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Summary. In the paper application of the Distributed Transfer Function Method 
and the Rigid Finite Element Method for modelling of 2-D and 3-D systems is 
presented. In this method an elastic body is divided into 1-D distributed parameter 
elements (strips or prisms). The whole body (divided into strips or prism) is 
described by a set of coupled partial differential equations. Solving this equations 
in the state space form it is possible to obtain the response of the system under any 
external excitations as well as to predict the system spectrum. 

 
1. INTRODUCTION 
 

In the analysis of the elastic two or three dimensional (2-D or 3-D) systems the Finite 
Element Method (FEM) is widely used. The discretization methods yields to a set of ordinary 
differential equations. However, to obtain accurate results it is necessary to apply a great 
number of finite elements and to solve high order model (a big number of the second order 
equations). 

The Distributed Transfer Function Method (TDFM) is an alternative approach for the 
analysis of a class of such systems (linear, one-dimensional). Still distributed parameter 
systems are given in terms of linear partial differential equations, similar to lumped parameter 
systems they can also be described by the transfer function method. In this case the distributed 
transfer function is the corresponding mathematical model. It contains all information about 
a system and enables to obtain the response under any excitation and to predict the system 
spectrum. Distributed Transfer Function Method does not assume any approximation by 
lumping technique. The response of the system can be presented in an exact and closed form. 

In the paper application of the Distributed Transfer Function Method and the Rigid Finite 
Element Method for modelling of 2-D and 3-D systems is proposed. This is an alternative 
approach to the known Strip Distributed Transfer Function Method (SDTFM). In this method 
an elastic body is divided into strips or prisms (1-D distributed parameter elements). Each 
strip/prism represents one-dimensional distributed system and it is described by appropriate 
second order partial differential equation. By application of the Distributed Transfer Function 
Method, the response of each strip/prism can be obtained in an exact and closed form. The 
whole body is then described by a set of coupled partial differential equations. Finally, the 
response related to the whole body is presented in a semi - exact, closed form. This method is 
an extension of the DTFM method for one-dimensional distributed parameter systems.  
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2. TRANSFER FUNCTION METHOD FOR 1-D DISTRIBUTED PARAMETER SYSTEM 
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  Fig. 1. One-dimensional distributed parameter system 
 
Let us consider the distributed parameter system described by the one-dimensional, n-th 
order, linear partial differential equation after Laplace transformation with respect to time 
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and with zero initial conditions (for simplification), where: q(x,t) – excitation, w(x,t) – 
response,  Mi , Ni – boundary condition operators, )(tiγ - known functions, s complex 
parameter. 
Equations (1) ÷ (2) can be transformed into the state space form [3] 
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The solution of the equations (3) and (4) can be find in the following form [3] 
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Hence, the system response can be expressed in an integral form (5) with the integral kernel 
being the Green’s function of the system. The transfer function of the distributed system 

),,( sxGik ξ  is obtained by the Laplace transformation (with respect to time) of the Green’s 
function. The transfer function contains all information about the system and enables to obtain 
the response of the system under any initial or external excitations as well as to predict the 
system spectrum and stability. The method can be also applied for modeling of complex 
distributed-lumped parameter systems [2, 3]. 
 
3. TRANSFER FUNCTION METHOD FOR 2-D AND 3-D DISTRIBUTED PARAMETER 

SYSTEMS 
 
The DTFM can be extended to 2-D and 3-D continua [4, 5]. In [4, 5] to obtain the appropriate 
mathematical model DTFM and FEM methods are applied. In this paper a new, alternative 
approach is proposed. Instead of FEM, the Rigid Finite Element Method (RFEM) [6] is used. 
In the RFEM the idea of shape function in not applied. Comparing to conventional approach 
presented in [4, 5] the proposed method of modelling is much more simple and easier for 
implementation. 
In this method of modelling the body is divided into strips (for 2-D system - Fig. 1b) and 
prism (for 3-D system - Fig. 1c). Each strip or prism represents one-dimensional distributed 
system and it is described by appropriate second order partial differential equation. However, 
these equations have also terms related to interactions between strip/prism. Hence, the given 
system can be described by a set of couplet (interactions between elements) second order 
partial differential equations.  
 

                        

         
Fig. 2. Spatial discretization of 2D and 3D body: a), c) FEM, b), d) DTMF method 

 
These differential equations can be presented in the following form: 
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with boundary conditions 
 )(),(),0( ssls iii γwNwM =+ , i=1,2, (11) 
where matrices A02, A20, A10, A00 contain differential equations coefficients, matrices Mi, Ni 
are composed of boundary condition operators (2). 
The equations (10, 11) may be written in the state space representation: 
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prism finite element 
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matrices M, N can be obtain from Mi, Ni, I – identity matrix. 
The response of the system described by (12, 13) can be presented in the integral form (5). It 
enables to obtain the system eigenvalues, eigenfunctions, frequency response and the response 
to given harmonic excitation. 
 
4. ILLUSTRATIVE EXAMPLE 
 
As an simple illustrative example let us consider the membrane (Fig. 3) with the following 
parameters: m=10 kg/m2 (mass per unit area), Tx=Ty=1000 N/m (force per unit length), 
 a=b=1 m, ∆y=1/5 m. 
 

            
 
Fig. 3. Membrane as 2-D elastic body 

 
The RFEM equation (in this case the difference equation) for i, j membrane element can be 
written as 
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Dividing (14) by ∆x one obtains 
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Assuming ∆x→0, the equation (15) yields 
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For example, in the case of 4 strips (for j=1, 2, 3, 4) the equations (16) have the form: 
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Above equations can be written in the form of equations (10, 11), where: 
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Solving the state space equations related to the given membrane some results have been 
obtained. Fig. 4 presents frequency characteristics of the membrane from Fig. 3 (input force at 
x=0.1, y=0.5, and output displacement x=0.4, y=0.5). In the Tab. 1 natural frequencies of the 
investigated membrane, for different mathematical models, are presented. 
 

 
Fig. 4. Frequency response of membrane the membrane from Fig. 3. 
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 Tab. 1. Natural frequencies ω [rad/s] of considered membrane  
RFEM Proposed method Exact 

frequencies 16 finite 
elements 4 strips 16 strips 

44.428 43.701 44.066 44.395 
44.428 43.701 44.066 44.395 
70.248 66.406 66.647 69.880 
70.248 66.406 70.019 70.229 
88.857 83.125 86.039 88.525 
88.857 83.125 86.787 88.525 
99.345 86.602 99.184 98.065 
99.345 86.602 100.160 99.330 

113.271 100.000 102.435 112.142 
113.271 100.000 102.435 113.047 
133.286 100.000 111.075 132.335 
133.286 100.000 113.987 132.335 

 

5. CONCLUSION 
 
In the paper application of the Distributed Transfer Function Method and the Rigid Finite 
Element Method for modelling of 2-D and 3-D systems is proposed. In this method an elastic 
body is divided into strips or prisms. Each strip or prism represents one-dimensional 
distributed system and it is described by appropriate second order partial differential equation. 
By application of the Distributed Transfer Function Method, the response of each element can 
be obtained in an exact and closed form. The whole body (divided into strips or prism) is then 
described by a set of coupled partial differential equations. Simple, illustrative example 
prooves that proposed approach is relatively easy and convenient for computer coding. 
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