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Abstract: This paper presents a description of the method and results of rotor blade shape

optimization. The rotor blading constitutes a part of a turbine’s flow path.

The optimization consists in selecting a shape that minimizes the polytrophic loss ratio

[1]. The shape of the blade is defined by the mean camber line and thickness of the airfoil.

The thickness is distributed around the camber line based on the ratio of distribution. A global

optimization was done by means of Genetic Algorithms (GA) with the help of Artificial Neural

Networks (ANN) for approximations. For the numerical simulation of a flow through the model

Kaplan turbine, the geometry employed in the model was based on the actual geometry of the

existing test stage. The fluid parameters and the boundary conditions for the model were based

on experimental measurements which were carried out at the test stand at the Department of

Turbomachinery and Fluid Mechanics at the Gdansk University of Technology. The shape of

the blading was optimized for the operational point with a maximum efficiency.

Keywords: fluid mechanics, turbomachinery, genetic algorithms, artificial neural networks

Notation

D – deformation rate tensor,

f – airfoil centerline,

~g – acceleration of gravity,

h – enthalpy,

k – kinetic energy of velocity fluctuations,

ṁ – mass flow rate,

Nd – dissipated power,

p, pe – hydrodynamic and effective pressure,

~r – radius,

S – surface,

t – time,

T – temperature,
~U – absolute velocity,

V – volume,
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210 M. Banaszek and K. Tesch

~W – relative velocity,

∂ – boundary,

δ – thickness distribution coefficient,

∆ – thickness,

ε – dissipation of kinetic energy of velocity fluctuations,

ζ – loss coeficient,

ηp – polytropic efficiency,

κ – isentropic exponent,

λ, λt – molecular and turbulent conductive heat transfer coefficient,

µ, µt, µe – dynamic, turbulent, effective viscosity,

ρ – density,

τt – turbulence intensity,

φµ – dissipation function,

~ω – angular velocity,

Ω – spin tensor,

(·) – area-based mean,

〈·〉 – time-based mean,

(·)′ – fluctuation,

(·)T – transposition.

1. Theory

1.1. Loss coefficient

The loss coefficient is defined on the basis of the enthalpy equation, given

in the differential form [2]:

ρ
dh

dt
=φµ+∇·(λ∇T )+

dp

dt
(1)

Assuming there is no heat transfer, a transformation of Equation (1) makes it

possible to define the polytropic efficiency as [1]:

ηp :=
h1−h2

−
p2
∫

p1

ρ−1dp

=1−

t2
∫

t1

ρ−1φµdt

−
p2
∫

p1

ρ−1dp

(2)

Thus, the desired loss coefficient definition may be expressed as:

ζ := 1−ηp=

t2
∫

t1

ρ−1φµdt

−
p2
∫

p1

ρ−1dp

(3)

In the case of turbomachinery, an averaged coefficient of polytropic losses

is introduced. The mean value is defined with respect to area-based averages of

quantities found in definition (3). Thus, on the surface S we obtain [1]:

ζ̄ :=

∫∫

S

t2
∫

t1

ρ−1φµdtdS

−
∫∫

S

p2
∫

p1

ρ−1dpdS

(4)
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Rotor Blade Geometry Optimization in Kaplan Turbine 211

Replacing dt in the denominator with dL
U
and utilising the formula for mass flow

rate ṁ = ρSŪ , the definition (4) may be written in the following form for the

control volume V contained between the inlet S1 and the outlet S2:

ζ̄ =
ρ

ṁ

∫∫∫

V

φµdV

p̄1− p̄2
(5)

In the above equation, the mean pressure p̄ is defined as an area-based average:

p̄ := S−1
∫∫

S
pdS. The denominator in Equation (5) is the power of mechanical

energy dissipation Nd, computed for a known velocity field according to the

formula [2]:

Nd :=
∫∫∫

V

φµdV =2µ
∫∫∫

V

D2dV (6)

The formula is valid for incompressible flows.

The formula (5) for the polytrope loss coefficient holds both for the laminar

and the turbulent case. For turbulent flows, complete information about the

velocity field is required; such may be obtained by employing the DNS solution

scheme. On the other hand, if all we have is the averaged velocity field solution

given by the RANS method, Equation (5) cannot be applied directly. For turbulent

flows, the enthalpy Equation (1) takes on the following form upon averaging:

ρ
d〈h〉

dt
=2µ〈D〉2+ρε+∇·((λ+κλt)∇〈T 〉)+

d〈p〉

dt
+∇·〈p′~U ′〉 (7)

In the above expression three new terms have appeared, in comparison with

Equation (1). They originate from averaging the nonlinear terms in Equation (1).

