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Reexamination of determinant-based separability test for two qubits
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It was shown in Augusiak et al. [Phys. Rev. A 77, 030301(R) (2008)] that discrimination between entanglement
and separability in a two-qubit state can be achieved by a measurement of a single observable on four copies
of it. Moreover, a pseudoentanglement monotone π was proposed to quantify entanglement in such states. The
main goal of this Brief Report is to show that the close relationship between π and concurrence reported there is
a result of sharing the same underlying construction of a spin-flipped matrix. We also show that monogamy of
entanglement can be rephrased in terms of π and prove the factorization law for π .
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Entanglement, first recognized by Schrödinger and Einstein
et al. [1], lies at the heart of quantum-information theory.
Without a doubt, it is the most important resource of this
rapidly developing branch of science and serves as the building
block for the huge number of information tasks, just to
mention, for example, teleportation [2] and dense coding [3].
From this point of view, full recognition of this ‘spooky action
at a distance’ [4] is fundamental for our understanding of
quantum mechanics. Much effort has been put into recognizing
its nature and, not surprisingly, major progress has been
achieved in the case of the simplest bipartite quantum states—
states of two qubits. One of the most important qualitative
results concerning such systems is the necessary and sufficient
condition for inseparability—the celebrated Peres-Horodeckis
criterion of nonpositive partial transposition [5]. On the other
hand, research toward quantitative description of entanglement
of two-qubit states has culminated in the introduction of
entanglement measures, among which the most notable are
entanglement of formation [6] and concurrence for whom
closed expressions have been found [7]. Unfortunately, both
of them still have not been shown to be directly measurable,
and it is reasonable to conjecture that they are not, in
general. Very recently, however, it has been demonstrated
that single collective measurement of the specially prepared
observable on four copies of an unknown two-qubit state can
unambiguously discriminate between entanglement and sepa-
rability, additionally quantifying, to some extent, entanglement
contained in the system by providing sharp lower and upper
bounds on concurrence [8].

In this Brief Report, we continue research on the pseudoen-
tanglement monotone π , which was introduced in Ref. [8] for
entanglement quantification purposes.

Let us start with an introduction of necessary concepts.
Consider a two-qubit mixed state ρAB . Define (conjugation in
a standard basis) a spin-flipped state [7],

ρ̃AB = σy ⊗ σyρ
∗
ABσy ⊗ σy. (1)

Let λ1 � λ2 � λ3 � λ4 be the square roots of the eigenvalues
of ρABρ̃AB := MAB . Note that we can safely write inequalities
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since they are real (moreover, they are non-negative). We
define concurrence to be

C(ρAB) = max {0,λ1 − λ2 − λ3 − λ4} =: CAB. (2)

Eligibility of such a constructed quantity to be a good measure
of entanglement is justified by the invariance of the eigenvalues
λi under local unitary operations and by the fact that 0 �
CAB � 1 with extreme values taken on separable and maxi-
mally entangled states, respectively. When ρAB is a partial trace
over C from the tripartite pure qubit state |ψABC〉〈ψABC | =:
ψABC , there are only two nonzero eigenvalues; thus, we just
have CAB = λ1 − λ2. Then, we also define tangle [9] to be

τABC = 4λ1λ2. (3)

It was shown that eigenvalues of either of the matrices MAB ,
MAC , MBC can be used in the above. These quantities can be
combined to give the so-called monogamy relation [9,10]

C2
AB + C2

BC + τABC = C2
B(AC) = 4 det ρB,ρB = tr A ρAB.

(4)

Concurrence CB(AC) is the meaningful quantity since we
consider the pure state of three qubits; thus, effectively
B(AC) is a two-qubit-like state. This relation provides an
interpretation for tangle as a measure of tripartite correlations.

One also defines [11] concurrence of assistance Ca , which
is the maximum over ensembles of average concurrence of
pure states in the ensemble. In the case of two qubits, we just
have Ca = λ1 + λ2 + λ3 + λ4.

