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MODELING OF COMPOSITE SHELLS IN 6–PARAMETER NONLINEAR THEORY WITH DRILLING 

DEGREE OF FREEDOM 

 

ABSTRACT 

Within the framework of a 6-parameter nonlinear shell theory, with strain measures of Cosserat type, 

constitutive relations are proposed for thin elastic composite shells. The material law is expressed in terms of 

five engineering constants of classical anisotropic continuum plus an additional parameter accounting for 

drilling stiffness. The theory allows for unlimited displacements and rotations. A number of examples are 

presented to show the correctness of the proposed model. 

 

KEYWORDS: 6–PARAMETER SHELL THEORY, COMPOSITE SHELLS, SHELL INTERSECTIONS 

1. INTRODUCTION 

The aim of this paper is to propose constitutive relations for composite shells within the framework of 6- 

parameter shell theory with drilling degree of freedom. One of the disputable issues of this theory, and the finite 

elements that introduce the sixth degree of freedom, is the question of constitutive relation for the drilling 

resultants or selection of appropriate stiffness in FEM approach.  

In this paper we propose the simplest (primitive) approach that would throw some light on the nature of 

the drilling degree of freedom in composite shells. Our approach (based on previous experiences with 

homogenous isotropic shells [1], [2], [3], [4]) is a straightforward extension of well-known concepts from 5- 

parameter theory.  

We assume that the constitutive equation for the drilling resultant is obtained as a result of integration 

over the shell thickness. In the limit case, assuming single layer shell, the derived equation should yield the 

equations written in previous works (see [1], [2], [3], [4] and references given therein). In addition, the numerical 

results obtained with the proposed formulation should be confirmed by classical results from 5-parameter theory, 

wherever the agreement should hold. 

The most important characteristics of the shell theory employed here are:  

 The theory is statically exact, i.e. the exact 2D equilibrium equations of the shell-like body are derived by 

direct through-the-thickness integration of 3D balance laws of linear and angular momentum of the Cauchy 

continuum.  

 The two vector equilibrium equations are expressed in terms of resultant quantities, so from the 

computational viewpoint there is no necessity of integration over the element volume, which is typically required for 

the degenerated elements.  

 The theory is kinematically exact meaning that the shell kinematics is a direct implication of an integral 

identity resulting from the exact equilibrium equations derived as specified above. The resulting kinematic model is 
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formally equivalent to the Cosserat surface with three rigidly rotating directors. The drilling degree of freedom 

appears as a direct consequence of the applied theoretical shell model.  

 The kinematics of the shell is described by the field of generalized displacements, composed of the 

translation vector field and the rotation tensor field both being independent variables. The presence of rotation 

tensor causes that the sixth degree of freedom appears consequentially at each node of the FEM mesh.  

 The theory allows for unlimited translations and rotations and it accommodates naturally various geometric 

irregularities such as, for example, folds, branches and/or intersections.  

A detailed introduction to the theory can be found for instance in the works of Reissner [5], Libai and 

Simmonds [6] and Chróścielewski et al. [1]. The formulations of appropriate shell finite elements and associated 

computational aspects have been discussed, among others, in [2], [3], [4]. In particular, in [2] the finite 

translation/rotation elements named CAM with 4-, 9- and 16-node were elaborated. In this paper we purposely use 

the bi-cubic (16-node) CAM elements based on the ‘pure’ generalized displacement (translation/rotation) 

formulation. Therefore, additional issues concerned with the theory and approximation are not introduced as in a 

case for example of hybrid elements, assumed natural strain elements, mixed elements and corresponding finite 

element approximation, cf. for instance [4], [7], [8][7][8]. Since the sixth parameter in the present theory is the 

drilling rotation the important effect of Poisson thickness locking, see for instance [9] or [10] and references 

given therein, does not occurs here. 

Interested readers can find numerous papers dealing successfully with both constructing the theory of shells 

with drilling dof and its implementation, choosing the rotation parameterization and allowing for general elastic or 

inelastic constitutive equations, see for instance[11], [12], [13],[14],[15],[16],[17],[18],[19],[20],[21]. 

The authors of the present paper made an attempt to exploit their earlier experience in constructing 6 dof models for 

isotropic shells [3][4] and 5 dof models for composite shells [22][23] to create a new computational model with 

independent three translations and three rotational parameters capable of dealing with composite shells possessing 

irregular (non-smooth) reference surfaces. The computational model of material of the composite shell is 

constructed in the present paper by adopting the following assumptions:  

a) the composite shell is made of a finite number of individually homogeneous layers, 

b) the layers are perfectly bonded and no slip between them is possible, 

c) the material is linearly elastic, 

d) the shell is of moderate thickness enabling the application of the Equivalent Single Layer (ESL) model within 

the of First Order Shear Deformation (FOSD) Theory, 

e) strains are small everywhere. 