The kinetic energy dissipation for velocity fluctuation ε results from averaging the

dissipation function φµ and from the assumption of homogeneity. The turbulent

heat flux λt∇〈T 〉 results from averaging the material derivative of temperature (by

way of enthalpy). This relies on the additional hypothesis of turbulent diffusion

[2]. The last term is the factor responsible for diffusion due to pressure and velocity

fluctuations 〈p′~U ′〉; it results from averaging the material derivative of pressure.

Let us again assume that there is no heat exchange through the molecular

and turbulent mechanisms, thus, necessitating that 〈T 〉= const. As in the equa-

tion for transport of kinetic energy of velocity fluctuations, it may be assumed

that the diffusion due to pressure and velocity fluctuations is negligible 〈p′~U ′〉≈~0.

The averaged enthalpy Equation (7) thus simplifies to the form:

ρ
d〈h〉

dt
=2µ〈D〉2+ρε+

d〈p〉

dt
(8)

A comparison of (1) and (8) shows that they only differ by a single term, namely

the turbulent dissipation. It cannot be neglected; for blade cascades this term

is greater, by an order of magnitude, than the dissipation of mean flow [3, 4].
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212 M. Banaszek and K. Tesch

Following the same line of reasoning as above, it can be shown that the loss

coefficient will take a form analogous to (5):

〈ζ̄〉=
ρ

ṁ

∫∫∫

V

〈φµ〉dV

〈p̄1〉−〈p̄2〉
(9)

where the averaged dissipation function is calculated as 〈φµ〉=2µ〈D〉
2+ρε. The

symbol 〈p̄〉 is to be understood as the area-based average of pressure, obtained

from a RANS solution.

1.2. Dissipation in a rotating system

In a rotating system of reference, the absolute velocity vector ~U decomposes

into two components. The first component is the relative velocity ~W and the other

is frame rotational velocity ~ω×~r. This may be written as ~U = ~W +~ω×~r. This

decomposition should be inserted into the definition of the deformation rate tensor

[2] D := 2−1(∇~U+(∇~U)T ). Transforming this expression, we obtain:

D =DW +2
−1
(

∇(~ω×~r)+(∇(~ω×~r))
T
)

(10)

where DW is the deformation velocity tensor in the rotating frame of reference.

The rotational velocity gradient is given by:

∇(~ω×~r)=





0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0



=ΩT (11)

which amounts to a transposition of the spin tensor Ω. It may similarly be shown

that (∇(~ω×~r))T =Ω. The Equation (10) may now be written as:

D =DW +2
−1
(

Ω
T +Ω

)

=DW (12)

inasmuch as ΩT +Ω=0 . This confirms the invariance of the dissipation function

which is computed from tensor D . The above analysis remains correct also if

the angular velocity ~ω changes over time. Furthermore, it remains correct for

a compressible flow since, as can easily be verified,∇· ~U =∇· ~W . In cases where the

dissipation function has been averaged, a new term appears related to turbulent

dissipation. As turbulent dissipation is a scalar, it remains the same in both frames

of reference.

1.3. System of equations

The closed system of equations for turbulent flows of incompressible fluids

[2] consists of the averaged continuity Equation (13a), and the vector Reynolds

Equation (13b). The form of additional equations depends on the turbulence

model adopted. For the two-equation k-εmodel, the Boussinesq assumption holds.

The first of these equations is the equation for transport of kinetic energy of

velocity fluctuations k, in the form (13c). The other is the equation for transport

of dissipation of kinetic energy of velocity fluctuations ε, in the form (13d).

Both equations contain the modelled terms. The last equation is the equation for
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Rotor Blade Geometry Optimization in Kaplan Turbine 213

turbulent viscosity µt, in the form (13e). The system of seven (scalar) equations

appears as follows:

∇·〈~U〉=0 (13a)

ρ
d〈~U〉

dt
= ρ~g−∇pe+∇·(2µe〈D〉) (13b)

ρ
dk

dt
=2µt〈D〉

2+∇·
((

µtσ
−1

k +µ
)

∇k
)

−ρε (13c)

ρ
dε

dt
=Cε1k

−1ε2µt〈D〉
2+∇·

((

µtσ
−1
ε +µ

)

∇ε
)

−Cε2ρk
−1ε2 (13d)

µt=Cµρk
2ε−1 (13e)

In the above, pe denotes effective pressure pe := 〈p〉+
2

3
ρk, and µe denotes effective

viscosity µe :=µ+µt. The system contains seven unknowns 〈Ux〉, 〈Uy〉, 〈Uz〉, 〈p〉,

k, ε, µt, and thus constitutes a closed system as long as the constants Cµ, σk, σε,

Cε1, Cε2 are known.