In Ref. [8], it was shown that the separability of an unknown
two-qubit state ρ can unambiguously be settled in a single
collective measurement on four copies of this state (i.e., one
needs, at one time, ρ⊗4). This was obtained on the basis of
two facts: (i) Partially transposed density matrix ρ� of an
entangled two-qubit state ρ is full rank (has four nonzero
eigenvalues), (ii) there can only be one negative eigenvalue of
ρ� . The preceding led to the conclusion that it is sufficient to
measure det ρ� , and the strict negativity of the latter indicates
entanglement. The authors of the mentioned paper showed
that, indeed, such a measurement is possible using a noiseless
circuit [12]. They also proposed a simple alternative scheme
to measure this determinant. The question of the usage of
det ρ� for quantitative description was addressed further. It
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was shown that the quantity, which, in this Brief Report, we
will call the determinant–based measure,

π (ρ) =
{

0, for det ρ� � 0
2 4
√

| det ρ�|, for det ρ� < 0
. (5)

is a monotone under pure local operations preserving dimen-
sions and classical communication and provides tight upper
and lower bounds on concurrence as follows:

C(ρ) � π (ρ) � 4

√
C(ρ)

(
C(ρ) + 2

3

)3

. (6)

Normalization in Eq. (5) is chosen to impose agreement
of determinant–based measure and concurrence on pure
states. From the previous inequalities, we also have im-
mediate bounds for entanglement of formation Ef [7] as
follows: E(r−1(π (ρ))) � Ef (ρ) � E(π (ρ)), where E(x) =
H ( 1+√

1−x2

2 ) with H (y) as the Shannon entropy of a probability

distribution (y,1 − y) and r(x) = 4
√

x( x+2
3 )3. One can also

prove that π shares the nice property of being continuous
in the input density operator [13].

For the purpose of this Brief Report, we propose the
extension of our definition for entanglement between qubit A

and qubits BC in a pure state ψABC to πA(BC) ≡ 2
√

det ρA

(i.e., we define it to be equal to CA(BC) on such states).
Such an extension is the most natural since we keep the
two most important properties of π : mentioned equality with
concurrence and the possibility of direct measurement.

Let us now turn to the main body of this Brief Report.
We start with considerations analogous to the one from
Ref. [14], where the local unitary interaction of one part of the
maximally entangled state ψ+

AB with two level environments
E was considered [i.e., the global state after the evolution was
|ψABE〉 = IA ⊗ UBE(|ψ+〉AB ⊗ |0〉E)].

Its bipartite reductions of interest will be denoted as
ρAB and ρAE . In the mentioned paper, the author showed,
by random sampling, that there is no correlation between
singlet fraction [15] F (ρAB) := FAB after the action of the
channel and concurrence CAB of the decohered state and
showed analytically, for the chosen class of channels, that
FAB = 1

4 (1 + CAB)(1 +
√

1 − C2
AE). It turned out that this

relation held true for all channels, which was shown by random
generation of channels.

We pursue the same approach using the determinant–based
measure instead of concurrence. First, let us consider the
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FIG. 1. (Color online) Singlet fraction FAB vs determinant–based
measure πAB after action of the local channel.

relation of FAB and πAB after the action of the random channel.
The result is shown in Fig. 1, which was obtained by random
generation of 10 000 UBE’s [16].

In our case, one can see that there is some connection
between these two quantities; however, there still is no
analytical formula linking them. We will comment on this
connection later when monogamy equality will be obtained.

Following Ref. [14], let us consider a class of local channels
implemented by unitaries defined by

|00〉BE →
√

1 − q|00〉BE + √
q|11〉BE, (7)

|10〉BE →
√

1 − p|10〉BE + √
p|01〉BE. (8)

For such channels, we obtain the following (with previously
established notation):

πAB =
√

|p + q − 1|, (9)

πAE =
√

|p − q|, (10)

FAB =
{

2−p−q+2
√

(1−p)(1−q)
4 for p + q − 1 < 0

p+q+2
√

pq

4 for p + q − 1 � 0
. (11)

Direct calculation reveals that

FAB = 1

4

(
1 + π2

AB

) ⎛
⎝1 +

√√√√1 − π4
AE(

π2
AB + 1

)2

⎞
⎠ . (12)

As in the case of concurrence, the relation we obtained can be
shown to hold for all channels and is independent of whichever
maximally entangled state we choose to be the input. Note the
close resemblance of both forms.