The above classic assumptions do not violate the salient geometric attributes of the considered 6-parameter shell 

theory i.e.: 

f) translations and rotations are unlimited, 

g) an arbitrary geometry of the shell reference surface is allowed, including folds, branches and intersections. 

In the literature a number of approaches describing the multi-layer effect can be found, see for instance the 

review works[24],[25] or [26][26]. Since in this paper we are interested in the (structural) global response of the 

composite shell, we use the Equivalent Single Layer (ESL) model. The constitutive equations of the entire laminate 

are formulated for an equivalent single-layer panel endowed with macro-mechanical properties estimated as a 

weighted average of the mechanical properties of each lamina; see for instance [27]. However, if local effect are 
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to be considered (e.g. delamination), the layer-wise (e.g. [28] description must be used, see discussion for instance in 

[29]. Such problems are beyond the scope of the present paper.  

2. OUTLINE OF FORMULATION 

A rigorous mathematical derivation of the 6-parameter shell theory can be found in [2], [3], [4], [30] and 

will not be repeated here. In this section, for completeness, the main aspects of the underlying theory of shells 

are recalled in the range necessary for formulation of the constitutive relation. 

In what follows the common convention of indices is adopted i.e. Latin indices run from 1 to 3 while 

Greek run from 1 to 2. Vectors are represented by boldface lower case characters while tensors by boldface 

capital letters. Comma indicates partial differentiation with respect to surface coordinates. Throughout it is 

assumed that all variables and domains are smooth enough to perform necessary mathematical operations.  

The shell-like body is represented by the base surface M ,  not necessarily the middle surface, endowed 

with mechanical properties and an internal structure. To describe finite translations of such shell structure we 

use the translation vector field ( ) ( ) u x y x x . Here ( )y x  denotes the position vector of the deformed base 

surface of the shell and x  is the position vector of its initial configuration M , treated as the reference 

configuration. For the purpose of the present paper, we assume that M  is formally parametrized by the 

orthogonal arc-length coordinates 
αs  with the associated unit vectors 

0 ,β βt x  locally tangent to M , and a the 

normal vector, 
0 0

0 0 1 2

3 0 0

1 2|| ||


 



t t
t t

t t
. In FEM implementation we assume that the vector x  and the triad 0{ }it  are 

the input data of the problem. We take 0{ }it  as the rigid orthogonal frame i.e. 0 0

i j ijδt t , 0

0

i

i t t , 0 3

0t t , 

0|| || 1i t . Consequently, instead of a direct definition of the arc-length coordinates αs  as the input data we have 

the vectors 0{ }it  that determine the directions of 
αs .  

In the approach presented in the paper we do not need orthogonal arc-length coordinates directly but 

rather the tangent vectors. These vectors are included in the input data as the tensor ( )Q x . So the user decides 

how the ( )Q x  is oriented on each branch composing structural shell. It is a very simple and convenient way of 

modeling arbitrary orientable surfaces including irregular shells. 

In each regular point of any branch composing irregular shell  0{ }it  is defined as a transformation of 

some global fixed base { }ie  

 0

0( ) ( )i i et x T x ,    0 (3)SOT  (1) 

In view of the equation (1), any finite deformation of the directors is represented by the tensor field ( )Q x  

(assumed as continuous over the entire domain of the irregular shell M ) given by 

0

0( ) ( ) ( ) ( ) ( ) ( )i i i i  e et x Q x t x Q x T x T x , , (3)SOQ T . By using the relation (1), covariant components of 

the curvature tensor of M  become 

 
0 0 0 0 0 0 0 0 0

3 0 0 0 0b , · , · ( ), · ( , )· ( , )·T

αβ β α α β i β β α β α     e et t t t T t T t T T t t  (2) 

The components of the shifter tensor and its determinant, for any value of the thickness coordinate ζ  (cf. Fig. 

1), are 
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 0bαβ αβ αβμ δ ζ  ,     2det 1 2αβμ μ ζH ζ K    , [ , ]ζ h h    , h h h    (3) 

with 1 11

2
( )min maxH R R    being the mean curvature and 1 1

min maxK R R   the Gaussian curvature of M . In view of 

Equation (3) the natural base vectors for any value [ , ]ζ h h     are expressed as 

 0 0 0 0( b )α αβ β αβ αβ βμ δ ζ  g t t  (4) 

 

Fig. 1. Local shell coordinate systems  

In the following derivations the local parametrization of rotations is based on the application of the 

finite rotation vector w  in the spatial representation; however, the presented formulation, in general, is 

independent of any chosen parametrization. The tensor (3)SOQ  in the canonical parametrization assumes the 

form 2a b  1Q W W , where ad( ) (3)so W w , 
sin w

a
w

 , 
2

1 cos w
b

w


 , ·w  w w  and the operator 

1ad (.)  takes the axial vector out of the skew tensor. The vectorial strain measures and their virtual counterparts 

