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1. Introduction

The theory of Markov chains is a well-developed field of mathematics whose applications arise
in many different areas of science and technology. However, there are some biological and physical
models which cannot be described by homogeneous chains. One of them is a model related to po-
pulation genetics. To examine the problem of the evolution of biologic system, the notion of a quadratic
stochastic process was introduced (see [8] for review). The fundamental issue is the study of the limit
behavior of such processes. In [3] the authors considered the concept of the ergodic principle (originally
this notion was introduced by Kolmogorov in [7]) for both quadratic stochastic processes and Markov
chains and discussed the relationship between them. Unfortunately, some parts of the results obtained
in [3] are false, namely Theorem 2.2 and those subsequent theorems which are partly based on it.
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In this paper we study different types of limit behavior, e.g. mixing and ergodicity, of infinite di-
mension nonhomogeneous Markov chains. We also examine the geometric structure of the set of all
discrete time nonhomogeneous Markov chains. We shall see that the set of Markov chains which are
mixing is not dense in norm operator topology, but the weaker property, i.e. norm almost mixing, is
generic for both norm and strong operator topologies. Finally, we improve on and generalize some

results presented in [3].
Throughout the paper we consider

o0

1 .

' =1x=(x) : Ixll1 = D |xa| <00, %y €R},
n=1

7={xel x>0, |xlly = 1}.

A matrix [Q;]; jen is called stochastic if
o0
Q>0 > Q=1
j=1

The convex set of all stochastic matrices is denoted by S.
Definition 1.1. A family of stochastic matrices
Q={[Q""lijen :m,neN,n—m > 1}

is called a discrete time (nonhomogeneous) Markov chain if for any natural numbers m, [, n such that
m < | < n the following condition, known as the Chapman-Kolmogorov equation, is satisfied:

']

mn __ m,l ~1n

Q" =D Qi
k=1

Every stochastic matrix defines a linear operator Q™": ¢! — ¢! as follows:
o
Q™ @) =2 Q"% x=(xn) €L
i=1

The norm of this operator is given by

Q™" = sup [Q™"x]l1 = 1.
XED

Stochasticity of (Q;;""); jen implies that
Q™" = 1and Q™"(2) C 2.
Notice that the Chapman-Kolmogorov equation can be presented in the form
Vi<icnen Q™" =0Q"oQ™,
where o stands for the composition of linear operators (multiplication of matrices).

Remark 1.2. Applying a Chapman-Kolmogorov property, a Markov chain Q may be considered as a
mapping

Nonr— Q" es.
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In fact,
Qm,n — Qn—l,n ° ° Qm+1,m+2 ° Qm,m+1
The set of all Markov chains will be denoted by .7, i.e.

7 = {(Q”'”+1)n>1 : Q™" are linear operators defined by {[Qg’"H],-JEN} }

To simplify the notation, elements of the set.# will be written in bold, i.e. instead of writing (Q™"*+! Jn>1
€ . we will write Q € .~.

Definition 1.3. Givent € [0, 1], a convex combination T(t) of two nonhomogeneous Markov chains
QandR € .7 is defined as

Tn,n+1 (t) — t_Qn,Tl-‘rl + (1 _ t)Rl’l,TH-l.
Moreover,

™) =T V() o ... o T2 o T™™ (1) for t € [0, 1].
It follows that T(t) € .~ for every t € [0, 1] and, moreover, [0, 1] > t — T(t) € .7 is continuous
(when .7 is endowed with a suitable topology), and T(0) = R, T(1) = Q. In particular, the set .” has
an affine structure and therefore is arcwise connected.

There are several topologies considered in studying the geometric structure of the set .. We have:

(1) The sup norm operator topology induced by metric py sup: - X . — R U {0} defined by
Prsup(Q T) = sup [|Q™ " — T

(2) The >’ norm operator topology induced by metric p, s : . x . — Ry U {0} defined by
o0

1
Pns(QT) = D —|[[[QmmH! — pmmHl)

m
m=1 2

(3) The 3 sup strong operator topology induced by the metric pso. sup : - X.¥ — R U{0} defined

by
< 1 1, 1,0
Pso.sup(Q, T) = Z ol 5%13 [Qm™m+ e — pmm+ e()||1,
=1
where {e™} is a standard basis in ¢!, i.e.e™ = (0,0, ...,1,0,...),m € N.
—_——
m
(4) Ehe > 2 strong operator topology induced by the metric p5. 3 : . X . — R U {0} defined
y
- 1 1,0 1,
Ps0.3(Q, T) = Z W”Qm'm+ e — pmm+ e()||1,
m,l=1

where {e™} is a standard basis in £'.
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Clearly pn. sup generates the strongest topology and ps,. - generates the weakest. Note that metrics
Pn.y and pso syp cannot be compared. Indeed, consider Q; = (Qjm’m+1)j>1 € .7 defined as follows:

Q, ift<m<j,

Qjm,m+1 —
I, ifm =],

where [ stands for the identity operator and Q = (Q)m>1 is such that Q 7 I. Then

o
1
prx (@@ =3 o lIQnT - Q|
m=1
i x 1
=2 Splle—all+ X S lr—all
m=1 m=j

On the other hand,

o
1 1
Pso.sup(Qj, Q) = > 5 sup ||Qjm'm+ e® — gmmtioM,
=1

- 1 [ [
=2 lle” el > 0.
=1

Thus, pso. sup(Qj, Q) —+ 0asj — oo. It follows that p;,, s is not stronger than pso. syp.
Now let us define Q; = (Q__I-m’m+1)j>1 € .7 as follows:
Qjm,m+1e([) _ eV, if1 <1<,
eM, ifl > j,

o0
that is, Qjm,m+15 = (X1 + X XX, ...,%,0,...) forany x = (x1,xp,...). Note that Q; =
k=j+1

(Q)m>1 = (Q;,Qj,...). Consider I = (I,1,...) € .7, where I stands for the identity operator.
Observe that

< 1 mm+1 (I i

Pso.sup(Q, D) = ZES%I) ||Qj A1) —Ie()||1
=1

Zl +1 (1 I
m,m

— 7 ”Q] e() e()”l

=1 2

S Lo _ 00 S ! :
=Z§||€ —e ||]=Zj.2=2j_l—>0a51—>oo.
I=j+1 I=j+1

On the other hand,

e e]

1
@D =3 Q™" 1|

> 1
=<Z 2m)|||Qj—I|||=1~2=24»Oasj—>oo.
m=1

Thus pso. sup is not stronger than p;,. . It follows that the metrics o, 3= and 0. sup are not comparable.
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The relationships between the considered metrics are illustrated in the diagram below:

Pn.sup

»

«

Pn. > Pso. sup

«

»

Pso. 3"

2. Norm mixing

This paper is dedicated to the geometric structure of the sets of those operators Q € .~ which have
asymptotically stationary density (we call them mixing). Of course we have different types of mixing
depending on considered topologies. In this section we examine the strongest case, the norm mixing.
We start with

Definition 2.1. A nonhomogeneous Markov chain Q is said to be norm mixing, if there exists a one-
dimensional (stochastic) projection P € S such that for every m we have

: m,n _ —
lim_[[|Q™" — P||| = o.
The set of all norm mixing Markov chains is denoted by ..

Remark 2.2. A mixing Markov chain is sometimes called norm asymptotically stable. Equivalently it
may be defined by

. mn,, —
ngrgoigg Q™ x —plli =0,
where p € 7 is a fixed probabilistic vector (then each row of the limit matrix P coincides with p).

The following theorem shows that norm mixing nonhomogeneous Markov chains are rare, which
is the opposite of the homogeneous case (cf. [2, Theorem 2.4]). This supports what was remarked on
by losifescu [5] that norm mixing is not a "natural” concept for nonhomogeneous Markov chains and
that .y, is a very restricted class (see [5, Remark 4]).

Theorem 2.3. The set .7y, of all Markov chains which are not norm mixing is pp_sup topology dense subset
of .#. Moreover, in this case its interior Int.7,, # {.

Proof. We will show that
Vng Veso0 HQ)key,fm pn.sup(Q_a Q) < 2e.
Given an arbitrary Q € .7 and 0 < ¢ < 1 consider a convex combination

Q;ﬂ,m+1 — (] _ E)Qm,m+1 4 SRm'erl,
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where R € . is defined as follows: for any vector x = (x1, X2, ...) € 2,

