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Abstract—The problem of extraction/elimination of a nonsta-
tionary complex sinusoidal signal buried in noise is considered.
This problem is usually solved using adaptive notch filtering
(ANF) algorithms. It is shown that accuracy of signal estima-
tion can be increased if the results obtained from ANF are
further processed using a cascade of appropriately designed
filters. The resulting adaptive notch smoothing (ANS) algorithms
can be employed in many off-line or nearly real-time on-line
applications. Whenever signal frequency varies in a sufficiently
smooth manner, the proposed fixed-interval and fixed-lag ANS
algorithms, based on a new, quasi-linear model of frequency
changes, outperform the existing solutions.

Index Terms—adaptive notch filtering, adaptive notch smooth-
ing, noncausal estimation

I. I NTRODUCTION

I N many applications (e.g. biomedical or telecomunication-
oriented) one arises at the problem of either extraction or

suppression of a complex sinusoidal signal (cisoid) buried in
noise [1], [2], [3]. When frequency of the cisoid is constant
and known, this problem can be solved using classical signal
processing tools known as notch filters. When frequency of
the extracted/eliminated signal is unknown, and possibly time-
varying, one can use adaptive versions of notch filtering
algorithms. The problem of adaptive notch filtering (ANF) was
intensively studied in the past three decades and has resulted
in a large number of ANF algorithms, differing in design
principles, tracking efficiency and computational complexity.
Adaptive notch filters are causal estimation schemes, which
means that at each time instant they yield signal estimates
that depend on past measurements only. Even though the
causality constraint is inevitable when tasks must be performed
in real time, quite a number of applications exist that allow
one to postpone measurement-based decisions by a certain
number of sampling intervals. For example, when removing
hum from a signal transmitted over a telecommunication
channel, a reasonably long decision delay is acceptable as it
will simply add-up to the (unavoidable) transmission delay. In
applications such as the one described above, usually referred
to as nearly real-time, signal estimation can be based on all
past and a certain number of “future” measurements, allowing
one to significantly improve estimation results. Adaptive notch
algorithms based on this principle are called fixed-lag adaptive
notch smoothers (ANS).
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There are also quite a number of off-line processing tasks,
such as removal of sinusoidal interference from a prerecorded
signal, where causality restrictions do not apply at all (since
the entire signal is available). Such tasks can be accomplished
using fixed-interval ANS algorithms.

Even though adaptive notch smoothers, whenever applica-
ble, yield considerably better results than adaptive notch filters,
they are almost absent from the signal processing literature.
The problem of adaptive notch smoothing was studied, in a
wider context of identification of quasi-periodically varying
systems in [4], [5] and [6]. Identification of quasi-periodically
varying systems can be carried out using algorithms known as
generalized adaptive notch filters/smoothers (GANF/GANS).
In the special, signal case, GANF/GANS algorithms reduce
themselves to “ordinary” adaptive notch filters/smoothers.

For real-valued systems/signals, simple versions of
GANS/ANS algorithms, obtained by means of compensating
estimation delays that arise in the frequency tracking and
amplitude tracking loops of GANF/ANF algorithms, was
proposed in [5] (for complex-valued systems/signals a
simplified version of this solution was presented earlier in
[4]). The approach described in [6] is more sophisticated.
Based on analysis of tracking properties of GANF/ANF
designed for complex-valued systems/signals, a cascade of
postprocessing filters that increase accuracy of frequency and
amplitude estimation was elaborated. It was shown that in the
important benchmark case, where the instantaneous frequency
of the signal drifts according to the random-walk model,
the proposed GANS/ANS algorithms are, under Gaussian
assumptions, statistically efficient frequency smoothers,
i.e., they reach the corresponding Cramér-Rao-type lower
smoothing bounds. They are robust to frequency/amplitude
model misspecification, and they yield better estimation
results than GANF/ANF algorithms irrespective of the choice
of adaptation gains.

In many practical applications narrowband signals (sound,
vibration) originating from rotating machinery, such as en-
gine or propeller, have quasi-linearly modulated frequency.
Whenever known in advance, this fact can be taken advantage
of, as it allows one to design adaptive notch filters with
improved tracking capability. In this paper we will propose
such an improved adaptive notch tracker, prove its statistical
efficiency (under Gaussian assumptions), and show how it
can be turned into a statistically efficient adaptive notch
smoother. For signals with smooth frequency trajectories the
new schemes yield better results than those described in [4]–
[6].
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II. PROBLEM STATEMENT

Consider the problem of extraction or elimination of a
nonstationary cisoids(t) from noisy measurementsy(t)

s(t) = a(t)f(t), f(t) = ej
∑t

l=1 ω(l)

y(t) = s(t) + v(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes the normalized discrete
time. We will assume that both the complex-valued amplitude
a(t) (incorporating the initial phase shift) and the real-valued
instantaneous angular frequencyω(t) ∈ (−π, π] are slowly-
varying quantities, and that

(A1) {v(t)} is a zero-mean circular white sequence with
varianceσ2

v .

A. Quasi-linear Frequency Changes

Consider frequency variations governed by the following
model

ω(t) = ω(t− 1) + α(t− 1)
α(t) = α(t− 1) + w(t) (2)

where α(t) denotes frequency rate andw(t) – the one-step
frequency rate change. According to (2) it holds that

(1− q−1)2ω(t) = q−1w(t) (3)

where q−1 is the backward shift operator. Since(1 −
q−1)2ω(t) = 0 implies ω(t) = ω0 + δωt, whereω0 and δω

denote arbitrary constants, (2) can be regarded as a perturbed
linear growth/decay model. When

(A2) {w(t)}, independent of{v(t)}, is a zero-mean white
sequence with varianceσ2

w

equation (3) defines the so-called second-order random-walk
model. The corresponding frequency changes will be further
referred to asquasi-linear.

B. Pilot ANF and Its Tracking Properties

Consider the following ANF algorithm, which combines
frequency tracking with frequency rate tracking

f̂(t) = ej[ω̂(t−1)+α̂(t−1)]f̂(t− 1)

ε(t) = y(t)− â(t− 1)f̂(t)

â(t) = â(t− 1) + µf̂∗(t)ε(t)
α̂(t) = α̂(t− 1) + γαδ(t)
ω̂(t) = ω̂(t− 1) + α̂(t− 1) + γωδ(t)

δ(t) = Im

[
ε(t)

â(t− 1)f̂(t)

]

ŝ(t) = â(t)f̂(t) (4)

where∗ denotes complex conjugation, andµ > 0, γω > 0,
γα > 0, γα ¿ γω ¿ µ, are small adaptation gains determining
the rate of amplitude adaptation, frequency adaptation and
frequency rate adaptation, respectively. We will show that this
algorithm, further referred to as pilot ANF, can favorably cope
with quasi-linear frequency changes. Note that forγα = 0 and

under zero initial conditionŝα(0) = 0, (4) reduces down to the
algorithm studied in [6] – the equivalence holds forγ = γω,
whereγ is the adaptation gain used in [6].