(cf. [1], [2], [3], [4]) are:  

 the stretching vector  

 
0, , ( )β β β β β    1ε y t u Q t ,  , ,β β βδ   ε v y w  (5) 

 the bending vector  

 
1 Tad ( , )β β

κ Q Q ,     ,β βδ κ w  (6) 

When expressed in a weak form, the boundary value problem for a layered shell structure is stated as 

follows. Given the external resultant force and couple vector fields ( )f x  and ( )c x  on Mx , *( )n x  and 

*( )m x  along fM , the kinematic boundary conditions ( ) *( )u x u x  and ( ) *( )Q x Q x  along 

\d fM M M   , find a curve ( ) ( ( ), ( ))u x u x Q x  on the configuration space 3( , (3) )C M E SO  such that for 

any continuous kinematically admissible virtual vector field ( ) ( ( ), ( ))w x v x w x  the following principle of 

virtual work (PVW) is satisfied:  

 [ ; ] [ ( , , ) , ] ( ) ( * * ) 0 .

fM M M

G da da ds 

  



          u w n v y w m w f v c w n v m w  (7) 
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In above equation, it is implicitly assumed that the virtual vector fields are kinematically admissible if ( )  0v x  

and ( )  0w x  along dM .  

For the completeness of the exposition we present respectively the decompositions of 
βε  and 

βκ  from (5) and 

(6) and 
n  and  

m  from (7) i.e. 

 

 
1 1 2 2 3

1 1 2 2 3( )

β β β β

β β β β

ε ε ε

κ κ κ

  

   

ε t t t

κ t t t t
,     

1 2

1 2 3

1 2

1 2 3( )

N N Q

M M M

   

   

  

   

n t t t

m t t t t
 (8) 

A numerical solution of Eq. (7)(7) can be obtained in the course of an iterative procedure reducing the 

problem to a sequence of solutions of linearized problems. Each linearized problem is formulated at discrete 

values of the spatial variables (FEM). The presence of (3)SO  group in the definition of the configuration space 

3( , (3))C M E SO  causes the main difficulty of such a solution procedure.  

The strain components introduced in (5)(5)-(6)-(6) are collected in the vector ε  (spatial representation) 

 
11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T

m s b dε ε ε ε ε ε κ κ κ κ κ κ ε ε ε ε ε  (9) 

where labels m , s , b , d  denote respectively: the membrane, shear, bending and drilling parts. To Eq. (9) we 

adjoin the vector of shell stress and couple resultants  

 11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T

m s b dN N N N Q Q M M M M M M s s s s s  (10) 

through the constitutive equation 

 s Cε  (11) 

The explicit form of C , which is the main goal of the present paper, and definitions of the shell resultants are 

presented in Section 3. 

In the relations (9) and (10), the respective components of membrane and bending strain measures are not 

symmetric, which is a direct consequence of the implementation of the statically and kinematically exact 

Cosserat type shell theory. Asymmetric strain and stress measures appear in theories that take into account the 

microstructure of the body, see for instance [31], [32], [33].  

Let us apply a spatial approximation to the PVW Eq. (7). The base surface of the shell M  is approximated 

as a sum ( )

1

eN

h e

e

M M Π


  , where eN  is the number of finite elements. A typical finite element ( )eΠ  is 

defined as a smooth image of the so-called standard element ( )eπ . Here ( ) [ 1, 1] [ 1, 1]eπ        is the element in 

the parent (natural) domain 1 2( , )ξ ξξ . Within N - node element vector-type variables are interpolated using 

the standard direct Lagrange-type interpolation rule  

 
1

( ) ( )
N

a aa
L


x ξ ξ x  (12) 

The vector of virtual rotations ( )w ξ  is interpolated here in the fixed frame { }ie , since in the general case 

of structural shells (even in a case of regular but curved shells) the base { ( )}it x  varies in space from point to 

point on M . Hence interpolation in the local shell base { ( )}it x  (that can be found in the literature on 5-

parameter shell theory or on rod/beam elements) is not entirely correct. By making use of the relation 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T

i i j j j j ji j iw w w T w   ew ξ ξ t ξ ξ ξ T ξ t ξ ξ ξ t ξ  (13) 

we employ the following interpolating scheme 

 

1

2

3

( )

( ) ( ) ( ) ( )

( )

T

w

w

w

 
 

  
 
 

T

ξ

w ξ ξ ξ w ξ

ξ

,     

1 1

2 1

1

3 1

( )

( ) ( ) ( )

( )

aN

a a

a

a

w w

w L w

w w


   
   

    
   
   



ξ

w ξ ξ ξ

ξ

,     
( )eπξ  (14) 

To evaluate Eq. (14) it is necessary to interpolate the matrix ( ) [ ]ijTT ξ  as a result of a superposition of the 

rotation tensors 
0( ) ( ) ( ) { ( )}i T ξ Q ξ T ξ t ξ  according to the scheme appropriate for (3)SO -valued functions, 

so that ( ) (3)SOT ξ  
( )eπ ξ . Such an interpolation was originally proposed in [2] while the variant used here 

has been worked out in [34] (in Polish) and in [35] (in English), cf. also [4]. Some details of such an 

interpolation on (3)SO  are recollected in Appendix 1.  

