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Abstract: Nonlinear stimulation of the vorticity mode caused by losses in the momentum of sound in a chemically re-
acting gas is considered. The instantaneous dynamic equation for the vorticity mode is derived. It includes
a quadratic nonlinear acoustic source, which reflects the fact that the reason for the interaction between
sound and the vorticity mode is nonlinear. Both periodic and aperiodic sound may be considered as the
origin of the vorticity flow. The equation governing the mean flow (the acoustic streaming) in the field of peri-
odic sound is also derived. In the non-equilibrium regime of a chemical reaction, there may exist streaming
vortices whose direction of rotation is opposite to that of the vortices in the standard thermoviscous flows.
For periodic sound, this is illustrated by an example. The theory and the example describe both equilibrium
and non-equilibrium chemical reactions.
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1. IntrOductlon, basic equatlons, tic streaming has been studied in detail both theoreti-
i i lly and experimentally for over a century, the spatial

n rtin In ety
a d start g po ts and temporal distribution of the radiation force as a func-
tion of diffraction, absorption, and the geometry of the
flow is still poorly understood. The main difficulty is the

nonlinear origin of the phenomenon. The second origin
The reason for vorticity flow in the field of sound is the

nonlinear loss in the momentum of the sound wave. An
acoustic source periodic in time can generate mean motion,

of acoustic and non-acoustic mode interactions is absorp-
tion. It is evident that any relaxation process contributes

to the vortices caused by sound and in particular to the

a phenomenon known as acoustic streaming. There are streaming. Relaxation processes of different types mani-

extensive reviews on this subject [1-3]. Although acous- fest themselves, among other attributes, through absorp-

tion.

*E-mail: anpe@mif.pg.gda.pl (Corresponding author)
TE-mail: pwojda@mif.pg.gda.pl The interest in relaxation phenomena, and especially in
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non-equilibrium ones in the physics of gases, primarily
originated from observations of anomalous dispersion and
absorption of ultrasonics waves in a gas with excited non-
equilibrium internal degrees of freedom. The reason for
these anomalies is the mechanism of retarded energy ex-
change between the internal and translational degrees of
freedom of the molecules [4, 5]. Intensive investigations of
the flow of thermodynamically non-equilibrium gases be-
gan in connection with advances in laser engineering and
plasma aerodynamics in the 1960s. The hydrodynamics
of the non-equilibrium fluids remains one of the new and
quickly developing fields of modern hydrodynamics. Stud-
ies in this field are passing through a stage of revealing
new physical effects and the formulation of fundamental
conclusions. The anomalous dispersion and amplification
of sound becomes a physical reality in gases out of ther-
mal equilibrium and in gases where irreversible reactions
occur [5, 6] The peculiarities of sound propagation in
gases where a chemical reaction takes place, look similar
to those in gases with excited internal degrees of free-
dom. The nonlinear interaction of sound with non-acoustic
types of motion in relaxing fluids is presently poorly an-
alyzed. It was first pointed out by Molevich that acoustic
heating (i.e., the generation of a thermal mode) or stream-
ing may be reversed in a vibrationally excited molecular
gas with negative second viscosity [7]. The standard atten-
uation itself always leads to a positive excess temperature
associated with the thermal mode and to streaming whose
velocity in an unbounded volume is directed accordingly
along the direction of sound [2, 8].

We start from the linear determination of modes as specific
types of gas motion in a gas where a chemical reaction
takes place (Sec. 2). The definition of any mode fixes
the relations for the dynamic perturbations belonging to
this mode. This is necessary for the correct decomposi-
tion of equations governing sound and non-acoustic modes
accounting for the interaction of all modes in a weakly
nonlinear flow (Sec. 3). This also resolves an existing in-
consistency in the traditional theory of streaming. While
compressibility is a necessary condition for sound propa-
gation, the traditional analysis is limited to incompress-
ible fluids (for a discussion of this topic, see [9, 10]). This
allows the elimination of the equation for energy balance
and the derivation of results by averaging the equations
of continuity and momentum with respect to the period of
sound. The traditional analysis is valid only for periodic
sound because it requires the averaged partial derivative
of every perturbation with respect to time to be zero [2, 8].
It is then impossible to consider the thermal mode, and it
requires verification in the case of gases that are strongly
compressible. The decomposition of modes based on in-
stantaneous relations of perturbations specific for every