R™™ 1y = (0,...,0,x1, %, ...).
———

m

Then
Pr.sup(@i, @ = sup||(1 — £)Q™ " 4 eR™MHL — M|

= esup [[|[Q™ ™! — R™MH||| < 2e.
m

It remains to show that Q, ¢ .#n. Suppose that, on the contrary, there exists p € % such that

nlggo Q"p = p. Since p € 2 then there exists M € N such that

M
j=1

Hence

M M
Z(Q;n,np)j - ij >1—¢, n— oo.
j=1 j=1

On the other hand it follows from the definition of Q, that

M
> @M p) <1 —e,
j=1

when m is large enough, which is a contradiction. Indeed, if m > M, then

M o0
Z(Q*m,ﬂ-i-]p)j -1— Z (ka,n+1p)j
j=1 Jj=M+1

(e.¢]

=1- Y (" @)

j=M+1

o0
=1— > (Q—eQ""" +erR" ) (Q""p));
Jj=M+1

o0
<l1—e > R"™NQMp)=1—-e.
j=M+1

J

It follows that .7, is pn. sup dense in .~ (in particular S 1S pn. 5 dense).

It remains to show that Int.7,,, # @ for the pj_s,p topology. For this consider the open ball

KR, 1) ={T€ .7 ppap(T.R) <1},
where as before

R™™ 1y = (0,...,0,x1, %2, ...).
—_——

m

We will show that K(R, 1) € .75,.. In fact, if T € K(R, 1), then for some ¢ > 0

sup ”Tm—l,m& - Rm_Lm&lh < Pnsup(T,R) =1 —¢.
X€ED
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In particular, foreverym > M > 1and x € 2,

M
Z(To’mﬁ)j < Pnsup(T,R) =1 —¢.
j=1

It follows that

M
sup lim sup > (T*"X); < oo sup(TR) =1 —¢ <1,
MeN m—00 =

and therefore T has no invariant densities. Hence T € .#,,. O

Topologies on .7 generated by oy sup and oy, 3 differ. In fact, we have
Proposition 2.4. The set %, is pp. 3 dense in ..
Proof. Let T € .7 and € > 0 be taken arbitrarily. We find M € N such that le—,l < ¢.Define

m it m < M,

E, ifm> M,

m,m—+1
Te

where Ex = ((Zjoi] Xj) ,0,0,.. ) Clearly E = (E™™1),~; € .7 (where for every m € N,

E™m+1 — FYis a stochastic projection (and it is norm mixing). We find

. mmn,, —
nlggosgglln x—(1,0,..)]K =0.

It follows that
Vmen  lim [|IT" — E||l = 0.

Hence the Markov chain T, is norm mixing. Obviously,

M o)

1 1
pn.y(TT) = > 2—m|||r'"""“ =T+ > z—mnw’"*"‘“ —E||
m=1 m=M+1
1 1
<2 — = ——
2M 2M—1

We conclude that T, € %, [

The metric oy, sup is much more relevant concerning the geometric structure of .. It will be used
in the sequel.

Definition 2.5. A (nonhomogeneous) Markov chain Q is said to be norm almost mixing, if
. mn, _ Am,n _
VineN ngrgojxuepg Q™ % — Q™ 'yl = 0.
The set of all norm almost mixing Markov chains is denoted by ..
In [6] norm almost mixing is called norm completely mixing. The reader will find the following

theorem as a generalization of genericity of norm completely mixing for homogeneous Markov chains
(cf. [6, Theorem 3]).
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Theorem 2.6. %, is a dense G subset of .7 in both py_sup and pn. 5= topologies.

Proof. First we will show that the set %4 is @ o, sup dense subset of .7, i.e. we will show that

VQey Ves0 3Q€ey’nam pn.sup(Qa Q‘g) < 2¢

(the denseness in p,. 3 metric follows from Proposition 2.4 or from the fact that pon 57 < on. sup)-
Given an arbitrary Q € . and 0 < ¢ < 1 consider a convex combination

QUM = (1 — &)™ + ¢E,

where E is such as in the proof of the Proposition 2.4 (clearly oy sup(Q, Q) < 2¢). By convexity
Q. € 7. For any pair of vectors X, y € 2 we have

Q" — @ MMyl = (1 —&)[Q" " "x — Q" MMyl
=(1- S)IIQ”_l’"(&—x)Ih
1 =2ollx—yl.

Moreover,

” m,n&_ ng’nX”] — ”Q'Tl*],Tl(Qﬂl‘l‘l,l’l*]K mn 1y)||‘1

<A -9llQ™ 'x— Q™" ylh, xye 2.