3. MATERIAL LAW 

In section 2 we have summarized the statically and kinematically exact parts of the present formulation of shell 

theory. The spatial approximation is consistent with the FEM approach. Here we discuss corresponding constitutive 

equations which, being the physical laws, are always subjected to some experimental errors. 

As indicated above, the underlying kinematic model of the presented shell theory is formally equivalent to that 

of the 2D Cosserat surface. Material law for an isotropic Cosserat (or micropolar) continuum has been discussed 

among others in [31], [32], [33], [36] or [37]. In a 2D continuum problem four material constants are necessary to 

properly describe isotropy, see for instance [37] or [38]. The values of these constants for different materials, either in 

a three dimensional case or in a two dimensional one, result from symmetry considerations [39] and experimental 

studies, see for example [40] or [41] and references given there.  

In the present context of a transversely orthotropic shell, the use of 3D orthotropic linearly elastic Cosserat 

continuum would be the most appropriate choice. The material law of such a 3D continuum was discussed among 

others in, [42], [43], [44], [45]. Micropolar material that is orthotropic for both force stress and couple stress requires 

nine elastic constants in a two dimensional case, cf. [43]. Some methods of identifying these constants can be found 

for instance in, [43], [44]. In particular, in [43] an interesting route from five elastic constants of classical anisotropic 

material to nine constants of orthotropic Cosserat medium has been shown.   

In this paper we assume a different train of reasoning. We propose the material law for the composite Cosserat 

shell as following directly from the constitutive relation for a 2D nonpolar orthotropic linearly elastic continuum. This 

intuitive methodology allows us to use five material constants of the classical elastic continuum with one additional 

parameter on the 2D level as the torsional factor already discussed in [2], [3], [4]. 

This approach is justified by the fact that the results presented in the majority of papers concerned with 

composite shells have been obtained assuming 3D constitutive relations of a Cauchy continuum. Thus, applying 

our constitutive equations we are able to perform a direct comparison of results. The problem of identifying the 

elastic constants for a Cosserat-type shell is beyond the scope of the present paper. 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 7 

3.1. FORMULATION ON LAYER LEVEL  

We assume that each lamina is made of a linearly elastic transversely isotropic material. An orthogonal 

system of material axes 
( ) ( ) ( )( , , )k k ka b c  is introduced in each lamina ( k ), as shown in Fig. 2. These axes define a 

local triad such that the 
( )ka -axis is aligned with a possible reinforcement and the 

( )kc -axis is locally normal to 

the layer reference surface in the shell. 

 

Fig. 2. Local layer (k) system of material axes for the flat shell of constant thickness 

 

Taking into account the assumptions of the FOSD type theory (see for instance [26], [46]) for material 

only, and in order to avoid the discussion about the influence of shell deformation in the transverse normal 

direction, we assume the plane stress state in each layer. We formulate the following simplest generalization 

(here written in terms of physical components) of the constitutive relation for the in-plane stress (omitting the 

symmetry condition) and the transverse shear components in the k
th

 layer: 

 

0 0 0 0
1 1

0 0 0 0
1 1

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

a ab b

aa
ab ba ab baaa

bb
bb ba a b

ab
ab ba ab baab

ba
abba

a
aba

b
acb k k

bc k

E v E

v v v v

v E E

v v

G

G

G

G

 

 

  

 

 

 

 
       

    
    
            

    
    
    
       

  

 (15) 

 
4 2

4 2

mat mat mat

m m mm

mat mat matk

s s ss
k k kk





           
       
            

0

0

σ ε εC
C

σ ε εC
 (16) 

expressed in terms of: ( )a kE , ( )b kE  - Young’s moduli in the direction of the reinforcement and perpendicularly 

to the reinforcement, respectively,  ( )ab kG  - shear modulus in a b  plane, ( )ab kv , ( )ba kv  - Poisson’s ratios such 

that a ba b abE v E v  (no summation). Denoting by ( )kφ  the angle between the local ( )ka  axis and 
0

1 ( )kg  vector, with 

the abridged notation ( )cos( )kC   and ( )sin( )kS  , transformation of the stress and strain vectors between 

the material axes and 0{ }α kg  can be expressed by the following relations:  
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4 2

2 4

mat
m mm m

mat k
s ss s

k kk k





           
       

            

T 0
T

0 T

σ σσ

σ σσ
,     

4 2

2 4

mat
m mm m

mat
s ss s





           
      

           

ε εT 0
T

ε ε0 T

ε

ε
 (17) 

with transformation matrix defined as 

 

2 2

2 2

2 2
4 2

2 2
2 4

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

m

k

s
k

k

C S SC SC

S C SC SC

SC SC C S

SC SC S C

C S

S C





 
 

