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Abstract. Let M be a smooth closed simply-connected m-dimensional man-

ifold, f be a smooth self-map of M and r be a given natural number. The

invariant Dm
r [f ] defined by the authors in [Forum Math. 21 (2009)] is equal

to the minimum of #Fix(gr) over all maps g smoothly homotopic to f . In

this paper we calculate the invariant D4
r [f ] for the class of smooth self-maps

of 4-manifolds with fast grow of Lefschetz numbers and for r being a product
of different primes.

1. Introduction. One of the fundamental problems in periodic point theory is to
find minimal number of periodic points in the homotopy class of a given map. Let f
be a self-map of a compact manifold M . B. Jiang introduced in 1983 the invariant
NFr(f) which estimates from above #Fix(gr) for all g homotopic to f [14]. J.
Jezierski proved in 2006 that the invariant is the best estimation if the dimension
of M is at least 3 [12]. This means that NFr(f) is equal to the minimal number of
elements in Fix(gr) over all g homotopic to f . In the last years the invariant was
computed in many special cases, see for example: [10], [13], [16], [18].

In the recent papers [4], [6] the authors developed the theory for the smooth (i.e.
C1) category, searching for the minimum in smooth homotopy class. As a result,
two counterparts of NFr(f) were found: Dm

r [f ] for simply-connected manifolds [4]
and its generalization NJDm

r [f ] for non simply-connected ones [6]. The crucial de-
manding for effective computation of the invariants is the knowledge of all sequences
of local fixed point indices of iterations at a periodic p-orbit for smooth maps in the
given dimension m, called DDm(p) sequences. This information was provided in
dimension 3 in the paper [9], which made it possible to compute the value of D3

r [f ]
for S2×I [4], S3 [5], a two-holed 3-dimensional closed ball [3] and NJD3

r [f ] for RP 3

[7]. Recently, in [8] we provided the list of all possible sequences of local indices of
iterations in arbitrary dimension, which allows one to calculate the invariants for
self-maps of higher dimensionional manifolds. In this paper we partially realize this
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524 GRZEGORZ GRAFF AND JERZY JEZIERSKI

programme for simply-connected manifolds and m = 4. We calculate D4
r [f ] under

the assumption that the so-called periodic expansion of {L(fn)}∞n=1, the sequence
of the Lefschetz numbers of iterations, has only non-zero coefficients. This property
holds for example for maps with fast grow of the sequence of Lefschetz numbers,
such as self-maps of S4 with degree d satisfying |d| > 1.

The paper is organized in the following way. First, in Section 2 we give the
definition of Dm

r [f ] which is expressed in terms of DDm(p) sequences. Next, in
Section 3 we provide the list of all DDm(1) sequences and prove that in order to
calculate D4

r [f ] it is enough to use only DD4(1) sequences. Finally, in Section 4 we
calculate D4

r [f ] for r being a product of different primes (Theorem 4.8).

2. The invariant Dm
r [f ]. The notion of Differential Dold sequences (DD se-

quences in short) introduced in [4] is used in the definition of the invariant Dm
r [f ]. A

DDm(p) sequence is a sequence of integers that can be locally realized as a sequence
of indices on an isolated p-orbit for some smooth map.

Definition 2.1. A sequence of integers {cn}∞n=1 is called a DDm(p) sequence if
there is a C1 map φ : U → Rm (U ⊂ Rm) and its isolated p-orbit P such that
cn = ind(φn, P ). If this equality holds for n|r, where r is fixed, then the finite
sequence {cn}n|r will be called a DDm(p|r) sequence.

Let r be fixed. The minimal decomposition of the sequence of Lefchetz numbers
of iterations into DDm(p|r) sequences gives the value of Dm

r [f ].

Definition 2.2. Let {L(fn)}n|r be a finite sequence of Lefschetz numbers. We
decompose {L(fn)}n|r into the sum:

L(fn) = c1(n) + . . .+ cs(n), (1)

where ci is a DDm(li|r) sequence for i = 1, . . . , s. Each such decomposition deter-
mines the number l = l1 + . . .+ ls. We define the number Dm

r [f ] as the smallest l
which can be obtained in this way.