The closed formula for the singlet fraction using
determinant–based measure π opens up hope for a monogamy
relation of entanglement in terms of it. In what follows, we
prove the existence of such an equation.

Consider a pure state of three qubits ψABC . As shown [17],
as far as the entanglement properties are concerned, such a
state can be parametrized by five real numbers as

|ψABC〉 = γ0|000〉 + γ1e
iϕ|100〉 + γ2|101〉

+ γ3|110〉 + γ4|111〉, (13)

with γi � 0,
∑

i γ
2
i = 1, and ϕ ∈ 〈0,π〉. From this, we obtain

eigenvalues of the matrix MAB and the determinant of the
partially transposed matrix of the reduced state of qubits A

and B,

λ2
1 = γ 2

0

(
2γ 2

3 + γ4 + 2γ3

√
γ 2

3 + γ 2
4

)
, (14)

λ2
2 = γ 2

0

(
2γ 2

3 + γ4 − 2γ3

√
γ 2

3 + γ 2
4

)
, (15)

det ρ�
AB = −γ 4

0 γ 2
3

(
γ 2

3 + γ 2
4

)
, (16)

which immediately yields

πAB =
√

λ2
1 − λ2

2. (17)

Recalling Eqs. (2) and (3), we obtain an analytical relationship
among πAB , CAB , and τABC in a pure three-qubit state,

πAB =
√

CAB

√
C2

AB + τABC. (18)
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This can be put into a nice compact form

πAB = √
CABCa

AB, (19)

which means that, in the case of rank 2 states, the determinant–
based measure is the geometric mean value of concurrence and
concurrence of assistance. We also conclude that the bound in
Eq. (6) can be tightened for such states to obtain

πAB �
√

CAB. (20)

Equation (18) leads us to a simple corollary stating that, for
a given pure three-qubit state ψABC , one has πAB = CAB if and
only if CAB = 0 or τABC = 0. With the results of Ref. [18],
this means that both measures agree when ψABC is either of
the following classes: GHZ with separable reduction AB, W ,
biseparable, or a product.

One can now argue that the pattern in the plot of singlet
fraction (Fig. 1) is the result of quantifying, to some extent,
tripartite correlations by the determinant–based measure.

Now, let us reverse Eq. (18) to get

C2
AB =

−τABC +
√

τ 2
ABC + 4π4

AB

2
. (21)

Inserting this into Eq. (4), one obtains the advertised ele-
gant monogamy relation in terms of the determinant–based
measure,√(

τABC

2

)2

+ π4
AB +

√(
τABC

2

)2

+ π4
BC = π2

B(AC). (22)

This also gives the recipe to measure tangle on ten copies of the
state relying directly on the measurements of the determinants
of two partially transposed density matrices (four plus four
copies) and the determinant of the reduced qubit density
matrix (two copies). The question of the optimality of such
measurements is beyond the scope of this Brief Report (see
Ref. [19]).

Now, we will argue that the determinant–based measure
π in a general case of mixed states of arbitrary rank is
an analytical function of the eigenvalues of the matrix M .
Consider states,

ρB diag = p1ψ+ + p2ψ− + p3φ+ + p4φ−, (23)

which are diagonal in the Bell basis |ψ±〉 = 1√
2
(|01〉 ± |10〉),

|φ±〉 = 1√
2
(|00〉 ± |11〉). Such states are entangled iff one of

the probabilities is larger than 1
2 . Without loss of generality,

we assume that it holds for p1. One then has

π (ρB diag) = 4
√

| − p1 + p2 + p3 + p4|(p1 − p2 + p3 + p4)(p1 + p2 − p3 + p4)(p1 + p2 + p3 − p4). (24)

We also easily compute that λi = pi . Motivated by the form
of π for ρB diag, we further define

C1 = max {0,λ1 − λ2 − λ3 − λ4} ≡ C, (25)

C2 = λ1 − λ2 + λ3 + λ4, (26)

C3 = λ1 + λ2 − λ3 + λ4, (27)