  
    

    
      
 
 
  

T 0
T

0 T
, (18) 

Therefore, the constitutive matrix follows in the form 

 

1

4 2 4 2

1
4 2

4 2

m m mm m m m

s s s s
k k k ks s s

k



 






                      
                

T T 0 ε 0 ε

ε 0 ε0 T T

Cσ C

σ CC
 (19) 

3.2. STRESS AND COUPLE RESULTANT FORMULATION 

The discussion of the constitutive equations given below is divided into two parts. In the first part we express 

the membrane 
ms , shear 

ss  and bending 
bs  resultants Eq. (10) in terms of corresponding stresses Eq. (19). The 

derivation follows standard steps for a Mindlin-Reissner type shell theory. In the second part we deal with the 

drilling resultants ds . 

The stress and couple resultants Eq. (10) are formally defined as integrals over the shell thickness 

h h h    from appropriate stresses. Integration taking into account the shell curvature formally reads 

( )d ( )
h

V A h
v μdζ da









 
  

 
   , [ , ]ζ h h    with μ  given by Eq. (3). Assuming that the laminate in 

question consists of 
LN  layers, each of the thickness 

k k kh ζ ζ   , where 
kζ
  and 

kζ
  denote respectively the 

distance from the reference surface to the top and bottom of the k
th

 layer (for shells with a solid core 
1k kζ ζ 

 , 

1k kζ ζ 

   where 
0ζ h   , 

LNζ h   ) and using Eq. (9) and Eq. (10) we write 

 
1

{ }
kL

k

h ζN

m m m kkh ζ
μdζ μdζ

 

 





 
   

 
 s σ σ ,     [ ; ]k kζ ζ ζ   (20) 

 
1

{ }
kL

k

h ζN

s s s kkh ζ
μdζ μdζ

 

 





 
   

 
 s σ σ  (21) 

 
1

{ }
kL

k

h ζN

b m m kkh ζ
ζ μdζ ζ μdζ

 

 





 
   

 
 s σ σ  (22) 

By taking into account the assumption of a FOSD type theory (see for instance [26] or [46]) the above relations 

can be rewritten as 

  
1 4 4 4 4

{ }
kL

k

ζN

m m k m b m bk ζ
ζ μdζ



  

 
    

 
 s ε ε A ε B εC  (23) 
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 9 

 
1 2 2

( ) { }
kL

k

ζN

s s k s k s sk ζ
α μdζ



 

 
  

 
 s ε S εC  (24) 

  2

1 4 4 4 4
{ } ( )

kL

k

ζN

b m k m b m bk ζ
ζ ζ μdζ



  

 
    

 
 s ε ε B ε D εC  (25) 

where ( )s kα  is the shear correction factor of the k
th

 layer. Usually, it is assumed that the approximation 1μ   

holds. This assumption is justifiable for thin shells ( h L , L  - a typical dimension, with a small curvature 

minh R  see Eq. (3)). Assuming that 1μ  , the matrices in Eqs. (23)-(25) are defined as 

  
14 4
{ }

LN

m k k kk
ζ ζ 


  CA ,      2 21

2 14 4
{ } ( ) ( )

LN

m k k kk
ζ ζ 


  CB  (26) 

  3 31

3 14 4
{ } ( ) ( )

LN

m k k kk
ζ ζ 


  CD ,      

12 2
( ) { }

LN

s k s k k kk
α ζ ζ 


  CS  (27) 

For the drilling couples we formally write  

 
1

{ }
kL

k

h ζN

d d d kkh ζ
μdζ μdζ

 

 





 
   

 
 s σ σ  (28) 

Notation in (28) is a purely formal one because we do not use couple-stress 
dσ  on the layer level. Instead, in 

this paper, we propose to express the resultant drilling stresses 
ds  in terms of the drilling strains 

dε  through 

 
1 2 2

( ) { }
kL

k

ζN

d t t k d k d dk ζ
α α μdζ



 

 
  

 
 s ε GεC ,   2

d sζC C  (29) 

with sC  given in Eq. (19). The term 2ζ  in Eq. (29)2 is introduced to keep the dimension consistency and, in the 

limit passage to homogenous isotropic shells, to ensure the compatibility with previous propositions, cf.  [1], 

[2], [3], [4]. The material constant ( )t kα  (not to be mistaken with a penalty parameter) is the torsional factor of 

the k
th

 layer, viewed as an analogue of the shear factor sα , (cf. relation (24)) - a material coefficient established 

for the present theory of shells. The value of 
tα  and its definition are still an open problems in the context of the 

6-parameter theory of shells. This issue has been extensively investigated in [2]-[3]. The studies and numerical 

simulations for 10 10[10 ,10 ]tα
   carried out there revealed that values of tα  from 0 up to 1 have a negligible 

influence on the values of displacements and on the internal energy of the shell structure. For numerical 

simulations presented in this paper, it was assumed 0.01tα   together with ( )t kα  = 1. Therefore for the drilling 

resultants we have  

  3 31

3 12 2
( ) { } ( ) ( )