mode gives the possibility to decompose also all equa-
tions governing different modes in a weakly nonlinear flow.
Where necessary, we will use the asymptotic methods of
nonlinear acoustics, which are based on the presence of
parameters of relatively small magnitude. Consequently,
under some assumptions the equations can be simplified.
For example, the diminutive parameter M (the Mach num-
ber) and the weak diffraction of the sound beam p will be
employed along with some other parameters connected
with chemical reactions. They will be introduced in the
following sections.

The present study considers the simplest model of gas dy-
namics in which a chemical reaction of the type A — B
takes place. This model can also be used for the de-
scription of acoustical properties of reacting media with
complex branching reactions [11]. The system is governed
by the two equations for momentum and energy as well
as by the continuity equation:

dv

AV
Pt VP,
CveodT Tdp
Kt o di = (1)
dp -
—= vV - v) =0.
gr TPVY)

In the equations above, 7 denotes the gas velocity, p and P
are the density and the pressure of the gas, T is the tem-
perature measured in Joules per molecule (actually the or-
dinary temperature multiplied by the Boltsmann constant
kg), Cvo and Cp,, are the “frozen” heat capacities at
constant volume and constant pressure, respectively (i.e.,
the corresponding processes take place at infinitely high
frequencies), R = Cpo — Cy o is the universal gas con-
stant, Q = H™W represents the heat produced in a medium

per molecule due to a chemical reaction (W is the volume
rate of formation of the reaction product B, H denotes
the reaction enthalpy per unit mass of the reagent A, and
m denotes the averaged molecular mass). The relaxation
equation for the mass fraction Y of reagent A and the
equation of state complement the system (1):

-2 p=f" )

Equations (1) do not account for the standard attenuation
due to shear viscosity and thermal conductivity. A brief
discussion of how to include standard attenuation in the
initial equations is given in the concluding remarks below.
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2. Dispersion relations and motions
of infinitely small amplitude and their
decomposition

2.1. Dispersion relations

Let us consider a two-dimensional gas flow of infinitely
small amplitude in the plane OXY. Every quantity € rep-
resents the sum of an unperturbed value & and its varia-
tion €, where |€'| < |gg|. Following Molevich [7, 12], we
assume that the stationary quantities Yy, To, Po, and po
are maintained by transverse pumping, so that the back-
ground is homogeneous in the longitudinal direction per-
pendicular to the plane OXY. The equations for momen-
tum, energy, mass-fraction balance, and continuity read:
dv, 1 0P _ dy To 0p’ 4 10T

X X

dJt po Ox = ot mpy 0x m 0x
(l/{, 1 P av Lap’ N laT’

’

ot  pp oy 6t mpo 0y  m dy

’

aT’ o, _ov
o= T2+ 7052 QT@
ot ax
0 0 3)
y 2y -0,y ) —o,
Po
ov 1 / ,
at (QT&TJFQPQO +Q@ ):0'
ap ov’ av; _
at TP (a el R
where
_ CP,oo
Yo = vaoo

denotes the frozen adiabatic exponent, and the quantities
Qr, Qp, Qy are evaluated in the equilibrium state:

_To [90Q

or= Qo ( ar ) To.po.Yo '
_P~ @)

QP - Qo ( ap To.p0. Yo , )
_% (90

o _QO ( oy ) To.po.Yo .