Iterating the last inequality for any x, y € 2 we have

Q"% — Q™ "yl < (1 —&)" "llx — ylh,
and so

Q" "x — Q" "yl < 2(1 —&)" ™.

As the above inequality holds true for any pair of vectors x, y € 7, then

sup [|Q"x — Qi <2(1 —&)" ™.
XYED

Therefore,

Jim sup | x —QMylly = 0.

XE_Z

Thus “em is a dense subset of .7 in both p,, - and pp. syp metrics.
It remains to show that .4 is a G5 subset of .. Observe that the sequence |Q™"x — Q™"y||; is
nonincreasing. Indeed,

1™ — Q™™ yll = 1™ @™ ") — Q" @™ )
<IQ™"x—Q™"ylh.

It follows that the sequence sup [|Q™"x — Q™"y||; is nonincreasing. Therefore, we obtain that
X.YED -

_ . : mn, _ Amn _
Fnam = [QE & VmeN nl_l)rgo&sxuep@ Q™"x —Q X”] = 0]
00

XyeP k

1
[QGV sup [Q™"x —Q™"y[l; < }
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To finish the proof we only need to notice that for fixed m < n the function

3 Q> sup |[Q™"x — Q™"
X,y€P -

is pp. > continuous. Hence, “nqm is a Gg set for the metric p,. s (soitis a Gs set for any stronger metric
like oy, sup). O

3. Strong operator topology mixing
In this section we study the strong operator topology mixing. We begin with
Definition 3.1. A nonhomogeneous Markov chain Q is said to be strong almost mixing if
Vim Vi Vo lim Q™" — ™"k =o.
The set of all strong almost mixing Markov chains is denoted by .Zsgp,.

Theorem 3.2 (Schur). A sequence (x,) C £! is weakly convergent if and only if it converges in norm, i.e.
weak and norm convergence of sequences are equivalent.

Clearly, we have
Corollary 3.3. A nonhomogeneous Markov chain Q is strong almost mixing if

Vi Vi Vj w— nl_l)rlgo(le’n — q'r.n,n) =0.

The strong almost mixing property means that the rows of the matrix (Qi'jn ’")i)jeN tend to be the
same. Obviously .#pam C Fsam. We easily obtain the following:

Theorem 3.4. The set sqm is a 3. > strong operator topology (i.e. in pso. 5 ) dense Gs subset of 7.

Proof. It remains to show that .%, is a strong operator topology Gs. For this notice that

Fam = Q€ 7 Vnert View View Jim 101" = Q"1 = 0]

ﬁﬁ?ﬁ%ﬁ U [Qeywd“—QWh<H

m=1i=1j=1I1=1 N=1 n>max{N,m}

(we notice that n — [|Q"" — Qf’””l = |Q™"e® — QmmeW || is nonincreasing). To end the proof
observe that for fixed m < n the function

73 Q- 1" = Q™" [y
is continuous for the metric o5, 3. Therefore, .54y is a Gs set for the metric pso. 5. Since the metric
Pso. sup 1S stronger than ps, s, it follows that .#say, is a Gs set for g, sup as well. [
Definition 3.5. A nonhomogeneous Markov chain Q is said to be strong mixing, if

Elpoe@ Ym Vi nl_l)ngo ”len —pollh =0.

The set of all strong mixing Markov chains is denoted by .%,.
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Clearly %m € Sm.
We easily observe the following

Corollary 3.6. If a nonhomogeneous Markov chain is strong mixing, then it is strong almost mixing.

Theorem 3.7. The set .7, of all Markov chains which are not strong mixing is pso. sup topology dense
subset of ..

Proof. Given an arbitrary Q € . and 0 < ¢ < 1 consider a convex combination
mm+1 __ m,m—+1 m,m—+1
% — (1 - S)Q + &R 3

where R € .77 as before is defined as follows: for any vector x = (x1, X2, ...) € 2,

m+1
R™MHly —(0,...,0,x1,X2,...).
—_—
m

Then

o0
1
Pso.sup(Qes @ = > 7 sup [1(1 — £)Qm el 4 ggmmtle® _ gmmtle®y,
=1
< 1 1,.(1 1.1
=ey 5i SuPp [Qmmtle® _ gmmt1oM) < 2g.
=1

Similar arguments to those used towards the proof of the Theorem 2.3 imply that Q, ¢ #,. Indeed,
suppose that, on the contrary, there exists p, € # such that for every m € N and every p € 2,
nlggo 1Q""p — Poll1 = 0. Since py € 2 then there exists M € N such that