Tracking properties of the pilot ANF will be analyzed for
the constant-modulus signals(t):

(A3) |s(t)| = |a(t)| = a0, s(t) = ejω(t)s(t− 1), ∀t.
Using the approximating linear filter (ALF) technique – the

stochastic linearization approach proposed in [7] – one can
show that (see Appendix I) the frequency and frequency rate
estimation errors

∆ω̂(t) = ω(t)− ω̂(t), ∆α̂(t) = α(t)− α̂(t)

can be approximately expressed in the form

∆ω̂(t) = H1(q−1)e(t) + H2(q−1)w(t) (5)

∆α̂(t) = I1(q−1)e(t) + I2(q−1)w(t) (6)

where {e(t)}, e(t) = −Im{v(t)s∗(t)/a2
0}, is a zero-mean

white noise, independent of{w(t)}, with variance σ2
e =

σ2
v/(2a2

0),

H1(q−1) = (1− q−1)[γω + (γα − γω)q−1]/D(q−1)

H2(q−1) = q−1[1− γω − (1− µ)q−1]/D(q−1)

I1(q−1) = γα(1− q−1)2/D(q−1)

I2(q−1) = [1 + (µ + γω − 2)q−1 + (1− µ)q−2]/D(q−1)

and
D(q−1) = 1 + d1q

−1 + d2q
−2 + d3q

−3

d1 = µ + γω + γα − 3
d2 = 3− 2µ− γω

d3 = µ− 1.

All filters are asymptotically stable if adaptation gains fulfill
the following (sufficient) stability conditions:0 < µ < 1,
0 < γω < 1, 0 < γα < 1 andµ(γω + γα) > γα.

It is worth noticing that ALF approximations remain valid
for any uniformly small sequences{v(t)} and {w(t)}, i.e.,
they are not restricted to sequences obeying assumptions (A1)
and (A2). Additionally, the functional form of ALF equations
does not change when signal amplitude is also slowly varying
with time, i.e., when assumption (A3) does not hold true.
These facts have important implications when it comes to
robustness analysis of ANF/ANS algorithms.

We will show that under Gaussian assumptions:

(A4) The sequences{v(t)} and {w(t)} are normally
distributed

the optimally tuned algorithm (4) is a statistically efficient
frequency and frequency rate tracker, i.e., it reaches the
corresponding lower tracking bounds. First, note that – due
to orthogonality ofe(t) andw(t) – the mean-squared tracking
errors can be expressed in the form

E{[∆ω̂(t)]2} = J [H1(z−1)]E[e2(t)] + J [H2(z−1)]E[w2(t)]

= σ2
wFω(µ, γω, γα; κ) (7)
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TABLE I
OPTIMAL ANF SETTINGS AND THE CORRESPONDING NORMALIZED

LOWER TRACKING BOUNDS.

κ µopt γopt
ω γopt

α LTBω/σ2
w LTBα/σ2

w

10−10 0.0472 0.00113 0.0000138 2.05 · 105 8.21 · 101

5 · 10−10 0.0613 0.00192 0.0000306 9.09 · 104 6.28 · 101

10−9 0.0685 0.00241 0.0000432 6.39 · 104 5.58 · 101

5 · 10−9 0.0886 0.00407 0.0000955 2.82 · 104 4.26 · 101

10−8 0.0990 0.00509 0.000134 1.97 · 104 3.79 · 101

5 · 10−8 0.127 0.00852 0.000295 8.66 · 103 2.89 · 101

10−7 0.142 0.0106 0.000414 6.06 · 103 2.57 · 101

5 · 10−7 0.181 0.0177 0.000905 2.63 · 103 1.95 · 101

10−6 0.201 0.0219 0.00126 1.83 · 103 1.73 · 101

5 · 10−6 0.254 0.0359 0.00273 7.81 · 102 1.32 · 101

10−5 0.281 0.0443 0.00379 5.39 · 102 1.17 · 101

5 · 10−5 0.350 0.0712 0.00806 2.25 · 102 8.84
10−4 0.384 0.0869 0.0111 1.54 · 102 7.83

E{[∆α̂(t)]2} = J [I1(z−1)]E[e2(t)] + J [I2(z−1)]E[w2(t)]

= σ2
wFα(µ, γω, γα; κ) (8)

where

J [X(z−1)] =
1

2πj

∮
X(z)X(z−1)

dz

z

is the integral evaluated along the unit circle [X(z−1) is
assumed to be a stable proper rational transfer function] and

κ =
E[w2(t)]
2E[e2(t)]

=
a2
0σ

2
w

σ2
v

= SNR · σ2
w (9)

denotes the rate of nonstationarity of the analyzed signal [7]
(SNR=a2

0/σ2
v stands for the signal-to-noise ratio).

Optimal settingsµopt, γopt
ω and γopt

α should be chosen so
as to minimize (7) – to achieve the best frequency tracking, or
to minimize (8) – to achieve the best frequency rate tracking.
Note that in both cases the optimal values ofµ, γω and γα

depend exclusively on the rate of signal nonstationarityκ.
Even though the analytical expressions forFω(·) and Fα(·)
can be easily derived using residue calculus (the corresponding
formulas can be found e.g. in [8]), they are too lengthy and too
complicated to enable optimization in a “symbolic” form. For
this reason they are not presented here. For a given value of
κ, the optimal parameter values can be found using numerical
search – the results are shown in Table 1, along with the
corresponding values of lower tracking boundsLTBω and
LTBα, derived in Appendix II. Since it was found that the
functions Fω(·) and Fα(·) attain their minima for the same
values ofµ, γω and γα, only one set of optimal gains was
listed for each value ofκ.

There is a perfect agreement between the lower tracking
bounds and the values obtained by mininizing (7) and (8),
respectively – in some cases the computed values agreed up to
the six decimal place (however, due to space constraints only
two decimal places are shown). This means that, at least the-
oretically, the pilot ANF (4) should be a statistically efficient
frequency and frequency rate tracker. A special simulation
experiment was arranged to show that this actually holds true.
Fig. 1 shows comparison of theoretical values of the lower
tracking bounds with experimental results obtained for the
signal (2) obeying assumptions (A1)–(A4), 3 different SNR

10
−10

10
−8

10
−6

10
−4

10
−8

10
−6

10
−4

10
−2

10
0

κ

E
[|∆

ω
(t

)|
2 ]

10
−10

10
−8

10
−6

10
−4

10
−10

10
−8

10
−6

10
−4

10
−2

κ

E
[|∆

α(
t)

|2 ]

Fig. 1. Comparison of the theoretical values of the lower frequency
(upper figure) and frequency rate (lower figure) tracking bounds (solid lines)
with experimental results obtained for the signal with quasi-linear frequency
changes for 3 different SNR values: SNR=0 dB (◦), SNR=10 dB (×),
SNR=20 dB (+), and 13 different values of the rate of nonstationarityκ.

values (0 dB, 10 dB and 20 dB) and 13 different values of
the rate of nonstationarityκ, ranging from10−10 to 10−4.
The mean-squared frequency estimation errors were evaluated
(for the optimally tuned ANF algorithm) by means of joint
time and ensemble averaging. First, for each realization of
the measurement noise sequence and each realization of the
frequency trajectory, the mean-squared errors were computed
from 40000 iterations of the ANF filter (after the algorithm
has reached its steady-state). The obtained results were next
averaged over 20 realizations of{w(t), v(t)}. There are no
results for SNR=0 dB andκ ≥ 10−6 since the algorithm was
unable to track under such extremely difficult conditions.

Note the very good agreement between the theoretical
curves and the results of computer simulations.