C4 = λ1 + λ2 + λ3 − λ4, (28)

and

π̂ (ρ) = 4
√

C1C2C3C4. (29)

Notice that C2,C3,C4 are always non negative.
The main result of this part of this Brief Report is the

following.
Theorem 1. For any two-qubit states ρ, one has

π (ρ) = π̂ (ρ). (30)

Proof. Let A and B be non singular local filters. The
initial state �1 after the transformation under these filters
is �2 = (1/p)A ⊗ B�1A

† ⊗ B†, where p = trA ⊗ B�1A
† ⊗

B†. It follows from the results of Ref. [20] that Ci(�2) =
(| det AB|/p)Ci(�1). Moreover, it holds true that π (�2) =
(| det AB|/p)π (�1) [8]. Assume now that � is a rank 4 state.
It was shown [20] that such states can be reversibly obtained
with A, B from a Bell diagonal state �Bdiag . As we already
know, the assertion of the theorem is true on the latter. We thus
have π (�) = (| det AB|/p) 4

√
�iCi(�Bdiag) and because of the

transformation rule for Ci it follows that for full rank states
it holds π (�) = π̂ (�). For singular states, we can take their

full rank perturbations σε = ε� + (1 − ε)I/2. Then, π (σε) =
π̂ (σε) and we can apply the preceding argument and take the
limit ε → 0. The result then follows from continuity of π

and Ci . �
We see that, π can be regarded as some kind of sym-

metrization of concurrence allowing for experimental direct
accessibility. The natural question is to what extent does
determinant–based measure also quantify tripartite correla-
tions in the general case. Unfortunately, we have not been able
to find a definite answer so far [21].

At the end, we prove the factorization law, which was
originally stated for concurrence [22].

Theorem 2. Determinant–based measure π obeys the
factorization law, that is, for an arbitrary channel �, a pure
state φ, and a Bell state ψ+, it holds

π (I ⊗ �(φ)) = π (I ⊗ �(ψ+))π (φ). (31)

Proof. The assertion is trivially true for separable
I ⊗ �(ψ+) (i.e., when � is entanglement breaking) so we
may assume entanglement of the latter. Any state |φ〉 can
be written as A ⊗ I(|ψ+〉) with trA†A = 2. We then have
π (I ⊗ �(φ)) = 2 4

√
| det[I ⊗ �(A ⊗ I(ψ+)A† ⊗ I)]�B | =

2 4

√
| det[A ⊗ I(��B

� )A† ⊗ I]|, where �� = I ⊗ �(ψ+) and we

have used the fact that (X ⊗ I�Y ⊗ I)�B = X ⊗ I��B Y ⊗ I.
Using now the following property of the determinant det XY =
det X det Y and the fact that π (φ) = | det A| [8] we arrive at
π (I ⊗ �(φ)) = π (φ)π (I ⊗ �(ψ+)) which is the desired. �
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Thus, the determinant–based measure provides a factoriz-
able measurable bound on concurrence (see Ref. [23] for a
recent attempt in this direction).

We have not been able to find an analytical proof of the
extension of the factorization law to the mixed state domain,
as it was in [22], nevertheless, by random sampling, we have
verified that such an extension is indeed valid, that is π (I ⊗
�(�)) � π (�)π (I ⊗ �(φ+)).

In conclusion, we have provided a monogamy relation for
entanglement quantified by the determinant–based measure π .
As a by-product, we obtained explicit formulas for the latter
in terms of other entanglement quantities. We showed that
a close relation with concurrence is the result of bearing the
similar construction in its roots. We also provided evidence that
the disagreement of π and C on general mixed states stems

from the fact that π quantifies, to some extent, both bipartite
and tripartite correlations. The natural question motivated by
the result of this Brief Report is about the possibility of
constructing other measurable quantifiers of entanglement,
which are based on the analogous procedure and provide
better bounds on the concurrence of an unknown state. We
hope our results will stimulate research on this topic and will
provide some tools for the improved understanding of two-
qubit entanglement. The issue of using the determinant–based
measure for detecting and quantifying entanglement in higher-
dimensional systems is the subject of ongoing research [24].
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