe modele zredukowane ukladow ciaglych

W artykule przedstawiono alternatywna metod¢ modelowania i modalnej redukcji uktadéw ciagtych.
Zaprezentowana metoda jest metoda hybrydowa. Laczy zalety metod dekompozycji modalnej i sztywnych
elementow skonczonych. W proponowanej metodzie uktad ciagly dzielony jest na jednowymiarowe
poduktady ciagte. Dla kazdego poduktadu jednowymiarowego budowany jest modalny model zredukowany.
Poszczegolne modele zredukowane wiaze si¢ ze soba poprzez oddziatywania migdzy nimi modelowane za
pomoca metody sztywnych elementow skonczonych. Zaprezentowana metoda umozliwia otrzymanie
zredukowanego modelu modalnego niskiego rzgdu. Proponowane podejscie jest zilustrowane prostymi
przyktadami.
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