Remark: The algorithm (4) is simpler than the state-of-the-
art multiple linear frequency tracker (MFT-L) proposed in
[9]. It also performs better than MFT-L. In [9] the authors
concluded that MFT-L nearly reaches lower tracking bounds
for frequency tracking and frequency rate tracking. The loss
in performance, compared to the optimal scheme, ranges from
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1% to 7% for frequency tracking and from 9% to 28%
for frequency rate tracking. Moreover, the optimal settings
for frequency tracking differ from those for frequency rate
tracking. We have shown that the algorithm (4) is able to reach
both bounds, and that it reaches them simultaneously.

C. From ANF to ANS

The pilot algorithm (4) and its approximate error model
(5)–(6) will serve as a starting point for derivation of an
adaptive notch smoother. Basically, we will follow the steps
of [6], i.e., we will design a cascade of postprocessing filters
increasing accuracy of amplitude, frequency, and frequency
rate estimation. We will show that, using such a multistage
scheme, one can significantly improve estimation results.
Moreover, for quasi-linear frequency changes and under Gaus-
sian assumptions, the ANS algorithm obtained in this way is
a statistically efficient frequency and frequency rate smoother,
i.e., when optimally tuned it reaches the corresponding lower
smoothing bounds.

III. F REQUENCY RATE SMOOTHING

Smoothed frequency rate estimates can be obtained by
means of lowpass filtering of the results yielded by the
pilot ANF. Such an approach will be called postfiltering. We
will start from considering a general postfiltering scheme,
incorporating any linear noncausal filter. Then we will show
that the best results can be obtained when the smoothing filter
is anticausal and “matched” to the frequency characteristics
of optimally tuned ANF. Finally, we will explain why the
proposed scheme should work satisfactorily for any slow
frequency rate variations, not necessarily of the random-walk
type, and for any adaptation gains, not necessarily optimally
tuned.

A. Optimization

Suppose that the entire measurement record is available up
to the instantN : Y(N) = {y(1), . . . , y(N)}. To obtain a
fixed-interval smoothed estimate ofα(t), further denoted by
α̃(t), we will pass the estimateŝα(t) through a noncausal filter
R(q−1) = . . . + r−1q

−1 + r0 + r1q
1 + . . .

α̃(t) = R(q−1)α̂(t) . (10)

The filter R(q−1) will be designed so as to minimize the
mean-squared frequency rate estimation errorE{[∆α̃(t)]2},
where ∆α̃(t) = α(t) − α̃(t). After elementary but tedious
calculations, one can show that

∆α̃(t) = (1−q−1)2X(q−1)e(t+1)+
1−X(q−1)

1− q−1
w(t) (11)

where

X(q−1) = R(q−1)S(q−1)

S(q−1) = 1− (1− q−1)I2(q−1)

= γαq−1/D(q−1) . (12)

Let ∆(q−1) = 1/(1 − q−1). Due to orthogonality of{e(t)}
and{w(t)}, one obtains

E{[∆α̃(t)]2} =
1
2π

∫ π

−π

h
[
X(e−jξ)

]
dξ (13)

where

h[X] =
XX∗

|∆|4 σ2
e + |∆|2(1−X)(1−X∗) σ2

w . (14)

Minimization of (14) can be achieved by minimizing
h[X(e−jξ)] for every value ofξ ∈ (−π, π].

Denote by

∂

∂z
=

1
2

[
∂

∂Re[z]
− j

∂

∂Im[z]

]

∂

∂z∗
=

1
2

[
∂

∂Re[z]
+ j

∂

∂Im[z]

]

the so-called Wirtinger derivatives – symbolic derivatives with
respect to a complex variablez, applicable to non-analytic
functions, such ash(·) [10].

To find the optimal transfer functionX0(q−1), i.e., the one
that minimizes (13), we will request that

∂h

∂X∗

∣∣∣∣
X=X0

=
X0

|∆|4 σ2
e − |∆|2(1−X0) σ2

w = 0 . (15)

Solving (15), one obtains

X0(q−1) =
2κ

2κ + (1− q−1)3(1− q)3
. (16)

One of the key observations of this paper is that the transfer
function X0(q−1) can be factorized as follows1

X0(q−1) ∼= S0(q−1)S0(q) (17)

whereS0(q−1) = S(q−1)|(µ,γω,γα)opt andµopt, γopt
ω , γopt

α de-
note optimal settings for the adaptive notch tracker (4). Since
the optimal gain settings for quasi-linear frequency changes
can’t be established analytically – they are a solution of the
set of high-order (> 4), and hence algebraically unsolvable,
polynomial equations – the verification of (19)mustbe carried
out numerically. Our check was based on comparison of fre-
quency characteristicsX0(e−jξ) andS0(e−jξ)S0(ejξ). Since
an ideal match was observed for all values ofκ ∈ [10−10, 0.1],
and all values ofξ ∈ (−π, π], we have the right to claim that
the possible factorization errors, if any, are negligible.

Combining (12) with (17), one arrives at the following
transfer function of the optimal postfiltering scheme

R0(q−1) =
X0(q−1)
S0(q−1)

∼= S0(q) . (18)

Since the filterS0(q) is anticausal, postfiltering can be realized
by means of backward-time filtering of the frequency rate
estimatesα̂(t) yielded by the pilot algorithm. When post-
filtering takes the form (18), the theoretical MSE, evaluated
numerically using the formula (13), coincides, with high
degree of precision, with the lower smoothing boundLSBα

1This relationship can be conjectured from an analogous result proved
analytically in [6] for a simpler case of random-walk frequency drift (see
equation (15) in [6]).
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derived in Appendix II. This completes our theoretical proof of
statistical efficiency. Later on, in Section IX, we will confirm,
by means of computer simulations, that the performance of
the optimized scheme based on postfiltering indeed reaches
its theoretical limit, exactly as predicted by the ALF-based
analysis.

B. Robust Smoothing Scheme

Although interesting from the theoretical viewpoint, the
facts established so far are of little practical value – the opti-
mality results are restricted to a specific model of frequency
rate changes and they were derived under assumption that the
optimal settings for the pilot filter are known. We will show
that when postfiltering has the form

α̃(t) = S(q)α̂(t) (19)

improvement in estimation accuracy can be expected for
any smooth frequency rate trajectory and forany choice of
adaptation gains. Our robustness analysis will be based on the
following relationship

α̂(t) = S(q−1)α(t)− I1(q−1)e(t) (20)

which is an equivalent of (6). Importantly, as already stressed
in Section II-B, ALF approximations (5) and (6) [and hence
also the relationship (20)] remain valid for any sequence of
small one-step frequency rate changes{w(t)}, i.e., for any
trajectory{α(t)} that is sufficiently smooth and hence can be
regarded as a lowpass signal.

Note that for zero-mean measurement noise it holds that
E[e(t)] = 0, leading to

E[α̂(t)|α(s), s ≤ t] ∼= S(q−1)α(t) . (21)

Note also thatS(q−1) is a lowpass filter with unity static gain
S(1) = 1. Hence, when the instantaneous frequency rate varies
slowly with time, the mean path of frequency rate estimates is
approximately the time-delayed version of the true trajectory

E[α̂(t)|α(s), s ≤ t] ∼= α(t− τα) (22)

where τα = int[tα] denotes the so-called estimation delay,
equal to the integer part of the nominal (low-frequency) delay
of the filter S(q−1). The nominal delay ofS(q−1) is defined
as

tα = − lim
ξ 7→0

dφ(ξ)
dξ

= − lim
ξ 7→0

φ(ξ)
ξ

where φ(ξ) = arg
[
S(e−iξ)

]
is the phase characteristic of

S(q−1). One can show that in the case considered

tα = I2(1) =
γω

γα
. (23)

Estimation delay is a source of the bias error (sometimes
called lag error) which, especially for large values ofτα, may
seriously degrade tracking performance of the pilot ANF.