In the first two equations in (4), the excess pressure is
expressed in terms of the excess density and temperature
in accordance with the equation of state (i.e., the second
equation in (2)). Studies of motion of infinitely small am-
plitude usually begin by representing all perturbations as
planar waves:

gx,y, t) = &(ky, ky )exp[ (wt — kyx — yy)]. (5)

Some intermediate steps are necessary to determine the
heat capacity under constant pressure, Cp, and under con-
stant volume, Cy. Both of these quantities depend on the
frequency w,

ay
Cp —Cch) + mHR (BT)

(6)

ay
C\/ —C\/oo +mHR (OT)

They enter the dispersion equation, whose roots deter-
mine all possible types of motion in a reacting gas. From
the fourth equation in system (3), the following equalities

arise:
vy -9 %
oT ], Oyl +iwt) Ty’ ;
vy iy o %
ap |, v ), Ov(l +iwt)po’
where V = % is the specific gas volume, and
Hm Yo
T, = 8
00 ©

is the characteristic duration of the chemical reaction. The
equation of state (i.e., the second equation in (2)) along
with the thermodynamic equality

ov\ _(av) (oY) (av) g
or ], \oT/, \ov /), \oT ),
result in the following expression

(6Y) _(Q,—-01n) Y% (10)

El (_)y(1 +iwt) Ty

The dispersion equation determining two acoustic (wave)
types of motion and three non-wave ones then takes the
form:

. Cvp
wz(w3—z : w—c Aw + i
C\/,ooTc CPoo Tc

C A) =0,
(1)
where A = k2 + kﬁ, Coo = \/ym% is the frozen linear
sound velocity (i.e., the one for sound of infinitely large
frequency as compared with the inverse time of the chemi-
cal reaction, and infinitely small magnitude), and Cp and

Cy denote the low-frequency heat capacities

Cro =Cv o (yoo + (Yoo = 1)Qo7e(Qp — Or) ) ,
To

Voo — 1)QOTCQT ) ]

(12)
Cvo=Cv (1 | T
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The approximate roots of the dispersion equation for
acoustic branches in one dimension were first derived and
adequately studied by Molevich [12]. There are five dis-
persion relations in two-dimensional flow: two acoustic
modes indexed by 1 and 2 and three non-wave ones. The
third non-acoustic root describes the relaxation due to the
chemical reaction; its approximate value depends on the
spatial scale of the perturbation. The last two roots (the
fourth denoting the thermal mode and the fifth denoting
the vorticity mode) equal zero,

wi =0, ws=0. (13)

The vorticity mode appears as one of various possible
types of motions in flows exceeding one dimension. As
for the two branches of sound, their dispersion relations
depend on the ratio between the sound period and the
characteristic duration of the chemical reaction ..

2.1.1.  Dispersion relations for high-frequency sound

The first limiting case pertains to the domain of acoustic
frequencies large compared to the inverse duration of the
chemical reaction:

1 N 1

|wr 27| |CN\/ZTC|

The condition below reminds us that sound is a wave pro-
cess, so that dispersion and attenuation during the sound

=0, < 1. (14)

period are small:

2 2
D8] < V”‘, D:M

C\/,() Cgo

, (15)

where D denotes the dispersion, and

CpoTo
C\/,om

Cyp =

is the linear sound velocity at very low frequencies. The
inequality (15) is valid if

:
1000y + (oo = 1)01]| < ‘ Yoo To (16)

Ooo(Voo — NTc |

In view of Eqgs. (14) and (15), the leading-order high-
frequency acoustic roots of the dispersion equation (11)
take the form

\/7 D C\/o
W =Coo VA +i— 5 C\/ooTC

_ \/7 D C\/o
SV AT e

(17)

Amplitudes of excess acoustic quantities increase if
Qo[Qp + (veo —1)Qr] > 0, (18)

and decrease otherwise. The inequality (18) determines
the area of irreversibility of the chemical reaction; it also
establishes the following inequality [12]:
2 2 CP,oo CP,O
Coo ™0 :E (CVvoo _m)
_ (Yoo - 1)QO(Qp + (yoo - 1)QT)T0TC
B m(QoO1 (Voo — 1) — To)

(19)

<0,

it Cvo > 0. Thus, the sign of D distinguishes between an
equilibrium (positive D) and a non-equilibrium irreversible
chemical reaction (negative D).