The invariant Dm
r [f ] is equal to the minimal number of r-periodic points in

smooth homotopy class of f .

Theorem 2.3. ([4]) Let M be a smooth closed connected and simply-connected
manifold of dimension m ≥ 3 and r ∈ N a fixed number. Then,

Dm
r [f ] = min{#Fix(gr) : g is smoothly homotopic to f}.

Periodic expansion is a convenient method of storing the data connected with
the sequence of indices of iterations. Each such sequence can be expanded as a com-
bination of some basic periodic sequences {regk}n taken with integral coefficients.

Definition 2.4. For a given k we define the basic sequence:

regk(n) =

{
k if k|n,
0 if k 6 |n.

A sequence of indices of iterations (as well as a sequence of Lefchetz numbers of
iterations) may be written down in the form of periodic expansion (cf. [15]), namely:

ind(fn, x0) =

∞∑
k=1

akregk(n), (2)
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MINIMIZATION OF THE NUMBER OF PERIODIC POINTS 525

where an = 1
n

∑
k|n µ(k)ind(f (n/k), x0), an are integers, µ is the classical Möbius

function, i.e. µ : N → Z is defined by the following three properties: µ(1) = 1,
µ(k) = (−1)s if k is a product of s different primes, µ(k) = 0 otherwise.

The fact that the coefficients an are integers follows from the result of Dold [2].

The invariant Dm
r [f ] is defined in terms of DDm(p) sequences. On the other

hand, it is enough to know only the forms of DDm(1) sequences, because every
DDm(p) sequence can be obtained from some DDm(1) one.

Definition 2.5. We will say that the DDm(p) sequence {c̃n}n comes from the
given DDm(1) sequence {cn}n with the periodic expansion cn =

∑∞
d=1 adregd(n) if

the periodic expansion of {c̃n}n has the form:

c̃n =

∞∑
d=1

adregpd(n).

Theorem 2.6 ([4]). Every DDm(p) sequence comes from some DDm(1) sequence.

3. Local indices of iterations in dimension 4. In this section we give the
complete list of all sequences of local indices of iterations of a smooth map in
dimension 4 i.e. the list of all DD4(1) sequences. Let us mention here that the
forms of indices of iterations for continuous maps are known since 1991 [1], and
recently indices of iterations have been found also for other important classes of
maps, such as holomorphic maps [22] and planar homeomorphisms [17], [21].

Definition 3.1. Let H be a finite subset of natural numbers, we introduce the
following notation.

By LCM(H) we mean the least common multiple of all elements in H with the
convention that LCM(∅) = 1. We define the set H by: H = {LCM(Q) : Q ⊂ H}.

For natural s we denote by L(s) any set of natural numbers of the form L with
#L = s and 1, 2 6∈ L.

By L2(s) we denote any set of natural numbers of the form L with #L = s+ 1
and 1 6∈ L, 2 ∈ L.

Theorem 3.2 (Main Theorem I in [8]). Let f be a C1 self-map of Rm, where
m is even. Then the sequence of local indices of iterations {ind(fn, 0)}∞n=1 has one
of the following forms:

(Ae) ind(fn, 0) =
∑

k∈L2(
m−4

2 )

akregk(n).

(Be) ind(fn, 0) =
∑

k∈L(m−2
2 )

akregk(n).

(Ce), (De), (Ee) ind(fn, 0) =
∑

k∈L2(
m−2

2 )

akregk(n),

where

a1 =

 1 in the case (Ce),
−1 in the case (De),
0 in the case (Ee).
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526 GRZEGORZ GRAFF AND JERZY JEZIERSKI

(F e) ind(fn, 0) =
∑

k∈L(m
2 )

akregk(n),

where a1 = 1.

By [d, l] we denote the least common multiple of d and l.