For the smoothed estimate (19) the situation is different.
Combining (19) with (20), one arrives at

α̃(t) = S(q)S(q−1)α(t)− S(q)I1(q−1)e(t) . (24)

Since the nominal delay of the filterS(q)S(q−1) is equal to
zero, and its static gain is equal to 1, the steady-state (1 ¿
t ¿ N ) smoothed estimate is approximately unbiased

E[α̃(t)|α(s), 1 ≤ s ≤ N ] ∼= α(t) (25)

which considerably increases estimation accuracy. Importantly,
this conclusion holds true irrespective of the shape of the
estimated frequency rate trajectory (as long as it is sufficiently
smooth), and for any choice of adaptation gainsµ, γω andγα

that guarantee stable operation of the pilot ANF.

IV. FREQUENCY SMOOTHING

Frequency smoothing can be achieved in an analogous way
as frequency rate smoothing, i.e., by means of postfiltering
the estimated frequency trajectory yielded by the pilot ANF.
Similar to frequency rate smoothing, the proposed approach
to frequency smoothing is robust to modeling errors.

A. Optimization

Denote byω̃(t) the smoothed frequency estimate

ω̃(t) = P (q−1)ω̂(t) (26)

where P (q−1) = . . . + p−1q
−1 + p0 + p1q

1 + . . . is any
noncausal filter. We will proceed similarly as as in Section
III-A, i.e., we will find the filter P (q−1) that minimizes the
mean-squared frequency estimation errorE{[∆ω̃(t)]2}, where
∆ω̃(t) = ω(t)− ω̃(t). One can show that

∆ω̃(t) = (1− q−1)Y (q−1)e(t) +
1− Y (q−1)
(1− q−1)2

w(t− 1) (27)

where

Y (q−1) = P (q−1)Q(q−1)

Q(q−1) = 1− q(1− q−1)2H2(q−1)

= [γω + (γα − γω)q−1]/D(q−1) . (28)

Due to orthogonality of{e(t)} and{w(t)}, (27) leads to

E{[∆ω̃(t)]2} =
1
2π

∫ π

−π

g
[
Y (e−jξ)

]
dξ (29)

where

g[Y ] =
Y Y ∗

|∆|2 σ2
e + |∆|4(1− Y )(1− Y ∗) σ2

w . (30)

The optimal transfer functionY0(q−1) can be obtained by
solving

∂g

∂Y ∗

∣∣∣∣
Y =Y0

=
Y0

|∆|2 σ2
e − |∆|4(1− Y0) σ2

w = 0 (31)

which leads to
Y0(q−1) = X0(q−1) . (32)

Finally, after combining (32) with (28) and (17), one arrives
at

P0(q−1) ∼= S0(q−1)S0(q)
Q0(q−1)

(33)

whereQ0(q−1) = Q(q−1)|(µ,γω,γα)opt .
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Note that, rather unexpectedly, the optimal filter (33), de-
signed for frequency smoothing, differs from the analogous
filter (18) that was earlier designed for frequency rate smooth-
ing.

Similar to frequency rate smoothing, when postfiltering
takes the form (33), the theoretical MSE, evaluated numer-
ically using the formula (29), coincides, with high degree of
precision, with the lower smoothing boundLSBω derived in
Appendix II. In Section IX we will confirm, by means of
computer simulations, that the optimized scheme based on
postfiltering is statistically efficient, i.e., that its performance
indeed reaches the theoretical limit mentioned above.

B. Robust Smoothing Scheme

Based on (33) we propose the following postfiltering
scheme

ω̃(t) = S(q)T (q−1)ω̂(t) (34)

where

T (q−1) =
S(q−1)
Q(q−1)

=
γαq−1

γω + (γα − γω)q−1
=

b1q
−1

1 + c1q−1

b1 =
γα

γω
, c1 =

γα − γω

γω
.

Note that the filterT (q−1) is causal and the filterS(q) is
anticausal. Therefore, postfiltering can be realized by means
of forward-time filtering of the frequency trajectory{ω̂(t)}
using the filterT (q−1), followed by backward-time filtering
of the results using the filterS(q).

Robustness analysis of (34) is similar to that carried for
(19). Using (5), one can show that

ω̂(t) = Q(q−1)ω(t)−H1(q−1)e(t) (35)

leading to (in steady-state)

E[ω̃(t)|ω(s), 1 ≤ s ≤ N ] = S(q)T (q−1)Q(q−1)ω(t)

= S(q)S(q−1)ω(t) ∼= ω(t) (36)

for any frequency trajectory that can be modeled as a lowpass
signal and for any selection of stabilizing adaptation gains.

Suppose that postfiltering is restricted to the forward pass

ω̄(t) = T (q−1)ω̂(t) .

Then it holds that (in steady-state)

E[ω̄(t)|ω(s), s ≤ t] = T (q−1)Q(q−1)ω(t)

= S(q−1)ω(t) ∼= ω(t− τω)

where τω = τα is the delay introduced by the filterS(q−1)
– identical with that established in Section III for frequency
rate tracking.

V. A MPLITUDE SMOOTHING

Having smoothed frequency estimates, one can re-estimate
the amplitude coefficients. This can be achieved using the
frequency-guided version of the algorithm (4), obtained by
replacing the filtering-type (causal) frequency estimatesω̂(t)
with their smoothed (noncausal) counterpartsω̃(t), derived in
Section IV

f̃(t) = ejω̃(t)f̃(t− 1)

ε̄(t) = y(t)− ā(t− 1)f̃(t)

ā(t) = ā(t− 1) + µf̃∗(t)ε̄(t)

s̄(t) = ā(t)f̃(t) . (37)

Since the frequency-guided ANF (37) is identical with the
analogous algorithm studied in [6], we will simply repeat
conclusions reached there: the smoothed estimates of ampli-
tude coefficients can be obtained by means of backward-time
filtering of the estimates yielded by the algorithm (37)

ã(t) = F (q)ā(t) (38)

where
F (q) =

µ

1− (1− µ)q

is the unity-gain anticausal lowpass filter “matched” to track-
ing characteristics of (37). When the amplitude trajectory
{a(t)} can be modeled as a lowpass process and1 ¿ t ¿ N
(steady-state conditions), it holds that

E[ã(t)|a(s), 1 ≤ s ≤ N ] = F (q)F (q−1)a(t) ∼= a(t) (39)

which means that the smoothed amplitude estimates are ap-
proximately unbiased - see [6] for more details.

When smoothing is not incorporated, the corresponding
relationship reads

E[ā(t)|a(s), s ≤ t] = F (q−1)a(t) ∼= a(t− τa) (40)

where τa = int[ta] denotes estimation delay arising in the
amplitude tracking loop of the frequency-guided ANF, equal
to the integer part of the nominal delay of the filterF (q−1)

ta =
1− µ

µ
.