2.1.2. Dispersion relations for low-frequency sound

In the other limiting case,
lwiate] = [eoVAT| = 8 < 1, (20)

the approximate acoustic roots of Eq. (11) equal

w1 —Co\/i-i‘ lD CPOOCOTC A,
2 Cpp

= — Co_\/7+lD CPOOCOTCA.
2 Cpo

(21

The terms responsible for attenuation (amplification) of
sound are of second order in the small parameter dy. This
coincides with the general idea about weak attenuation
of low-frequency sound (proportional to its square fre-
quency) in fluids with standard attenuation.

2.1.3. Definition of modes

Substitution of the approximate roots of the dispersion
equation in Egs. (3) readily produces the relationships
of the Fourier transforms of the perturbations specific for
every mode. The relations for both acoustic branches de-
termined by the roots wy and w; are the following:

. wiky
Vx,i E
- wiky
Vy,i A
T T _ D ﬁ(’
Gi=| T | =] To(re—1=(r—wIR) | 2
Po
Y/ =G B
! H(yso—1)
pl’ Po
(22)
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where i = 1,2, and R denotes an integral operator acting
on scalar functions ¢(x, y, t) as follows:

t n Cv,
Re = CS:OTC [ ) pe T gy (23)
The relaxation modes are derived for the two limiting
cases, high frequency (0s < 1) and low frequency (9p <
1), i.e., we will utilize these limits to simplify calculations
of the stimulation of non-acoustic modes in the field of
sound. We still use the nomenclature “high frequency”
and “low frequency,” although they actually refer to the

regimes cw\/Zrc <« 1 and Co\/KTC <1

~ “)B,hkx
Vx,3 A
~ mg,hky
Vy,3 75
~ - p’
Ysp=| T3 = —To =3,
Po
% B
3 FilYoo—T)
~/
P/ Po
w3, 1kx
A
witky (24)
A
~/
T m Cvpo 2 A3
yn = —To— 2 ,
A CV 00 Tc Po
2
2 + 1 Cvo
H(yoo—1) H(yoo—1)A \ Cv,ooTe
Po
Wi =i Crp
3,h = )
CP,ooTc
w3 =i Cvo
3,1 = .
C\/,ooTc

The relations for the perturbations in the thermal mode
are free of partial derivatives with respect to coordinates
and therefore neither refer to the low-frequency nor to the
high-frequency regime,

Vx4 0
» 0
W= T |= —To %i. (25)
v (2]
H(yoo—1)
Pi P

The same applies also to the vorticity mode. The latter is
determined by the following relationships:

V=0 T:=0, V.=0, p.=0. (26)

The velocity field of the two sound modes and that of
the third and fourth modes are potential: vV x v, = 0,
n=1,...,4, and the last mode is rotational in accordance
with Egs. (26). The overall linear velocity is a sum of all
the individual parts:

5
V=Y V. (27)

The linear flow may be uniquely decomposed into its in-
dividual modes at any time. This may be achieved by the
use of a set of matrix projectors. The matrix projectors
were derived and exploited by one of the authors in some
problems of nonlinear hydrodynamics in media with stan-
dard absorption [13, 14]. For example, in order to extract
the vorticity part from the overall velocity-vector field, it
is sufficient to apply the operator P, to the vector of the
Fourier transforms of the velocity components:

) vy : k; —kk, vy
P,, ==
vy Al —kky K2 vy
(28)
‘./X,5
= %s
P,, operating in (x, y) space, satisfies the equality
o’ o’
@ _0x3y
P,A = , (29)
9 9
Toxdy  ox?

where A = a% + % denotes the Laplacian operating in
(x,y) space.