Theorem 3.3. The list of all DD4(1) sequences is the following:
(A) cA(n) = a1reg1(n) + a2reg2(n);
(B) cB(n) = a1reg1(n) + adregd(n);
(C − E)odd

cX(n) = εXreg1(n) + a2reg2(n) + adregd(n) + a2dreg2d(n),

where εX ∈ {−1, 0, 1}, X ∈ {C,D,E}, d is odd.
(C − E)even

cX(n) = εXreg1(n) + a2reg2(n) + adregd(n),

where εX ∈ {−1, 0, 1}, X ∈ {C,D,E}, d is even.
(F ) cF (n) = reg1(n) + adregd(n) + alregl(n) + a[d,l]reg[d,l](n),
In all cases d, l ≥ 3 and ai ∈ Z.

Proof. We apply Theorem 3.2 for m = 4, obtaining the corresponding parts of the
thesis. For example, to obtain the case (F ), we use (F e) and get:

L(
m

2
) = L(2) = {d, l} = LCM{Q ⊂ {d, l}} = {1, d, l, [d, l]}.

Corollary 1. Let us notice that any DD4(1) sequence has one of the following
forms:

1. a1reg1(n) + adregd(n);
for a1, ad ∈ Z.

2. εreg1(n) + a2reg2(n) + adregd(n) + γda2dreg2d(n);
for a2, ad ∈ Z, ε = 0,±1, γd = 0 if d is even and γd = 1 if d is odd.

3. reg1(n) + adregd(n) + alregl(n) + a[d,l]reg[d,l](n);
for ad, al ∈ Z, d, l ≥ 3.

The next two lemmas show that during the calculation of D4
r [f ] we may consider

only DD4(1) sequences, which makes the computation much easier.

Lemma 3.4 (Remark 4.6 in [4]). For m ≥ 3 in Definition 2.2 of Dm
r [f ] we can

equivalently use only DDm(p|r) sequences such that p < 2[
m+1

2 ].

Lemma 3.5. To calculate D4
r [f ] it is enough to consider only DD4(1) sequences.

Proof. By Lemma 3.4 it is enough to consider only such DD4(p|r) sequences for
which p ≤ 3.

We show that
(1) every DD4(2|r) sequence is a sum of at most two DD4(1|r) sequences.
(2) every DD4(3|r) sequence is a sum of at most three DD4(1|r) sequences.
Proof of (1). Using Theorem 2.6 we find the forms of all DD4(2|r) sequences,

each of which comes from some DD4(1|r) sequences of one of the types (A)-(F).
Next, we represent each DD4(2|r) sequence as a sum of at most two DD4(1|r)
sequences.
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MINIMIZATION OF THE NUMBER OF PERIODIC POINTS 527

(A) a2reg2(n) + a4reg4(n) is in fact the DD4(1|r) sequence of the type (D)even.
(B) a2reg2(n) + a2dreg2d(n) the same argument as above is true.
(C-E) For d odd we have that [4, 2d] = 4d, then
εXreg2(n) + a4reg4(n) + a2dreg2d(n) + a4dreg4d(n) =
reg1(n) + a4reg4(n) + a2dreg2d(n) + a4dreg4d(n) (F )
−reg1(n) + εXreg2(n) (A)
where on the right-hand side of the above formula we indicated that the first

sum is realized by a sequence of the type (F) and the second by (A).
In the same way we deal with the case of d even (every sequence is a sum of a

sequence of the type (F) and (A)).
(F) Notice that [2d, 2l] = 2[d, l], thus we get
reg2(n) + a2dreg2d(n) + a2lreg2l(n) + a2[d,l]reg2[d,l](n) =

−reg1(n) + reg2(n) + (A)
+reg1(n) + a2dreg2d(n) + a2lreg2l(n) + a[2d,2l]reg[2d,2l](n). (F )

Proof of (2). Let us now consider a DD4(3|r) sequence.
Notice that by Theorem 2.6 and Corollary 1 it has always the form with no more

than four basic sequences regi, i.e.

apregp(n) + aqregq(n) + arregr(n) + asregs(n),

where p, q, r, s ≥ 3. Then we may represent this sequence as a sum of threeDD4(1|r)
sequences in the following way:
−reg1(n) + apregs + (B)
+aqregq(n) + (D)
+reg1(n) + arregr(n) + asregs(n) (F )
This completes the proof.