VI. F IXED-INTERVAL ADAPTIVE NOTCH SMOOTHER

The fixed-interval ANS algorithm can be obtained by com-
bining all steps described in Sections II-V and adding the final
signal reconstruction step

s̃(t) = ã(t)f̃(t). (41)

To reduce computational burden, we will rewrite all re-
cursions in an equivalent form that alleviates the need to
compute the quantitieŝf(t), â(t), f̄(t), ā(t), f̃(t) and ã(t).
The resulting cost-optimized ANS is summarized in Table II
(the output filter, specified in Table II, incorporates amplitude
smoothing). Computational load associated with this algorithm
is equal to 37 real multiply/add operations and 1 real division
operation per time update for the variant with frequency
rate estimation, and 33 real multiply/add operations and 1
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real division operation when frequency rate estimation is not
needed.

Unless a specific prior knowledge about the analyzed signal
is available, we recommend settinĝs(1) = y(1), α̂(1) = 0,
and adopting forω̂(1) the value that stems from spectral
analysis (parametric or nonparametric) of a short initial frag-
ment of the available data record. Less careful choice of
initial conditions may result in long initialization transients
(especially for small adaptation gains) but does not prevent the
pilot algorithm from reaching the small-error tracking mode
after a sufficiently long initial convergence period.

Remark: Denote byϕ(t) = ϕ0+
∑t

l=1 ω(l) the instantaneous
phase ofs(t), which under (2) obeys

ϕ(t + 1) = ϕ(t) + ω(t) + α(t) (42)

and suppose that the time-varying signal amplitude (real-
valued) can be modeled as a random-walk process

a(t + 1) = a(t) + n(t) (43)

where {n(t)} is a Gaussian white noise, independent of
{w(t)} and {v(t)}. Combining (2) with (42) and (43), one
can write down the analyzed signal in the following nonlinear
state space form2

x(t + 1) = Ax(t) + Bη(t)
z(t) = f [x(t)] + ζ(t) (44)

where the state vector is given byx(t) = [ϕ(t), ω(t), α(t),
a(t)]T, the observation vectorz(t) = [Re{y(t)}, Im{y(t)}]T
is comprised of the real and imaginary parts ofy(t), the driving
and measurement noise vectors are given byη(t) = [w(t+1),
n(t)]T andζ(t) = [Re{v(t)}, Im{v(t)}]T, respectively, and

A =




1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1


 , B =




0 0
0 0
1 0
0 1




f [x(t)] =
[

a(t) cos ϕ(t)
a(t) sin ϕ(t)

]
.

Based on (44), one can seek the solution to our estimation
problem by employing the classical extended Kalman filter-
ing/smoothing approach [11]. Not getting into details, we
note that extended Kalman smoothing (EKS) can be realized
by means of backward-time filtering of the results yielded
by the extended Kalman filter (EKF) – the corresponding
recursive algorithm is known as the Rauch-Tung-Striebel
(RTS) smoother. Note that, from the qualitative viewpoint, the
procedure proposed in this paper resembles the classical one.
The main difference lies in computational complexity. Even if
the special form of the matricesA andB is exploited to avoid
unnecessary multiplications, the backward-time filtering step
of the RTS algorithm requires performing 3 multiplications
and 1 inversion of4× 4 covariance matrices per time update.
This computational burden is further increased by the cost
of running the extended Kalman filter and saving its results
(including alla priori anda posterioricovariance matrices for

2For simplicity we ignore the problem of phase unwrapping.

TABLE II
FIXED-INTERVAL ADAPTIVE NOTCH SMOOTHER.

pilot filter :

ε(t) = y(t)− ej[ω̂(t−1)+α̂(t−1)]ŝ(t− 1)

ŝ(t) = ej[ω̂(t−1)+α̂(t−1)]ŝ(t− 1) + µε(t)

b(t) = |ŝ(t− 1)|2

δ(t) = Im[ε(t)e−j[ω̂(t−1)+α̂(t−1)]ŝ∗(t− 1)]/b(t)

α̂(t) = α̂(t− 1) + γαδ(t)

ω̂(t) = ω̂(t− 1) + α̂(t− 1) + γωδ(t)

t = 2, . . . , N

frequency rate smoother [optional] :

α̃(N) = α̂(N)

α̃(N − 1) = α̂(N − 1)

α̃(N − 2) = α̂(N − 2)

α̃(t) = −d1α̃(t + 1)− d2α̃(t + 2)

−d3α̃(t + 3) + γαα̂(t + 1)

t = N − 3, . . . , 1

frequency smoother :

ω̄(1) = ω̂(1)

ω̄(t) = −c1ω̄(t− 1) + b1ω̂(t− 1)

t = 2, . . . , N

ω̃(N) = ω̄(N)

ω̃(N − 1) = ω̄(N − 1)

ω̃(N − 2) = ω̄(N − 2)

ω̃(t) = −d1ω̃(t + 1)− d2ω̃(t + 2)

−d3ω̃(t + 3) + γαω̄(t + 1)

t = N − 3, . . . , 1

frequency−guided filter :

s̄(1) = ŝ(1)

ε̄(t) = y(t)− ejω̃(t)s̄(t− 1)

s̄(t) = ejω̃(t)s̄(t− 1) + µε̄(t)

t = 2, . . . , N

output filter :

s̃(N) = s̄(N)

s̃(t) = (1− µ)e−jω̃(t+1)s̃(t + 1) + µs̄(t)

t = N − 1, . . . , 1

t = 1, . . . , N ). In contrast with this, the algorithm summarized
in Table II does not involve any matrix calculations and does
not require saving any matrix-valued quantities. This results
in huge computational savings.

VII. F IXED-LAG ADAPTIVE NOTCH SMOOTHER

The fixed-lag ANS can be obtained by restricting postpro-
cessing of ANF estimates to the recentτ time-steps only.
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The resulting “sawtooth” smoothing algorithm is summarized
in Table III. To avoid confusion most of the quantities were
indexed byt.

Additional computational cost of carrying out postprocess-
ing steps, i.e., the computational overhead of smoothing,
grows linearly with the time lagτ , and is equal to22τ real
multiply/add operations per time update for the algorithm
that incorporates frequency rate estimation, and18τ + 4 real
multiply/add operations for the variant without frequency rate
estimation.

The tracking accuracy improvements offered by smoothing
gradually saturate with growingτ . Similarly as in [6], one can
argue that only marginal improvements can be expected when
τ is increased beyond the “principal” delay equal to

τ0 = max{τω, τa} .

VIII. E XTENSIONS

Using the framework described in [12] (see Section II-C
there), the proposed ANS algorithm can be easily extended to
the multiple frequencies case, where

s(t) =
k∑

i=1

si(t)

si(t) = ai(t)fi(t), fi(t) = ej
∑t

l=1 ωi(l)

andk denotes the number of cisoids embedded in noise.
The resulting algorithm is a parallel estimation scheme

combining k “local” ANS filters. The component filters are
designed to track different frequency components ofs(t) and
are driven by “global” prediction errors

ε(t) = y(t)−
k∑

i=1

ej[ω̂i(t−1)+α̂i(t−1)]ŝi(t− 1)

ε̄(t) = y(t)−
k∑

i=1

ejω̃i(t)s̄i(t− 1) .

All algorithms can be applied to real-valued signalsyR(t).
In order to process such signals, one may formally regard the
input data as complex-valued by settingy(t) = yR(t) + j0,
and ignore imaginary parts at the ANF/ANS output:s̃R(t) =
Re[s̃(t)], s̃R

t (t− τ) = Re[s̃t(t− τ)].

IX. SIMULATION AND EXPERIMENTAL RESULTS

Our simulation study will focus on two aspects of the
proposed adaptive notch smoothing scheme: optimality and
robustness.