M
D p>1—c¢.
=1

Hence

M

M
> QM) — D pgi>1—¢, n— oo
= =

On the other hand it follows from the definition of Q,, that
M
QM) <1,
j=1

when m is large enough, which is a contradiction. [

4. Ergodic principle

This section is devoted to the ergodic principle for nonhomogeneous Markov chains and quadratic
stochastic processes and the relation between them. We recall results presented in [3]. We begin with

Definition 4.1. A Markov chain Q is said to satisfy the ergodic principle if
. m,n mmn, __
nlg-go Q™ — Qj’k | =0

is valid for every i, j, k, m € N.
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Notice that the above definition states that the sequence (Qi'_"’" — Qﬁ’")neN converges to 0 in weak*
topology in £1.

Remark 4.2. There are a few more relevant works in the literature dealing with the topic of limit
behavior of nonhomogeneous Markov chains (see e.g. [4,5]). The reader should be warned that authors
do not always use the same names for the same notions, e.g. in [5], weak ergodicity is what we refer
to as norm almost mixing and strong ergodicity is what we call norm mixing.

Ganikhodjaev et al. (see [3, Theorem 2.2]) discussed relations between the following conditions:
For a nonhomogeneous Markov chain Q:

(i) Qsatisfies the ergodic principle.
(ii) For every i, j, m € N the following relation holds:

lim [|Q™"e® — Q™" |, = 0.
n—oo
(iii) For every ¢, ¢ € 2 and m € N the following relation holds:

. mn___ ~mn —
Jim_[[Q™"g — Q™" |y = 0.

Note that all three conditions are not equivalent in general. Clearly (ii) and (iii) are equivalent and
they imply (i). However, (i) is essentially weaker and does not imply (ii) and (iii), as the ergodic principle
is concerned with weak* convergence (and therefore the Schur theorem is not applicable). Obviously in
the finite dimension case all three conditions are equivalent. Note that (ii) is the strong almost mixing
condition.

In fact, repeating arguments used in the proof of Theorem 2.2 [3] the following generalization of
equivalence of the conditions (ii) and (iii) may be shown. We have

Theorem 4.3. Let Q be a nonhomogeneous Markov chain. The following conditions are equivalent:

(i) Qis strong mixing.
(ii) There exists py € 2 such that for everym € N and everyp € 9

. mn _
Jm(1Q7p = pollh = 0.
Ganikhodjaev et al. [3] have proved the following theorem:

Theorem 4.4 [3]. Let Q be a Markov process. If there exists a number kg € N and a sequence {A,},
0 < Ay < 1foreveryn € N, satisfying the conditions

o0
Z)‘n = 00, (1)
n=1
TR (1= A
Z Mz = 2 — O0asn — o0 2)
o =2
and such that
OJL;]'" >, foralli,neN, 3)

then the Markov process satisfies the ergodic principle.

We will generalize the result above by showing that the condition (2) is not essential. Moreover, in
(3) the state kg is not necessarily fixed (i.e. may depend on each step n).
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Recall that a Banach lattice E is called an AL — space if its norm is additive, i.e.if |[x+y|| = ||x]| + |||

wheneverx € E,x > 0andy € E,y > 0.

o0
Remark 4.5. The norm || - ||; on the cone Ei_ ={x = () : |xl1 = Zl |xn| < 00, x, = 0} is
n=

additive. Therefore £! is an AL — space.

Note that ifx, y € 2 then
lx —xAyllh =1—llxAylh
and
lx =ylli =20 =[x Ayll1),

where x A y = min{x, y}.

Theorem 4.6. Let Q be a Markov chain. If there exists a sequence (An)nenN, 0 < An < 1, satisfying (1)

and such that for some sequence of states ky
Qi ">y forallineN,

then Q is norm almost mixing (and therefore Q satisfies the ergodic principle).

Proof. First we observe that for every x, y € 7 and every natural number n we have
Q" "x — "Myl < (1= A)lix = ylli < 2(1 = Ap).