LN

t k s k k kk
α ζ ζ 


  CG  (30) 

Summarizing, the constitutive equation (11) for the composite shell used here takes the following form 

 

4 4 4 4

2 2

4 4 4 4

2 212 1 12 1

12 12

m m

s s

b b

d d

 



 

 



 
    
    
       

    
        
 

0 0

0 0 0

0 0

0 0 0

A B
s ε

Ss ε

B Ds ε

s εG

 (31) 
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Here all the submatrices are functions of five engineering material constants of orthotropic material with an 

additional dependence of G  on the sixth parameter 
tα  whose value has been assumed based on numerical 

computations.  

In passing, we note that the constitutive relation (11) for homogenous isotropic shells has been 

discussed in e.g. [1], [2], [3], [4]. 

4. EXAMPLES  

Below we analyze some representative examples validating the presented approach. The present report 

focuses primarily on a geometrically non-linear analysis of problems involving large displacements and 

rotations with orthotropic and homogenous isotropic elastic materials. The strength of the present formulation to 

analyze irregular shell structures with folds is underlined by solving two examples.  

In computations we use fine meshes of 16-node CAM elements (denoted as CAMe16) with full 

integration (FI) and regular node distribution. Thereby we avoid discussions about a mesh convergence, 

spurious zero-energy forms or the satisfaction of a patch-test. In the latter case we refer to [47] for important 

results concerning the satisfaction of an out-of-plane bending patch-test for low order elements. Moreover, such 

discretization is able to represent complicated and compound deformation waves that may appear during the 

deformation. In all examples the orientation of material axes is described with respect to the director 0 0

1 ( ) 1k g t .  

The convergence check is performed by using the selective relative criteria. The criteria are imposed on norms 

of increments (corrections) ( )δ Δu  generated through equilibrium iterations. In symbolic notation the above 

criteria may be written as 
|| ( ) ||

0.001
|| ||

δ Δ

Δ


u

u
,  

max | ( ) |
0.01

max | |

i
i

i
i

δ Δu

Δu
 . 

 

4.1. Semi-cylindrical shell under point load.  

 This is one of the most demanding benchmark tests for large rotation shell analysis – see Fig. 3. This 

example was introduced by Stander et al. [48]. The case of a layered composite shell was examined among 

others in [49], [50], [51]. We assume two different cross-ply lamination schemes: [90/0/90] and [0/90/0] and the 

following dimensions: 304.8L   mm, 101.6R   mm 3h   mm; together with material parameters for boron-

epoxy type composites: 20.685aE   kN/mm
2
, 5.17125bE   kN/mm

2
, 7.956ab acG G   kN/mm

2
, 1.989bcG   

kN/mm
2
 and 0.25abv  . For the homogenous isotropic case the following material properties are used: 

20.685E   kN/mm
2
, 0.25v  . The load is assumed to be proportional: ( ) refP λ λP , where 1000refP   kN. 

The results obtained using 40 40  CAMe16(FI) elements are depicted in Fig. 3. The graphs show very good 

agreement with the reference solution [50]. 
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Fig. 3. Semi-cylindrical shell under a point load, geometry and results 

 

4.2. Two layer cross-ply [0/90] simply supported spherical shell 

As the second example we consider the popular problem (see, for instance [52], [53]) of a simply 

supported spherical shell under uniform inward pressure. Here we analyze the variant proposed in [22]. The 

shell from Fig. 4 is cut by four vertical planes acting on a sphere having radius 1000R   in. The rectangular 

projection of the edges forms a 2 2L L  square, 50L   in. Two layers 0.5h   in each are taken, made of the 

same orthotropic material but with different ply orientations. The lamination sequence designated as [0/90] 

means that the material axes of the bottom layer coincide with the axes of the shell coordinate system. The 

material properties of the lamina are: 6

1 25 10E    psi, 6

2 10E   psi, 5

12 13 5 10G G    psi, 5

23 2 10G    psi, 

12 0.25v  . We analyze two variants (BC1 and BC3) of simply supported boundary conditions as in [22] . Fig. 4 

depicts the comparison of results. The graph shows a quite good agreement with the reference solution [22]. 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 12 

 

Fig. 4. Simply supported spherical shell, geometry and results 

 

4.3. Three layer hyperboloid shell 

We examine the well-known example of hyperboloid shell under action of two opposite point forces. 

Due to symmetries only an octant of the shell is analyzed – see Fig. 5. This demanding large displacement and 

rotations problem can be traced back to [28] and it is popular ever since (see for instance [47], [51], [55], [56]). 