Although demonstration of the algorithm’s optimality, i.e.,
its ability to reach the Craḿer-Rao-type lower smoothing
bounds is mainly of theoretical value, it is important as it
allows one to specify conditions under which some absolute
performance limits can be reached.

From the practical viewpoint, the most important property
of the estimation algorithm is its robustness, i.e., insensivity
to modeling errors. We will show that, exactly as predicted,
the proposed ANS algorithm outperforms its ANF counterpart
for a wide range of operating conditions, including different
(nonstandard) frequency/amplitude trajectories and different
(non-optimal) values of adaptation gains.

TABLE III
FIXED-LAG ADAPTIVE NOTCH SMOOTHER.

pilot filter :

ε(t) = y(t)− ej[ω̂(t−1)+α̂(t−1)]ŝ(t− 1)

ŝ(t) = ej[ω̂(t−1)+α̂(t−1)]ŝ(t− 1) + µε(t)

b(t) = |ŝ(t− 1)|2

δ(t) = Im[ε(t)e−j[ω̂(t−1)+α̂(t−1)]ŝ∗(t− 1)]/b(t)

α̂(t) = α̂(t− 1) + γαδ(t)

ω̂(t) = ω̂(t− 1) + α̂(t− 1) + γωδ(t)

frequency rate smoother [optional] :

α̃t(t) = α̂(t)

α̃t(t− 1) = α̂(t− 1)

α̃t(t− 2) = α̂(t− 2)

α̃t(i) = −d1α̃t(i + 1)− d2α̃t(i + 2)

−d3α̃t(i + 3) + γαα̂(i + 1)

i = t− 3, . . . , t− τ

frequency smoother :

ω̄(t) = −c1ω̄(t− 1) + b1ω̂(t− 1)

ω̃t(t) = ω̄(t)

ω̃t(t− 1) = ω̄(t− 1)

ω̃t(t− 2) = ω̄(t− 2)

ω̃t(i) = −d1ω̃t(i + 1)− d2ω̃t(i + 2)

−d3ω̃t(i + 3) + γαω̄(i + 1)

i = t− 3, . . . , t− τ

frequency−guided filter :

s̄t(t− τ − 1) = ŝt(t− τ − 1)

ε̄t(i) = y(i)− ejω̃(i)s̄t(i− 1)

s̄t(i) = ejω̃(i)s̄t(i− 1) + µε̄t(i)

i = t− τ, . . . , t

output filter :

s̃t(t) = s̄t(t)

s̃t(i) = (1− µ)e−jω̃t(i+1)s̃t(i + 1) + µs̄t(i)

i = t− 1, . . . , t− τ

A. Optimality

Fig. 2 shows comparison of theoretical values of the lower
smoothing bounds with experimental results obtained for the
signal (2) obeying assumptions (A1)–(A4), 3 different SNR
values (0 dB, 10 dB and 20 dB) and 13 different values of
the rate of nonstationarityκ, ranging from10−10 to 10−4.
Similarly as in Section II-B, all MSE values were computed for
the optimally tuned ANS algorithm by means of joint time and
ensemble averaging. Note the excellent agreement between the
theoretical curves and the results of computer simulations.

The possible margins of improvementLTBω/LSBω and
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Fig. 2. Comparison of the theoretical values of the lower frequency (upper
figure) and frequency rate (lower figure) smoothing bounds (solid lines)
with experimental results obtained for the signal with quasi-linear frequency
changes, for 3 different SNR values: SNR=0 dB (◦), SNR=10 dB (×),
SNR=20 dB (+), and 13 different values of the rate of nonstationarityκ.

LTBα/LSBα, which are functions ofκ, are depicted in Fig.
3.

B. Robustness

To check performance of the fixed-interval ANS algorithm,
a noisy quas-iperiodically varying signal (2) was generated
with fast amplitude and frequency changes

a(t) = 1 + 0.5 cos(2πt/2000) , ω(t) = sin(2πt/2000) .

Figs. 4 and 5 show the comparison of the steady-state
mean-squared frequency and signal estimation errors, yielded
by the ANF algorithm without frequency rate estimation,
the ANS algorithm without frequency rate estimation, the
ANF algorithm with frequency rate estimation, and the ANS
algorithm with frequency rate estimation. The comparison was
made for 40 different values of the adaptation gainµ and for
two noise intensities:σv = 0.56 (SNR=5 dB) andσv = 0.1
(SNR=20 dB). To reduce the number of design degrees of
freedom, the two other gains adopted for ANF/ANS algorithms
with frequency rate estimation were set to:γω = µ2/2 and
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B ω
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ω

Fig. 3. Dependence of the limiting tracking versus smoothing variance ratios
on the degree of signal nonstationarityκ.

γα = µγω/4 – in agreement with the general tendency
revealed in Table I. The ANF/ANS algorithms without fre-
quency rate estimation were obtained by settingγα = 0.
The results obtained for the MFT-L algorithm [which can be
rewritten in a form similar to (4)] were slightly but uniformly
inferior (by approximately 3 dB) to those obtained for our
pilot tracker. For this reason they are not shown. All MSE
values were obtained by means of joint time averaging (the
evaluation interval [2001,8000] was placed inside a wider
analysis interval [1,10000]), and ensemble averaging (100
realizations of measurement noise were used). As expected,
the ANS algorithms yielded uniformly better results than
their ANF counterparts. The achievable variance reduction is
approximately equal to 20 dB for frequency estimation and 10
dB for signal estimation, respectively. Rather surprisingly, for
the particular signal analyzed, a very small signal estimation
gain can be achieved by switching from the ANS algorithm
without frequency rate estimation, to the ANS algorithm with
frequency rate estimation (Fig. 5), even though the frequency
estimation benefits are evident (Fig. 4).

Finally, Table IV shows comparison of the mean-squared
frequency and signal estimation errors yielded by the well-
tuned EKF/EKS algorithms, based on the model (44), with
the analogous results provided by the well-tuned ANF/ANS
algorithms, based on the (equivalent) model (2). The EKF/EKS
algorithms were supported with the true values of the measure-
ment noise intensities (σ2

v = 0.31 or 0.01). The remaining
two variances (σ2

a and σ2
w) were also set equal to the true

mean-squared rates of change of the corresponding quantities
[a(t) and α(t), respectively]:σ2

a
∼= ω2

0/8 = 1.23 · 10−6,
σ2

w
∼= ω4

0/2 = 4.87 · 10−11, where ω0 = 2π/2000. The
numbers shown for the ANF/ANS algorithms correspond to
the lowest points on the◦/∗ plots depicted in Figs. 4 and
5. Note that, in spite of their computational simplicity, the
proposed ANF/ANS algorithms compare very favorably with
the classical EKF/EKS tools.
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Fig. 4. Dependence of the mean-squared frequency estimation error on
adaptation gainµ for: ANF algorithm without frequency rate estimation
(+), ANS algorithm without frequency rate estimation (×), ANF algorithm
with frequency rate estimation (◦), and ANS algorithm with frequency rate
estimation (∗). Upper figure – SNR=5 dB, lower figure – SNR= 20 dB.

TABLE IV
COMPARISON OF THE MEAN-SQUARED FREQUENCY ESTIMATION ERRORS

(UPPER TABLE) AND SIGNAL ESTIMATION ERRORS(LOWER TABLE),
YIELDED BY THE WELL -TUNED EKF/EKS ALGORITHMS AND

WELL-TUNED ANF/ANS ALGORITHMS.