Applying (4) we obtain
Q" "x A Q" Myl = A

foralln € Nandallx,y € 2. Therefore, repeating arguments from [1],

Q™ "x — Q" "yl

= Q" "M x—xAy) — Q" —x AW

_ ‘Qn—l,n( X—XNYy )_Qn—l,n( y—XAY )
1—[lx Ayl 1—1xAylh

=[1Q" ""u— Q" "l (1 — [Ix Ayll1)

=2(1— [lx Ayll)A = 1Q" "u A Q" " y]y)

<21 =) =[x Ayl

= (1= 2)llx —ylh,

A =lix Ayl

where
X—XANY Yy—XANYy
u= = y=-= = and uly = [vli =1.
1—lx Ayl 1—1lx Ayl
Therefore,
sup [[Q™"x — Q™" [y = sup [|Q" Q™" x) — Q" MQ™ ) [y
X.y€2 XyED
< (1= Ap) sup Q™" 'x — Q™" y|ls.
X,yeD

(4)
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Iterating the last inequality we have

sup |Q™"x — Q™" "yll1 < sup (1 —A)(1 — A1) ... (1 = AmgD) IX — ylIt

X.ye2 X.yeP
n
=2 [] a-x).
Jj=m+1

Because (An)nen, 0 < Ay < 1,n € N, satisfies (1), then

n
[T a=2%)—0asn— .
j=m+1

Therefore,

lim su My —Q™M"y|ly =0
i SUp, Q™ x — Q™" ylh
which completes the proof. [

The above theorem gives us a constructive method for norm approximation of nonhomogeneous
Markov chain Q € .~ by norm almost mixing Markov chains. In fact, given Q € .~ and any control
sequence 0 < &, — O such that >7°, &, = 00, consider a convex combination

QM = (1= Q™ + ek,

where E = (E™™1),~; € .# (here for every m € N, E™™+1 = E) s defined as follows: for any
vectorx = (x1,X2,...) € 2,

Ex = ((/io:x]) ,0,0,...).

We get

Qe+t —™™|| < 260 — 0,

hence asymptotically Q""" is shadowing Q""*1. Clearly, (Q"*")n>1 € Fnam.
We will now discuss the limit behavior of quadratic stochastic processes. We will use the concept
considered in [3]. We start with

Definition 4.7. The family of functions P = {Plgskt] i,j,ke N,s,t e Ry,t —s > 1}issaid tobe a

quadratic stochastic process (QSP) if for fixed s, t € R it satisfies the following conditions:

(i) ,Eskt] 0, Z P,Sskt] = 1foranyi,j, k € N.

(11) P[s t] [s t]

P} forany i, j, k € N.

(iii) for any initial distribution x0 e 2,x0 = (x%o) Xgo)’ ...)ands <r < tsuchthatt —r > 1,
r—s>1one of the following equations is satisfied:

(iiiA) Ly = 5 PPl

m,l=1
ooy plsitl X [s.r] pls.rl plr.cl () (s)
(iiiB) Py" = 2 Py Pig'n Pl Xm
m,l,g,h=1

o0
where x,(cr) = > Pjokr]x(o)x(o)
i,j=1
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We will consider discrete time QSP, i.e. P = {Pi[jf}fl}, wheres, t € N.

Definition 4.8. A QSP P is said to satisfy the ergodic principle if

. [m,n] [m,n]| __
nlggo Pij,k — Tuvk 0

is valid for every i, j, u, v, k € N and arbitrary m € N.

It is known that certain Markov chains can be defined by means of QSP (see [3]). Let

o0
Hl;"’" = ZPi[l'j}’n]x,(m), i,j e N.
=1

Theorem 4.9 [3]. IfPis a QSP, then H = {H;;""} is a Markov chain.

Ganikhodjaev et al. (see [3, Theorem 2.6]) discussed the relation between the QSP P and the Markov
chain H. In fact, taking our previous remark into consideration, they proved the following:

Theorem 4.10. Let P be a QSP. The following conditions are equivalent:

(i) Pis strong almost mixing, i.e.

VmeN Vijuven  lim 1P — PRy =0,

(ii) The Markov chain H is strong almost mixing.

The following generalization of Theorem 3.4 [3] is a direct application of our Theorem 4.6. We have

Theorem 4.11. Let P be a QSP. If there exists a sequence (Ap)nen, 0 < Ap < 1, satisfying (1), and such
that for some sequence of states ki,

PI M > A forall ijlin €N,
then P is strong almost mixing (and therefore P satisfies the ergodic principle).

Proof. It is sufficient to note that

o0 o)
n—1,n __ [n—1,n]_(n—1) (n—=1) __
Hi, " =2 Pk, X =2 A =
=1 I=1

and then use Theorem 4.10. [
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