4. Calculation of the invariant. We work under the following standing assump-
tions

Standing Assumptions

1. f : M4 →M4 is a smooth self-map of a smooth closed connected and simply-
connected 4-manifold,

2. r = p1 . . . ps is a product of different prime numbers,
3. in the periodic expansion of Lefschetz numbers

L(fk) =

∞∑
i=1

airegi(k)

ai 6= 0 for all i 6= 1 dividing r.

Remark 1. The assumption (3) is satisfied for a self-map f : S4 → S4 with
|deg(f)| > 1 [20]. In general, it often takes place if the growth of {L(fk)}k is quick.

We will find the formula for D4
r [f ], under the above assumptions.

It turns out that first it is convenient to find the minimal decomposition of the
sum ∑

i|r

airegi

into DD4(1|r) sequences modulo reg1 i.e. we require that the equality holds only
for all divisors i|r different than 1. In other words, we will temporarily ignore the
coefficient at reg1.
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Lemma 4.1. The two following numbers are equal:

1. the minimal number of summands in the decomposition of the sum∑
i|r

airegi

modulo reg1 into DD4(1|r) sequences,
2. the minimal number h(s) determining the family of pairs of subsets of Is =
{1, . . . , s}:

{A1, B1}, {A2, B2}, . . . , {Ah(s), Bh(s)}
such that

h(s)⋃
i=1

{Ai, Bi, Ai ∪Bi} = 2Is \ {∅}

i.e. for each nonempty subset X ⊂ Is there is an i such that either X = Ai

or X = Bi or X = Ai ∪Bi.

Proof. Let us notice that to get the minimal decomposition of∑
i|r

airegi modulo reg1,

we should use as much as possible the most “greedy” DD4(1|r) sequences, with the
greatest number of basic expressions regi i.e. of the type (2) or (3) of Corollary 1.
In both of these cases we have the sequences of the form:

εreg1 + adregd + alregl + γa[d,l]reg[d,l], (3)

where d, l are divisors of r different than 1, γ ∈ {0, 1}.
Since r = p1 · · · ps is a product of different primes, there is a bijection G : 2Is →

Div(r) between Div(r), the set of all divisors of r, and the family of all subsets of
Is = {1, . . . , s}:

{1, . . . , s} ⊃ A→ Πi∈A pi ∈ Div(r),

with the convention that Πi∈∅pi = 1. Moreover

G(A ∪B) = [G(A), G(B)].

As a result, every triple of divisors d, l, [d, l] determining the sequence (3) is
associated with a triple of subsets of Is: Aj , Bj , Aj ∪Bj .

Now, a decomposition of the sum
∑

16=i|r airegi(k) into h(s) DD4(1|r) sequences

of the form (3) is equivalent to the existence of h(s) families of subsets of Is

{A1, B1}, {A2, B2}, . . . , {Ah(s), Bh(s)}
such that

h(s)⋃
i=1

{Ai, Bi, Ai ∪Bi} = 2Is \ {∅}

i.e. for each nonempty subset X ⊂ Is there is an i such X = Ai, X = Bi or
X = Ai ∪Bi.

Now our problem reduces to the following combinatorial question:

Problem 4.1. Let s be a natural number. Find the minimal number h(s) such that
there exist h(s) families of subsets A1, . . . ,Ah(s) ⊂ 2Is satisfying

1. #Ai ≤ 2 i.e. each family consists of at most two subsets,
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MINIMIZATION OF THE NUMBER OF PERIODIC POINTS 529

2. for each nonempty subset X ⊂ {1, . . . , s} there exists i ∈ {1, . . . , s} such that
X is one of the sets Ai, Bi or Ai ∪Bi, where Ai = {Ai, Bi}.

Theorem 4.2. The minimal number searched in Problem 4.1 is given by the for-
mula

h(s) =
2s + (−1)s+1

3
. (4)

The proof of Theorem 4.2 is a consequence of the following three lemmas.