Bathe and his co-workers, see for instance [57] or [58] and references given therein, studied in-depth a similar 

example, but as a homogenous isotropic problem, pointing out important results concerning, among others, 

various sources of locking. The geometry, load and material properties used in the present paper are: 

0.04h   m, 1 7.5R   m, 2 15R   m, 20.0H   m, 2

1( ) 1 ( / )R y R y C  , 20 / 3C  , ( ) refP λ λP , 

5refP   kN, 6

1 40 10E    kN/m
2
, 6

2 10E   kN/m
2
, 6

12 13 23 0.6 10G G G     kN/m
2
, 12 0.25v  . 
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Fig. 5. Hyperboloid shell, geometry 

 

The obtained results are depicted in Fig. 6 and in Fig. 7. For the lamination [0/90/0] our results are in a 

very good agreement with the reference solution. In the second laminate layout [90/0/90] the solutions are in 

agreement up to the load multiplier 15λ  . Above this value significant discrepancies are observed. Some 

preliminary results based on the discussed formulation indicate that the discrepancies may be attributed to a 

poor mesh density used in [28]. This observation has motivated our further nonlinear convergence analysis, 

carried out for values of the load multiplier significantly larger than those usually reported in the literature. The 

obtained results are reported in Fig. 8 and in Fig. 9. It can be noticed that for the large load values the 

convergence of results deteriorates and sufficiently dense meshes are required to obtain a satisfactory 

convergence. In passing, we would like to point out that we have not been able to finish (in a reasonable time 

span) the missing parts of load-deformation paths for meshes 20×20 and 30×30 in Fig. 9. The respective curves 

are very difficult to follow since they contain large number of loops. 

 

Fig. 6. Hyperboloid shell, results for lamination [0/90/0] 
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Fig. 7. Hyperboloid shell, results for lamination [90/0/90] 

 

 

Fig. 8. Hyperboloid shell, nonlinear convergence analysis, results for lamination [0/90/0] 
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Fig. 9. Hyperboloid shell, nonlinear convergence analysis, results for lamination [90/0/90] 

 The above results indicate the correctness of the proposed formulation, at least in the range of examples 

and deformations usually found in the literature. The next examples deal with shell structures that are seldom 

analyzed. In particular, we concentrate on shells with orthogonal intersections.  

 

4.4. Three layer hyperbolic paraboloid shell 

 Originally this problem was formulated in [59] as the homogenous isotropic example for testing the 

large rotation shell theory and the assessment of the element in bending of warped meshes. In addition, this is a 

demanding test for checking the ability of an element to handle rigid-body modes since, under given loads, 

substantial portions of the structure undergo (almost) rigid-body motions. In a homogenous isotropic setup this 

example was studied in [3], [48], [60]. Another version of a hyperbolic paraboloid shell was studied in works by 

Bathe and his co-workers as the homogenous isotropic structure, see e.g. [7], [58], or [61]. The authors of [61] 

recommended this example as a good benchmark problem to test shell elements in the context of bending 

dominated problems. The geometry of the present example is given in Fig. 10, where 10a  , 5c  , 

2 1.25d  . The midsurface of the shell is described by the following equation: 2 2

2
( )

2

c
z y x

a
  , 

[ ( 2 / 2),( 2 / 2)]x a d a d    , [ 2 , 2 ]y a a  . The orthotropy is specified with respect to the directors 

defined as 

 

  

2 2 2

0 1 2 3

1
2 2 2 2 2

(1 )

1 1 ( )

α y α x y α x

α y α x y

  


  

e e e
t ,     

0 2 3

2
2 21

α y

α y






e e
t ,    

2

c
α

a
  (32) 

Note that the director 0

2t  Eq. (32)2 always belongs to the y z  plane. This is very important from the 

engineering viewpoint since it allows one to reinforce the shell with the lines of reinforcement which do not 

converge, contrary to the finite element mesh used in the example. The load is assumed as the self-equilibrated 

and proportional ( )y refλ λM M  with respect to the reference load taken as the moment distributed along the 
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cut edge 
0 0 2

0
( )

d

ref m ds y M e , 
0 5m  . In the composite setup we use the following material data: 

5

1 10E   kN/m
2
, 51

2 12
0.5 10E E    kN/m

2
, 4

12 13 23 4 10G G G     kN/m
2
, 

12 0.25v  . We assume two 

different cross-ply lamination schemes [90/0/90] and [0/90/0]. The total thickness of the shell is 0.18h   m 

divided into three layers of the same thickness. For the homogenous isotropic case we take 0.18h   m with two 

values of Young’s modulus 510E   kN/m
2
 or 50.5 10E    kN/m

2
 and 0.25v  . The latter values are different 

than in the original formulation. Of course, the linear elastic homogenous isotropic solutions for different values 

of Young’s modulus must be identical, after appropriate scaling proportional to these values. We assume that 

the shell is free, supported only at the point (c) in the vertical direction z . Due to symmetries only a quarter of 

the shell is analyzed with appropriate boundary conditions using 8 24  CAMe16 elements, where 24  elements 

are taken along the x  axis.  