1.4. Airfoil description

The profile is defined in terms of centerline (center surface) f and thickness

function ∆ distributed along the centerline [5–7]. The centerline is obtained as

the arithmetic mean of the pressure- and suction-side profiles of the airfoil.

The thickness function may be distributed in various ways depending on the

distribution coefficient δ (Figure 1). The coefficient may vary along the centerline

or have a constant value. In either case it takes on values within the range of [0;1].

This may be written as δ : IR→ [0;1] (on a 2D plane) or δ : IR2→ [0;1] (in 3D

space). The pressure-side profile is obtained from f − (1−δ)∆, and the suction-

side profile from f+δ∆. This holds for the planar case, as well as for the spatial

case (in cylindrical coordinates, for instance). Within the scope of the current

project, the coefficient δ has been held constant. The original, unoptimized airfoil

results from setting δ= 1
2
(Figure 2). For thickness distribution coefficient δ=0,

the centerline coincides with the suction-side profile, while for δ=1 the centerline

coincides with the pressure-side of the airfoil. In general, there is no reason why

δ=0 should not exceed 1 or drop below 0. However, if this is allowed, the centerline

will no longer be contained within the boundaries of the airfoil profile.

Figure 1. Airfoil geometry
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214 M. Banaszek and K. Tesch

Figure 2. Rotor blades for δ= 1
2
(top) and δ=0 (bottom)

2. CFD

2.1. Flow configuration

Figure 3 shows the model hydraulic turbine configuration. Within the scope

of the current work, the investigated region has been bounded within transverse

planes 0 and 3 (Figure 4). As a result, the draft tube, located below plane 3, is not

accounted for in the investigation. A uniform inflow at plane 0 has been assumed.

Plane 1 divides the preliminary stator (6 vanes) from the stator ring proper (12

vanes). Plane 2 divides the stator from the rotating rotor.

Figure 3. Flow configuration of model turbine

Owing to the sixfold symmetry of the geometry, only a section has been

modeled, as shown in Figure 5. The computational volume is divided into three

regions. The first region encompasses the pre-stator, incorporating one of its

blades. The second region includes two blades of the stator proper (which has

twelve blades altogether, so that two fit in a sixth section). This match between the

two stator sections obviates the need for scaling the interface between successive

regions, which otherwise could introduce additional errors in the CFD solutions.

The third region includes one of the six rotor blades, and rotates with respect
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Rotor Blade Geometry Optimization in Kaplan Turbine 215

Figure 4. Part of flow configuration with dividing planes marked

Figure 5. 1
6
sector of flow volume

to the stator regions with an angular velocity of 650RPM. One of the region’s

bounding surfaces (the outer casing of the duct) is set stationary within the

absolute frame.

2.2. Principal boundary conditions

The principal boundary conditions include:

• Inlet: The mass flow rate is ṁ=74kg/s, normal to plane 0 in Figure 4. The

arbitrarily adopted k-ε turbulence model called for additional parameters

k i ε to be set. A typical level of turbulence at inlet corresponding to

turbulence intensity τt = 5% and ratio of turbulent to molecular viscosity
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216 M. Banaszek and K. Tesch

µt/µ=10 has been assumed. The parameters k i ε at inlet may be computed

on the basis of τt i µt/µ using the formulas [2] k=3〈U〉
2τt2

−1, ε= cµρk
2µ−1t .

• Outlet: Due to the strong variability of velocity at the outlet plane (plane

3 in Figure 4) it would be ill-advised to set a constant pressure distri-

bution there. An arbitrarily constant pressure would impose nonphysical

changes on the velocity field. For that reason it has been decided to set

a boundary condition in the form of a mass flow rate matching the inlet

flow rate.

• Walls: The walls have been set as impermeable and non-slip, forcing 〈~U〉=~0.

Naturally for the rotating walls of the rotor assembly, the corresponding

velocity is set as 〈~U〉= ~ω×~r.

• Periodicity: The periodic boundary conditions over 60◦ rotation were set

on boundaries resulting from taking a (1
6
) section of the flow volume.