Lemma 4.3. The formula (4) for h(s) can be given inductively as follows:

h(2) = 1, h(s+ 1) = 2 · h(s) + (−1)s.

Proof.

2 · h(s) + (−1)s = 2 · 2s + (−1)s+1

3
+ (−1)s

=
2s+1 + 2 · (−1)s+1 + 3 · (−1)s

3
=

2s+1 + (−1)s

3
= h(s+ 1).

Lemma 4.4. h(s) given by the formula (4) is less or equal to the minimal number
satisfying the conditions in Problem 4.1.

Proof. We notice that each family containing two subsets {A,B} ⊂ 2Is determines
at most three nonempty subsets A,B,A ∪ B ⊂ Is. Thus, to realize all nonempty
subsets in Is we need at least (2s − 1)/3 pairs. The last means that the minimal
number in Problem 4.1 is greater or equal to (2s − 1)/3. On the other hand, the
least natural number ≥ (2s−1)/3 is equal to (2s−1)/3 when s is even and (2s+1)/3
when s is odd. It remains to notice that in both cases we get h(s).

Lemma 4.5. (I) For each s ≥ 2 there exist h(s) = 2s+(−1)s+1

3 families satisfying
the conditions in Problem 4.1.

(II) Moreover, if s is even then each family must contain two different subsets,
while if s is odd then h(s) − 1 families must contain two different subsets and the
last family can contain only one subset consisting of a single, arbitrarily chosen,
element.

Proof. We will show inductively that (for s ≥ 2): there exists a family As =
{{Ai, Bi} : i = 1, . . . , h(s)} whose elements are nonempty subsets Ai, Bi ⊂ Is
realizing all nonempty subsets in Is and moreover

1. Ai 6= Bi if i = 1, . . . , h(s) and s is even,
2. Ai 6= Bi if i = 1, . . . , h(s)− 1 and s is odd.
3. Ah(s) = Bh(s) = {s} for s odd.

For s = 2 all nonempty subsets of I2 = {1, 2} can be obtained from the family
{{1}, {2}} which implies h(2) = 1.

Now we assume that for even s a family As = {{Ai, Bi} : i = 1, . . . , h(s)} where
Ai 6= Bi realizes all nonempty subsets in Is = {1, . . . , s}. Then the family

As+1 = {{Ai, Bi}, {Ai ∪ {s+ 1}, Bi ∪ {s+ 1}}, {{s+ 1}}} : i = 1, . . . , h(s)}
realizes all nonempty subsets in Is+1 = {1, . . . , s, s+ 1}. Moreover,

#As+1 = 2 ·#As + 1 = 2 · h(s) + 1 = 2 · h(s) + (−1)s = h(s+ 1)

since s is even.
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Now, the family

As+2 = {{A′i, B′i}, {A′i ∪ {s+ 2}, B′i ∪ {s+ 2}}, {{s+ 1}, {s+ 2}}}

where {A′i, B′i} ∈ As+1 \ {{s+ 1}}
realizes all subsets in Is+2 and moreover

#As+2 = 2 · (#As+1 − 1) + 1 = 2 · h(s+ 1)− 1 = 2 · h(s+ 1) + (−1)s+1 = h(s+ 2)

since s+ 1 is odd.
This ends the proof of part (I). Part (II) of Lemma 4.5 follows from Lemma 4.4

and the observation that for s + 1 odd in the above inductive construction, the
family {{s + 1}}, i.e. the last element in As+1, consists of one subset containing
a single element. It is evident that after a permutation {{s + 1}} can be replaced
with {{i}} for an arbitrarily prescribed i ∈ Is+1.

Proof of Theorem 4.2
Lemma 4.4 gives

h(s) ≤ minimal number in Problem 4.1

while Lemma 4.5 proves the opposite inequality. �

By Theorem 4.2 we obtain

Corollary 2. The minimal decomposition of the sum∑
i|r

airegi

modulo reg1 into DD4(1|r) sequences contains exactly

h(s) =
2s + (−1)s+1

3
sequences.