MSEω :

SNR EKF ANF EKS ANS

5 dB 5.3 · 10−4 7.7 · 10−5 9.4 · 10−7 6.8 · 10−7

20 dB 4.5 · 10−5 1.0 · 10−5 5.4 · 10−8 1.5 · 10−7

MSEs:

SNR EKF ANF EKS ANS

5 dB 2.4 · 10−1 2.4 · 10−2 7.0 · 10−2 3.3 · 10−3

20 dB 9.3 · 10−3 1.3 · 10−3 3.1 · 10−4 1.2 · 10−4
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Fig. 5. Dependence of the mean-squared signal estimation error on adaptation
gain µ for: ANF algorithm without frequency rate estimation (+), ANS algo-
rithm without frequency rate estimation (×), ANF algorithm with frequency
rate estimation (◦), and ANS algorithm with frequency rate estimation (∗).
Upper figure – SNR=5 dB, lower figure – SNR= 20 dB.

C. Application example

Conventional methods of measuring the rotational speed
of a combustion engine rely on dedicated sensors, such as
tachometers, photo probes, etc. Deployment of such sensors
may be difficult, expensive and/or inconvenient. However,
the sound emitted by an operating engine usually provides
sufficient information to enable a cheap and accurate remote
RPM (revolutions per minute) measurement using acoustic
sensing.

The proposed smoothing scheme was used to analyze a 4-
second recording of a motorcycle engine noise, sampled at a
frequencyfs = 1.1 kHz. The analyzed fragment corresponds
to subsequent: acceleration, gear change, acceleration and
braking, respectively. The complex-valued version of the sig-
nal was obtained using the Hilbert transform. The spectrogram
of the recording, depicted in Fig. 6, shows that the signal
containsk = 12 harmonic components with instantaneous
frequenciesωi(t) that are linearly related to the fundamental
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frequencyω1(t):

ωi(t) = iω1(t) , i = 2, . . . , 12 . (45)

To cope with the harmonic signal structure, a slightly mod-
ified version of the pilot filter was employed. All harmonic
components were tracked using a parallel structure made up
of 12 pilot filters

ŝi(t) = ej[ω̂i(t−1)+α̂i(t−1)]ŝi(t− 1) + µε(t)
i = 1, . . . , 12

driven by the common prediction error signal

ε(t) = y(t)−
12∑

i=1

ej[ω̂i(t−1)+α̂i(t−1)]ŝi(t− 1) .

In order to estimate the instantaneous angular frequencies
ω̂i(t) and frequency rateŝαi(t), the proposed pilot frequency
tracker was applied to the 5-th harmonic signal component
(since this component is strong, it guarantees high signal-to-
noise ratio):

b5(t) = |ŝ5(t− 1)|2
δ5(t) = Im[ε(t)e−j[ω̂5(t−1)+α̂5(t−1)]ŝ∗5(t− 1)]/b5(t)
α̂5(t) = α̂5(t) + γαδ5(t)
ω̂5(t) = ω̂5(t− 1) + α̂5(t) + γωδ5(t) .

The estimates of the remaining frequencies and frequency rates
were obtained by exploiting (45)

α̂i(t) = iα̂5(t)/5 , ω̂i(t) = iω̂5(t)/5
i = 1, . . . , 12, i 6= 5 .

The parameters of the pilot filter were set to the following
values:µ = 0.05, γω = µ2/2 andγα = µγω/4 – in agreement
with the rule of thumb presented in the preceding subsection.
The smoothed estimates ofω5(t) andα5(t) were obtained by
backward-time filtering of the pilot estimateŝω5(t) andα̂5(t)
using the algorithms summarized in Table II.

Fig. 7 shows the comparison of the frequency estimates

f̂5(t) =
ω̂5(t)fs

2π

obtained using the pilot filter (top plot) and frequency
smoother (bottom plot). The corresponding instantaneous
RPM values can be obtained from:RPM(t) = 60f̂5(t)/5.
Similar comparison of the frequency rate estimates is shown in
Fig. 8. In both cases, the results obtained using the noncausal
estimation scheme are significantly better than those yielded
by the pilot (causal) algorithm.

X. CONCLUSION

Extraction/elimination of nonstationary sinusoidal signals
buried in noise can be carried out using adaptive notch filters
(ANF). We have designed a new ANF algorithm based on
quasi-linear model of signal frequency changes, and we have
shown that, under Gaussian assumptions, it is a statistically
efficient frequency and frequency rate tracker. Then, based on
analysis of tracking properties of the proposed algorithm, we
have designed a cascade of postprocessing filters increasing
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Fig. 6. Spectrogram of the acoustic recording of an accelerating motorcycle.
The period between 2 s and 2.5 s corresponds to gear shifting.
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Fig. 7. Estimated instantaneous frequency of the 5-th harmonic signal
component. Top plot: pilot estimates. Bottom plot: smoothed estimates.
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accuracy of signal frequency, frequency rate, and amplitude
estimation. We have shown that the resulting adaptive notch
smoother (ANS) is statistically efficient (under ideal condi-
tions) and robust to signal model misspecification. It yields
improved estimation results compared to its causal (ANF)
counterpart. It also works better than the currently available,
simpler ANS algorithm.

APPENDIX I

Derivation of (5) and (6)

Denote by∆ŝ(t) = s(t) − ŝ(t) the signal estimation error
and let∆x̂(t) = Im[∆ŝ(t)s∗(t)/a2

0]. According to [7], when
carrying ALF analysis one should neglect all terms of order
higher than one in∆ω̂(t), ∆α̂(t), ∆ŝ(t), w(t) and v(t),
including all cross-terms.

To derive recursion for∆x̂(t), note that

ŝ(t) = ψ(t) + µε(t)
ε(t) = s(t) + v(t)− ψ(t) (46)

where
ψ(t) = ej[ω̂(t−1)+α̂(t−1)]ŝ(t− 1).

Therefore
ŝ(t) = λψ(t) + µs(t) + µv(t)

whereλ = 1− µ. This leads to

∆ŝ(t) = λs(t)− λψ(t)− µv(t).

Observe that

ψ(t) = ejω(t)e−j∆ω̂(t−1)e−j∆α̂(t−1)[s(t− 1)−∆ŝ(t− 1)].

Using the approximationse−j∆ω̂(t−1) ∼= 1− j∆ω̂(t− 1) and
e−j∆α̂(t−1) ∼= 1− j∆α̂(t− 1), that hold for small frequency
and frequency rate errors, respectively, and applying ALF
rules, one arrives at

ψ(t) ∼= s(t)− ejω(t)∆ŝ(t− 1)
− js(t)[∆ω̂(t− 1) + ∆α̂(t− 1)]. (47)

This leads to

∆ŝ(t) ∼= λejω(t)∆ŝ(t− 1)
+ jλs(t)[∆ω̂(t− 1) + ∆α̂(t− 1)]− µv(t)

or equivalently

∆ŝ(t)s∗(t) ∼= λ∆ŝ(t− 1)s∗(t− 1)

+ jλa2
0[∆ω̂(t− 1) + ∆α̂(t− 1)]− µv(t)s∗(t).