• Interfaces: There are two kinds of interfaces. The first is a fluid-fluid

interface between the pre-stator region and the stator region, at plane 1.

This has been necessary, as the meshing on plane 1 on the pre-stator side

does not match the arrangement of the 1 plane on the stator side. The other

interface of type stator-frozen rotor is located at the 2 plane to account for

proper interaction between the stationary mesh on the stator side and the

rotating mesh on the rotor side.

The flow has been modeled as stationary. The interaction between the

stator and the rotor has been modeled as of the stator-frozen rotor type. This

means that the rotor is considered in a fixed position (but not zero velocity) with

respect to the stator. This may be justified under the circumstances, considering

that there is an unusually large gap between the stator and the rotor (necessary to

introduce measuring probes into the model turbine). Also, a stationary simulation

is significantly quicker than a transient one, an important factor when the large

number of runs needed for adequate optimization is considered.

2.3. Mesh

The individual computational regions were meshed with hexahedral ele-

ments. The mesh statistics for the entire volume is given in Table 1. A meshed

rotor blade for thickness distribution coefficient δ= 1
2
is shown in Figure 6. The

rotor meshes included a gap between rotor and duct wall, set at 2.5% of the radial

distance between the hub and the outer wall.

Table 1. Mesh statistics

δ=0 δ= 1
2

Nodes 764541 790941

Elements 712656 738256
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Rotor Blade Geometry Optimization in Kaplan Turbine 217

Figure 6. Rotor mesh for δ= 1
2

3. Optimization

3.1. Approximation with neural nets

To reduce the CFD computational requirements, a neural net has been

employed to approximate loss coefficient ζ for varying thickness distribution

coefficients δ. The structure of the net is shown in Figure 7. It is an unidirectional,

two-layer net [8] with 13 weights. The first layer contains 4 neurons. As befits its

purpose, the net has a single input δ and single output ζ. The net was trained

using the method of error backpropagation over a small run of training data. The

training data are shown as dots on the plot in Figure 8. The learning error did

not exceed 2 ·10−5.

Figure 7. Neural net structure
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218 M. Banaszek and K. Tesch

Figure 8. Distribution of ζ as a function of δ according to CFD and ANN

Table 2. GA parameters and statistics

Value

Chromosome length 1

Population size 30

Tournament size 3

Crossover probability 0.7

Mutation probability 0.15

Variable range [0;1]

Generation count 20

Crossover count 203

Mutation count 89

Figure 8 shows a comparison between the ζ values obtained from CFD

simulation and given by the neural net, for thickness distribution coefficient

δ ∈ [0;1]. There is sufficient agreement between computation and approximation.

3.2. Optimization with genetic algorithms

The trained neural net was used to compute the target function values

during optimization by means of genetic algorithms, employing the AGA program

[9]. The program uses floating point representations of chromosomes [10]. Table 2

summarizes the basic data and statistics for the GA. As there is only one

Figure 9. GA convergence
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Rotor Blade Geometry Optimization in Kaplan Turbine 219

Figure 10. GA mutation and crossovers count

Figure 11. GA entropy and number of distinct individuals

independent variable and the representation is of the floating-point type, the

chromosome length is 1. The population size was taken as 30, which seemed

sufficient for a single variable optimization. Ditto for the number of generations,

taken as 20. Convergence is readily achieved in several generations.

Figure 9 shows the GA convergence. The symbol ζavg denotes the mean

loss coefficient for the entire population, while ζmin is the global minimum for the

entire optimization process. The optimum is obtained for δ≈ 0.

Figure 10 shows how the mutation count (mut) and the crossovers count

(cross) change during the optimization process for the probabilities taken from

Table 2. Figure 11 shows the number of distinct individuals for each generation

(diff) and the corresponding 2E factor, where E is entropy in the statistical sense.

These figures make it possible to monitor the population variability. Another

population variability indicator is discrepancy [11]. The discrepancy plot (D) is

shown in Figure 12. Discrepancy takes on values in the neighborhood of 0 for

random populations and close to 1 for uniform populations.

4. Results

4.1. Loss coefficients

Table 3 shows an example of computational results for a CFD run. Indexes

0–3 correspond to the cross-sectional planes as shown in Figure 4. The quantity
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220 M. Banaszek and K. Tesch

Figure 12. GA discrepancy D

Nda=
∫∫∫

V
2µ〈D〉2dV corresponds to the dissipative power in the mean flow, while

Ndt=
∫∫∫

V
ρεdV is the dissipative power of turbulence. The total dissipative power

is computed as Nd=
∫∫∫

V
〈φµ〉dV =Nda+Ndt. Subscript p denotes the pre-stator,

s the stator proper, and r the rotor. Loss coefficient ζ is computed for the entire

flow volume.