2.2. The quasi-planar sound, relations for per-
turbations and dynamic equations

In order to simplify the mathematical context and to focus
on the physically interesting case of quasi-planar sound
propagating in the direction of the OX axis, let us assume
that all acoustic perturbations vary much faster in the di-
rection of the OX axis than along OY: k, > k,. This
allows us to expand the relations for sound perturbations
in powers of the small parameter

For propagation in the positive OX direction, the leading-
order relationships in the high-frequency and low-
frequency limits take the form:
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vy, t) Coo + 5 azfdxfdx+‘276§v°r [ dx
Vya (X4, t) Coo s [ dx
Tt | =] (o= DTo— ToveD e [ dt %
ribed B o
st /, N .
vialx.y, 1) 0+ 0y2 [ dx [ dx — gCP;ngc 2
v,y 1) Co% [ dx
L) | = (o= 1)To + TopoD L= 8 ;Li‘
e (1)
pilx. 1)/, 0

Only terms up to linear order in p have been kept. We consider the small parameters y1, 0y, 0, and M of the same
order. In view of relations (30), the leading-order equations governing the acoustic excess density of sound propagating
in the positive OX direction are

ap, 3p,  Coo 07 D Cyp
T + Coo I + = 2 a7 prdx + 5 va Cp1 =0 for high frequencies, o
2
65)1 +c %/j: + 620612 / 1d gCPS}?TC %f; =0 for low frequencies.
\
The propagation equations (31) can not only be deter- dimensions readily rearranged into the following system:
mined from Eqs. (30), but also from the dispersion rela-
tions (17) and (21) recalling that
av, To 0" 107" ., =
at mpy 0x o ox - V)w
= 1k; 1k; Top' 0p' T 0p'
= _Y ~ _y. - Ly,
VA kX+2kX+O( W) = k+2kx mp§0x+mp00x
5} To 9p" 10T’ -
Ty 2P (Y,
3 E t . d d dt  mpydy m dy
. qu_a_lons gov_ernlng soun a_n Tpldp | T op
the vorticity mode in a weakly nonlin- mpt 0y mpo dy
oT’ , 32
ear flow =T+ T 0 -0 2 D
3.1. Second-order nonlinear terms in the hy- % = QY@Y,] +(7- V)T =0,
drodynamic system
6Y’ 1
. [QT@T’+QPQ° '+ 0y @v’]
. . . ot H
Because the quadratic nonlinear terms are of importance
when studying weakly nonlinear flows, only these terms +(V'V)Y =0,
will be considered. At quadratic order in the nonlinear dap’
V-7 =0,
terms, the governing system (1) together with (2) is in two ot PV D+ VI PV D) =
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where V in two dimensions denotes
- 7] + -
[ =
ox ! dy

(Tand J are the corresponding basis vectors of unit length).
We remark that in Egs. (32) we have disregarded terms
involving second-order derivatives of Q, such as

20
aT?

This restricts the accuracy of our conclusions.

3.2. Decomposition of the intense-sound and
vorticity-mode equations and acoustic stream-

ing

In studies of weakly nonlinear dynamics, we still work
with linear relations of perturbations in accordance with
Egs. (22), (24), (25), and (26), and we will consider every
field perturbation as a sum of perturbations of different

J

modes. The main idea is to decompose the equations gov-
erning different modes by applying the corresponding pro-
jector to the system that includes weakly nonlinear terms
like (32) [13, 14]. Every equation includes nonlinear terms
of order not lower than M? pertaining to all modes and
reflecting the nonlinear interactions of modes in a weakly
nonlinear flow. The solution of the final dynamic equa-
tions depends on the contribution of every mode in the
overall field perturbation. Let the propagation of sound
in the positive direction be intense in comparison to all
other modes. This means that the characteristic amplitude
of the velocity associated with the first branch of sound in
the considered domain is much greater than that of other
modes:

max |v¢| > max |v,|, n=2,...,5. (33)