Dividing the last recursion sidewise bya2
0, and taking imagi-

nary parts, one arrives at

∆x̂(t) ∼= λ∆x̂(t− 1) + λ∆ω̂(t− 1)
+ ∆α̂(t− 1)] + µe(t). (48)

To derive recursions for∆ω̂(t) and ∆α̂(t), note that in the
tracking mode it holds that

δ(t) = Im
[

ε(t)
ψ(t)

]
∼= Im[ε(t)ψ∗(t)]

a2
0

.

Combining (46) with (47), and applying the ALF rules, one
arrives at the following approximation

ε(t)ψ∗(t) ∼= |s(t)|2 − s(t− 1)∆ŝ∗(t− 1)

+ j|s(t)|2[∆ω̂(t− 1) + ∆α̂(t− 1)]

+ v(t)s∗(t)− |ψ(t)|2

leading to

δ(t) ∼= ∆x̂(t− 1) + ∆ω̂(t− 1) + ∆α̂(t− 1)− e(t).

Note that

∆α̂(t) = ∆α̂(t− 1) + w(t)− γαδ(t)
∆ω̂(t) = ∆ω̂(t− 1) + ∆α̂(t− 1)− γωδ(t).

Combining the last three equations, one arrives at

∆α̂(t) ∼= (1− γα)∆α̂(t− 1) + w(t) + γαe(t)
− γα∆ω̂(t− 1)− γα∆x̂(t− 1) (49)

∆ω̂(t) ∼= (1− γω)∆ω̂(t− 1) + (1− γω)∆α̂(t− 1)
+ γωe(t)− γω∆x̂(t− 1) (50)

Finally, solving the set of linear equations (48), (49) and
(50) for ∆ω̂(t) and∆α̂(t), one arrives at (5) and (6), respec-
tively.

APPENDIX II

Computation of Lower Tracking/Smoothing Bounds

In this appendix, we will derive expressions for theoretical
upper bounds that limit tracking/smoothing capabilities of
any causal/noncausal frequency and frequency rate estima-
tion algorithms applied to signals with quasi-linear frequency
changes. The corresponding lower tracking bounds (LTB)
and lower smoothing bounds (LSB) belong to the class of
posterior (or Bayesian) Craḿer-Rao bounds, applicable to
signals/systems with random parameters3.

Denote byy the vector of measurements and letθ̂(y) be an
estimator of a real-valued random parameter vectorθ. Then,
under weak regularity conditions, one can show that [13]

E[(θ̂(y)− θ)(θ̂(y)− θ)T] ≥ J−1

where

J = −E
[
∂2 log p(y, θ)

∂θ∂θT

]

= E
[
∂ log p(y,θ)

∂θ

∂ log p(y, θ)
∂θT

]

and p(y, θ) = p(y|θ)p(θ) is the joint probability density
function of the pair(y, θ).

3When the estimated quantities are stochastic variables, rather than un-
known deterministic constants, the classical Cramér-Rao inequality does not
apply.
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In the case considered, letθt = [α(1), α(2), . . . , α(t)]T and
yt = [y(1), y(2), . . . , y(t)]T. To simplify our analysis (without
restricting its generality), we will assume, in addition to (A1)–
(A4), that a0 = |s(t)| is a known deterministic quantity,
that α(0) is uniformly distributed over[αmin, αmax], and that
ω(0) = 0, s(0) = a0.

Since, under the assumptions listed above, the vectorθt

fully determiness(k), k = 1, . . . , t

s(k) = a0e
jϕ(k)

ϕ(k) =
k∑

n=1

ω(n) =
k∑

n=1

n−1∑
m=1

α(m) (51)

one can write

log p(yt|θt) = log p[yt|s(1), s(2), . . . , s(t)]

= β1 − 1
σ2

v

t∑

k=1

|v(k)|2

= β1 − 1
σ2

v

t∑

k=1

|y(k)− s(k)|2 (52)

whereβ1 is a constant independent ofθt.
Similarly

log p(θt) = log p[α(1), α(2)− α(1), . . . , α(t)− α(t− 1)]

= βα + β2 − 1
2σ2

w

t∑

k=2

w2(k)

= βα + β2 − 1
2σ2

w

t∑

k=2

[α(k)− α(k − 1)]2 (53)

where, again,βα = log[1/(αmax−αmin)] andβ2 are constants
independent ofθt.

Differentiating (52) with respect toα(i), one obtains

∂ log p(yt|θt)
∂α(m)

=
2
σ2

v

t∑

k=1

Re
{

[y(k)− s(k)]∗
∂s(k)
∂α(m)

}

=
2
σ2

v

t∑

k=1

Re
{

v∗(k)
∂s(k)
∂α(m)

}

Using (51), one arrives at

∂s(k)
∂α(m)

= js(k)
k∑

l=1

l−1∑

i=1

δm,i

whereδm,i is the Kronecker delta

δm,i =
{

0 for m 6= i
1 for m = i

.

This leads to

∂s(k)
∂α(m)

= js(k)max(k −m, 0)

and

∂ log p(yt|θt)
∂α(m)

= − 2
σ2

v

t∑

k=1

Re [jv∗(k)s(k)max(k −m, 0)]

Hence, after averaging, one obtains

E
[
∂ log p(yt|θt)

∂θt

∂ log p(yt|θt)
∂θT

t

]
=

2a2
0

σ2
v

At (54)

where

[At]mn =
t∑

k=1

max(k −m, 0) ·max(k − n, 0)

In an analogous way we will compute derivative of the prior
density(53)

log p(θt)
α(m)

= − 1
2σ2

w

t∑

k=2

∂

∂α(m)
[α(k)− α(k − 1)]2

=
1

σ2
w





α(2)− α(1) for m = 1

[α(m + 1)− α(m)]

−[α(m)− α(m− 1)] for 1 < m < t

−[α(t)− α(t− 1)] for m = t

=
1

σ2
w





w(2) for m = 1
w(m + 1)− w(m) for 1 < m < t

−w(t) for m = t

which leads to

E
[
∂ log p(θt)

∂θt

∂ log p(θt)
∂θT

t

]
=

1
σ2

w

Bt (55)

where

Bt =




1 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
.. .

0 . . . 0 −1 2 −1
0 . . . 0 0 −1 1




.

Combining (54) with (55), one obtains

Jt =
2a2

0

σ2
v

At +
1

σ2
w

Bt =
1

σ2
w

[2κAt + Bt] .

The asymptotic (steady-state) bounds on accuracy of frequency
and frequency rate estimates can be obtained from

LTBω = lim
t 7→∞

inf
ω̂(·)

E{ [ω(t)− ω̂(t)]2}

= lim
t 7→∞

bT
t J−1

t bt

LTBα = lim
t7→∞

inf
α̂(·)

E{ [α(t)− α̂(t)]2}

= lim
t7→∞

[
J−1

t

]
tt

where bT
t = [1T

t−1, 0], and 1t denotes the vector of ones
of length t. The analogous expressions for lower smoothing
bounds read

LSBω = lim
t 7→∞

inf
ω̃(·)

E{ [ω(t)− ω̃(t)]2}

= lim
t 7→∞

cT
t J−1

2t ct
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LSBα = lim
t 7→∞

inf
α̃(·)

E{ [α(t)− α̃(t)]2}

= lim
t 7→∞

[
J−1

2t

]
tt

wherecT
t = [1T

t−1,0
T
t+1] and 0t denotes the vector of zeros

of lengtht. The values in Table I were computed numerically
for t ranging from 100 to 600 (the convergence is slower for
smaller values ofκ).
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