Table 3. Sample results

δ=0 δ= 1
2

p0 [kPa] 27.201 22.669

p1 [kPa] 26.639 22.106

p2 [kPa] 18.425 13.878

p3 [kPa] −0.337 −0.026

Nda,p [W] 0.038 0.038

Nda,s [W] 0.723 0.722

Nda,w [W] 1.685 1.480

Nda [W] 2.447 2.240

Ndt,p [W] 0.600 0.600

Ndt,s [W] 22.000 22.080

Ndt,r [W] 74.974 64.813

Ndt [W] 97.575 87.493

Nd [W] 100.021 89.733

ζp [%] 1.532 1.531

ζs [%] 3.731 3.737

ζr [%] 5.510 6.430

ζ [%] 4.898 5.332

Figure 13 shows the loss coefficient distribution as a function of the

thickness coefficient.

4.2. Pressure distribution

Figure 14 shows dimensionless pressure drops on the pre-stator, the stator,

the rotor, and overall. A dimensionless drop means the ratio of the actual pressure

drop value to the value obtained for the original configuration (with δ = 1
2
) for

the entire flow volume. Under this definition, the point (1
2
,1) denotes the overall
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Rotor Blade Geometry Optimization in Kaplan Turbine 221

Figure 13. Distribution of ζ as function of δ

Figure 14. ∆p+ distribution as function of δ

Figure 15. Distribution of p over the turbine for δ=0
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222 M. Banaszek and K. Tesch

Figure 16. Distribution of p over the turbine for δ= 1
2

Figure 17. N+da distribution as function of δ

Figure 18. N+dt distribution as function of δ
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Rotor Blade Geometry Optimization in Kaplan Turbine 223

Figure 19. Distribution of 〈φµ〉 over the turbine for δ=0

Figure 20. Distribution of 〈φµ〉 over the turbine for δ=
1

2

pressure drop for δ = 1
2
. It may be observed that for falling δ the pressure drop

increases. The changes occur principally in the rotor region, governing the overall

trend. Changes at the stator are negligible.

Figures 15 and 16 show the distribution of hydrodynamic gauge pressures

over turbine surfaces.

4.3. Dissipation intensity

Figure 17 shows the dimensionless dissipated power of the mean flow, while

Figure 18 shows the dimensionless dissipated power of turbulent fluctuations over

the pre-stator, stator, rotor, and overall. The dimensionless dissipated power

is defined as the ratio of the actual dissipated power to the dissipated power

obtained for the original configuration (with δ = 1
2
) for the entire flow volume.
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224 M. Banaszek and K. Tesch

Figure 21. Streamlines for δ=0

Figure 22. Streamlines for δ= 1
2

The point (1
2
,1) denotes the overall dissipated power for δ= 1

2
. The dissipation in

the mean flow increases in an inverse manner with δ. The dissipation in turbulent

fluctuations has local maxima and minima dependent on δ. Table 3 also indicates

that Ndt is larger by at least an order of magnitude than Nda [3, 4].

Figures 19 and 20 show the distribution of 〈φµ〉 over the turbine. The graph

scale has been truncated on the upper bound for both plots.

4.4. Streamlines

Figures 21 and 22 show streamlines in an absolute frame of reference for

both values of δ. Streamlines are traced for the stator proper (w/o pre-stator)
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and the rotor. It may be observed that rotor blades extract most of the angular

momentum generated by the stator.

5. Conclusions

• The airfoil minimizing loss coefficient ζ is obtained for thickness distribution

coefficient δ=0. This means that the airfoil is more curved with respect to

the original blade at δ= 1
2
.

• More power is dissipated with lower values of δ, but the pressure drop

increases as well, which causes the overall loss coefficient to decrease.

• The optimizing calculations indicate that by merely changing a constant

thickness coefficient for the rotor, the loss coefficient ζ may be reduced by

about 1.4, for the flow configuration in question.

• It is possible to further reduce coefficient ζ by adjusting the shape of the

stator vane along with changes in the rotor blade.

• The loss coefficients for the individual regions of the flow volume (i.e. the

stator, rotor, etc.) do not add up. Higher values of ζ were obtained for

the rotor. It must be remembered, however, that the computation did not

include the flow in the draft tube.
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