We will only keep dominant terms corresponding to sound
propagating towards the right in the nonlinear terms in all
formulae below. In view of the relations specific for sound,
the governing equations for an excess acoustic density
(pa = py) are at leading order given by

9pa 1 s
(;)t + cm\/gpg — CooBpa + 5 [ympa(V V) + (V- V)pu] =0,
0pa 0ps  Coo 07 (Yoo + V€00 Opa
ot + Cxo Ox + 707442 [pudX Coona + 721)0 Ox Pa = 0,
9 4 (o VAp, — 2 CrxtTe +1[ (V) + (7 V)pa| =0 .
ot 0 Pa 2 CP,O P 2 YoPua a a Pa| =Y,
dp, 0p, ¢y & D Cpoochtc pa (Vo4 1)co0pa
ot "% T aa | P T T T, e 30 oxPe =0

respectively. In these equations, we have abbreviated

Downloaded from mostwiedzy.pl
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Zcoo CV,oo Tc ’

for the high-frequency, the high-frequency quasi-planar, the low-frequency, and the low-frequency quasi-planar cases,

(39)

In order to decompose the dynamical equation for the velocity of the vorticity mode, it is sufficient to apply the matrix

operator P,, determined by Eq. (29), to the momentum equations (i.e., the first two equations in the system (32)). As

a result, all terms corresponding to the potential velocity vector are reduced in the linear part of equations. On the
right-hand side, we keep only acoustic terms. Applying of P, then yields the dynamic equation for the vorticity mode in

the field of intense sound in these two equivalent forms:

ot

AN\ MOST

K _1g. (puavu),

v, 1 V( 0vu). (36)

ot po Y \P7 0
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"
equations in terms of v, and Q:

av, 2Bc3, = 1
W _ _2Bep [(vm [ o

ot P%
v, 2Bc? - 1
= c><)Pv a ud
T 2 [(Vp ) / padx]
av, Dct Cp oo, - 0p, ]
., = T 5 S Pv V a
at 2 Cro VPG |

v, Dc} Cpmrtp [( S )apa—

ot = R Cro Pe) x|

Here, the first, second, third, and fourth line refers to the
high-frequency, the high-frequency quasi-planar, the low-
frequency, and the low-frequency quasi-planar case, re-
spectively. In the evaluation of the equations describing
the effects of quasi-planar sound, we have approximated
P, by the leading terms of a power series in p according
to Eq. (28):

%fdxfdx — g | dx
P, ~ .39
—ﬁ%fdx 1

4. The vorticity mode generated by
periodic sound

The difficulties in the description of the vorticity mode
caused by sound are obviously nonlinearity, absorption,
and diffraction in both equations governing sound and the
vorticity mode. The solution of the planar version of the
second equation in Eqgs. (34) for a periodic transducer,
0pq 0pq

ot T oy

(o + 1)cec 9
2p0 ox

- Coona + Pa = 0, (39)

takes the form [2, 5]:

Pa(X, T) =paexp (BaX)
2 2/, (nK{exp[BssX] — 1}) sin (nwt)  (40)
Z nK {exp[Bs; X] — 1} '

n=1

where T = tc_f denotes the retarded time, w is the sound
frequency,

(Voo + 1)wpa
2poceoB

1 1
Xsh :Eln (1 +F)

Here, 3 = V x ¥, is the vorticity of the flow, with v, replacing 5. Accounting for Egs. (22), one finally gets the following

o0  2Bc - .

o = =V x | ¥out.

aq 2B .

— = g“’ (Vpq) x /Vpadx,

ot Po

00 DG 9 47)
C() PooTe = = 0pPq

— =220 Vo) x VL2,

AT 2 Gy (VP Vg

aq _ Dci Croote , = = 0p,

E - p% CP,() (va) xV ox '

(

is the distance for forming a shock front of sound,

is a dimensionless coordinate, and B,, = Bxs,. J, denotes
the Bessel function of order n. The solution (40) accounts
for nonlinearity and absorption; it is valid at distances
from the transducer within which a saw-like front has not
formed yet: 0 < X < 1. In the case of a weakly diffracting
beam, it can be represented by the following formula:

Pa(X, Y, T) =paexp (B X — Y?)