Moreover, by Lemma 4.5 (II) we get:

(A) if s is even then the minimal decomposition must contain h(s) sequences of
the type

ε · reg1 + adregd + alregl + γa[d,l]reg[d,l], (5)

i.e. of the form (2) or (3) of Corollary 1 (γ ∈ {0, 1});
(B) if s is odd then the minimal decomposition must contain h(s)− 1 sequences of

the type (5) while the remaining sequence may be a1reg1(n) + adregd(n) (i.e.
of the type (1) of Corollary 1), where d 6= 1 is an arbitrarily prescribed divisor
of r.

Remark 2. Let us notice that in all sequences (5), appearing in the minimal
decomposition modulo 1 described in Corollary 2, the divisors d, l must be different
as they correspond to different subsets in Lemma 4.5, so both regd(n) and regl(n)
appear with nonzero coefficients.

Now we are in a position to find the formula for D4
r [f ], i.e. we take into account

also the coefficient at reg1.
Let us remark that D4

r [f ] ≥ h(s). In fact, in the minimal realization modulo reg1

we need h(s) of DD4(1|r) sequences. The following lemmas make it precise when
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MINIMIZATION OF THE NUMBER OF PERIODIC POINTS 531

these sequences are sufficient to obtain the decomposition with a1reg1 and when
one additional sequence, to realize a1reg1, is necessary.

Lemma 4.6. Assume our Standing Assumptions are satisfied and s is even, then

D4
r [f ] =


h(s) if (r is odd and L(f) = h(s))

or (r is even and h(s)− 2 ≤ L(f) ≤ h(s)),

h(s) + 1 otherwise.

Proof. By Corollary 2 (A) to realize∑
16=i|r

airegi

we need at least h(s) DD4(1|r) sequences of the type (2) or (3) of Corollary 1.
If we assume that r is odd then they all must be of the type (3). Then the

contribution of each of them to the coefficient at reg1 is 1. If moreover L(f) = h(s)
then D4

r [f ] = h(s), since a1 = L(f). Otherwise, we need one sequence of the type
(1) more to realize the difference (a1 − h(s)) · reg1(n).

Now we consider the case of even r. Then exactly one sequence in the minimal
decomposition must be of the type (2) and the remaining h(s)− 1 sequences are of
the type (3). Their contribution to the coefficient at reg1 is (h(s) − 1) + ε where
ε = 0,+1,−1. Now, if h(s) − 2 ≤ L(f) ≤ h(s), then a1 can be realized by these
sequences. Otherwise we need one more sequence of the type (1).

Lemma 4.7. Assume our Standing Assumptions are satisfied and s is odd, then

D4
r [f ] = h(s).

Proof. It is enough to show that
∑

i|r airegi(n) is the sum of exactly h(s) DD4(1|r)
sequences.

Since s is odd, by Corollary 2 (B), h(s) − 1 sequences of the types (2) or (3) of
Corollary 1 realize ∑

i

airegi,

where the summation runs through the set Div(r) \ {1, d}, for some d|r. Again
by Corollary 2 (B), it remains to add one expression of the type (1) realizing the
sum a1reg1 + adregd.

We sum up our considerations in the following

Theorem 4.8. Let f : M4 → M4 be a smooth self-map of a smooth closed con-
nected and simply-connected 4-manifold, r = p1 . . . ps be a product of different
prime numbers. We assume that the coefficients ai in the periodic expansion of
L(fk) =

∑∞
i=1 airegi(k), are nonzero for all i|r, i 6= 1. Then

D4
r [f ] =


h(s) if (s is odd ) or (r is odd and L(f) = h(s))

or (r is even and h(s)− 2 ≤ L(f) ≤ h(s)),

h(s) + 1 otherwise.

where h(s) = (2s + (−1)s+1)/3.

Remark 3. If in Theorem 4.8 we drop the part (3) of the Standing Assumption
according which ai 6= 0 for all i 6= 1 dividing r then the equality becomes the
inequality and we get the estimation for D4

r [f ] from above.
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