=2 2/, (nK{exp[Bsy X] — 1}) sin (nw1)
Z nK{exp[Bss X]— 1}

n=1

(41)

Y = % denotes the dimensionless transverse coordinate,
where L marks the characteristic transverse width of the
sound beam. Substituting the solution (41) into the “high-
frequency” equation for Q (i.e., Eqg. (37)), and averaging
the equation over one period of sound %” one arrives at
a solution for (ﬁ,) which equals the driving force of the
vorticity mode averaged over the sound period

> w (%04
Q) _ﬂjt Edt

zzigg" <[(ﬁpu) X /ﬁpadt]>.

Considering averaged quantities reduces the problem of

(42)

the generation of the vorticity mode to the problem of
acoustic streaming in its classic meaning. The first two
components (Q;,) and (€ ,) are zero, and the third one
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(Q,) is nonzero: Figure 1 shows the distribution of the longitudinal force
of acoustic streaming along the OX axis. We have plotted
8Y exp[2(Buy X — Y2)] (Qy,) versus X for different values of K (and thus different
E(Q:.) = K2 {exp[Boy X] = 1] Bs;) and different values of Y. In the evaluations, only the
SR (43) first five terms in the series (43) were taken into account.
> 5o (nK {exp[Bay.X] - 1%
n=1
where
_ Pl CyooTe _ L (44)
paDcs, Cup 2M2Bc2
|
K=-50(By =-0.22) K =5.0(By, =0.18)
E(Q) E{Q.)
0.6 )
\Xﬂx | Y=05 —
A
M —— _ y=o02 0s  Y=02
. — - —_— e e ——_—
" D W E— SEE— Y=10
0.0 ¥=00 0.0 Y =00 X
[ 0.2 04 (b 03 1.0 b 0.2 04 [eX] 03 1.0
o2f 0 Y=sl0—— o — Y=-10
Y =-02 05| T YZooa —
04} Y =-05 Y =-035 -
a b

Figure 1. Longitudinal force of acoustic streaming versus X for different transversal distances from the sound beam Y and different K (i.e., different
Bsh)-

The vorticity (Q,) depends on time and may be calculated The plots in the Fig. 1 show that the sign of the acous-
by the use of (Q;,) by means of the relation tic force of streaming depends on the sign of B, which
is apparent from dependence of E on B. Therefore, an

T inversion of the direction of streamlines occurs in the
(@) = (t+2) (). (45)
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equilibrium regime of a chemical reaction (when B < 0)
as opposed to non-equilibrium chemical reactions (when
B > 0). This is the main conclusion of this section. For
Gaussian beams, the absolute value of the vorticity pro-
duction per unit time, [{Q;.)|, is maximal for Y = 0.5 and
Y = —0.5, and the streamlines are symmetric with respect
to the beam-propagation axis. The absolute value of the
vorticity production in the equilibrium regime of a chemi-
cal reaction (when B < 0, Figs. 1a and 1c) decreases with
the distance from the transducer, otherwise (when B > 0,
Figs. 1b and 1d) it increases. The rate of enhancement or
reduction of the absolute value of the vorticity depends on
|K|: it is larger for smaller |[K| (and thus for larger values
of |B|). The absolute value of the mean vorticity [(Q,)]
grows linearly with time for any dimensional coordinates
X and Y.

5. Concluding remarks

The objective of this study has been to make possible
detailed evaluations of the vorticity-mode generation by
sound (in particular, acoustic streaming) in a chemically
reacting gas. Acoustic streaming in gases is of greater im-
portance than in liquids; its velocity may achieve dozens of
meters per second. The mean flow associated with stream-
ing may transport not only heat perturbations, but also
solid or fluid particles. It may be governed remotely by
sound. Data on the streaming velocity may be useful for
investigations of chemical reactions that take place in a
gas. The novelty of this study is the analysis of nonlin-
ear phenomena differing from those in a Newtonian fluid.
The equations describe sound and are associated with
nonlinear phenomena in a gas with excited (reversibly or
not) oscillatory degrees of freedom of molecules [5, 7, 15].
These gases are widely used in lasers. It may be con-
cluded that our results are applicable to some classes
of relaxation processes; although conceptually somewhat
different, these processes are described by similar equa-
tions. The equations derived in this study (Egs. (37)) de-
scribe the nonlinear generation of the vorticity mode that
is not necessarily associated with acoustic streaming; they
are valid for any sound, including aperiodic, and they are
not averaged. A chemically reacting gas is a dispersive
medium, so that two limits of sound frequencies (as com-
pared to the inverse duration of the chemical reaction)
were considered.

The two-dimensional weakly nonlinear flow of a chem-
ically reacting gas was considered in this study. The
inclusion of one more dimension would yield one more
vorticity mode and essentially complicate the mathemati-
cal content of the study. This would, in fact, not give new

results in comparison with those obtained in the present
study. Equations (34) and (36), which describe the dy-
namics of sound and the vorticity mode, respectively, were
derived within an approximation taking terms up to or-
der M? into account. The accuracy of our conclusions
is restricted because we have neglected second partial
derivatives of the heat release Q(p, T, Y). An analysis
undertaken by the authors has revealed that the inclusion
of higher-order derivatives in Q would result in the same
equation governing streaming, but would yield corrections
to the dynamical equation for the dominant sound mode.
Our conclusions are valid in temporally and spatially con-
fined domains, where sound remains dominant with respect
to other modes (vorticity, entropy, and chemical).

It is of importance to note that the attenuation (or am-
plification) of sound considered in this study occurs ex-
clusively due to the presence of a chemical reaction as
well as the nonlinear generation of the vorticity mode.
In particular, the necessary condition of mode interaction
differs from Newtonian viscosity. Moreover, there exists
a regime in the chemical reaction, in which sound is am-
plified during its propagation, and the generation of the
vorticity mode is different from that in Newtonian flows.
This study does not take into account the thermal and vis-
cous (standard, Newtonian) attenuation of a reacting gas.
The terms reflecting these phenomena (they originate from
the stress tensor and the energy flux associated with ther-
mal conductivity) should complement the momentum and
energy equations in the system (1). The attenuation of
low-frequency sound is ignorable. The equation describ-
ing the high-frequency excess density in a planar sound
wave, which accounts for the standard attenuation, takes

the form
0pq 0pq (Yoo +1)  Opg bd’p,
ot Teogy oot T Py ~eBPam5 52 =0
(46)
Here, b = by + by is the diffusivity of sound, where
_ 4
- 3po

and
(o)
Po '
The quantities n and k denote the shear viscosity and the

by =

thermal conductivity, respectively. The standard attenua-
tion always leads to a linear damping of sound during its
propagation. The balance of the last two terms in Eq. (46)
determines the linear amplification or damping of sound:
if, for periodic sound,

2
2c.B— b <0,
C,

o5}
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the amplitude of the various sound quantities decrease.
Otherwise they increase with time during sound propaga-
tion. This is of importance in evaluation of the vorticity
mode caused by sound.

An important problem to overcome is the transverse spa-
tial inhomogeneity of the ambient quantities of the gas,
which grows simultaneously with increasing heat power
Qp. Taking into account the background inhomogeneity
essentially complicates the mathematical analysis, but it
may lead to new, physically significant conclusions. The
study of the spatial inhomogeneity of a gas with excited
internal degrees of freedom has proved that the area of
non-equilibrium states of such gas becomes much larger
[16, 17]. This may also hold true for a chemically reacting
gas.
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