 

 

Fig. 10. Hyperbolic paraboloid shell, geometry 

 

The representative results are presented in Fig. 11. Fig. 12 illustrates the deformed meshes of the 

laminated structure for 16λ  . The change of lamination scheme, under the considered load, shows that the 

structure behaves like a homogenous isotropic shell with one of the considered modulus of elasticity. This 

indicates that in the considered case the influence of the structural rigidity generated by the curvature is 

relatively small. 
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Fig. 11. Hyperbolic paraboloid shell, nonlinear deformation paths 

 

 

Fig. 12. Hyperbolic paraboloid shell, deformed meshes of laminated structures, λ = 16 

4.5. Three layer channel section cantilever 

 The problem analyzed in this section was originally formulated in [62] as a simply supported beam 

with uniformly distributed (along the web) load. In [2] it has been reformulated to the cantilever under action of 

the point load. In such setup it has become a popular benchmark problem for various shell and element 

formulations in elastic and elasto-plastic analysis, see e.g. [4], Błąd! Nie można odnaleźć źródła 

odwołania.[12], [63], [64], [65], [66]. The solid-shell elements from [65] provide an alternative for modeling 

the shell junctions. Note that there exists another homogenous isotropic variant of this example, see for instance 

[4], [8]. The structure analyzed here is depicted in Fig. 13. The geometry is described by 36L   in, 2a   in, 

6b   in, while the load is assumed as proportional ( ) refP λ λP  lb with 100refP  lb. We have modified the 

original thickness from 0.05h   in to 0.06h   in so that the layers are of the equal thickness 0.02  in. We 

assume two cross-ply lamination schemes [90/0/90] and [0/90/0] and the material described by 7

1 10E   lb/in
2
, 
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5

2 4 10E    lb/in
2
, 5

12 13 2 10G G    lb/in
2
, 4

23 8 10G    lb/in
2
, 

12 0.333v  . In the homogenous isotropic case 

we use 
0 0.06h   in, 70.25 10E    lb/in

2
 and 0.333v  . The value of Young’s modulus in this case has been 

chosen purposely to enable a better comparison of a qualitative behavior of the structure. The mesh of CAMe16 

elements used for the computations consists of 4  elements for the upper and the lower flange, 6  elements for 

the web and 72  elements along the cantilever length.  

 

Fig. 13. Channel section cantilever, geometry and load 

 

The nonlinear deformation paths of the translation (a )u  are shown in Fig. 14 and in Fig. 15 to enlighten the 

qualitative differences between solutions obtained with different lamination schemes. The presented graphs 

show the significant influence of the internal structure of the shell material on the overall response of the 

channel section. In the solution of the homogenous isotropic variant and the composite [0/90/0] variant the limit 

point is clearly visible, while for the lamination [90/0/90] the limit point almost disappears. However, the latter 

solution is characterized by the complicated equilibrium path with sudden turns. This indicates that there must 

appear deformation waves that must be properly reproduced by the sufficiently dense FEM mesh. This issue has 

been discussed extensively in [4]. Fig. 16 depicts the deformed configurations of the structure obtained in a 

well-advanced phase of deformations for the same value of the control translation ( ) 5.4u a   in. The 

homogenous isotropic variant and the [0/90/0] laminated variant preserve the shape of the cross-section, yet 

there appear the deformation waves in the neighborhood of the clamped edge. In the [90/0/90] laminated 

structure the web collapses.  

For comparison purposes, due to a lack of a known reference solution, this example has been also analyzed with 

the commercial FEA system NX-Nastran [67]. It is worth to point out that while using the Standard Nonlinear 

Analysis option (“solution 106”) based on the original Nastran with the QUAD4 elements, we have encountered 

some convergence problems. Therefore, the NX-Nastran results presented in Fig. 14 and in Fig. 15 have been 

obtained with the Advanced Nonlinear Analysis option (“solution 601”) utilizing the ADINA solver. The 

computational model contained 12 CQUAD8 elements for each flange, 27 elements for the web and 216 along 

the length.  
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Fig. 14. Channel section cantilever, nonlinear deformation paths 

 

Fig. 15. Channel section cantilever, comparison of nonlinear deformation paths in the vicinity of the limit point 
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Fig. 16. Channel section cantilever, deformed meshes, u(a) = 5.4 in 

 

4.6. Stiffened doubly curved cylindrical panel 

In [3] a structural shell as shown in Fig. 17 was proposed. The orthogonal intersection together with the 

change of the curvature make this problem a challenging testing example for any shell element with drilling dof 

as well as for solution procedures used to trace the equilibrium paths. Dimensions are: 2L  m, 45α   , 1R   

m, 0.4H   m, 
0 0.01h   m, 1refP  MN, ( ) refP λ λP . We analyze two lamination schemes [90/0/0/90] and 

[0/90/90/0] with E1 = 10
5
 MPa, E2 = 7×10

3
 MPa, G12 = G13 =  4×10

3
 MPa, G23 = 3.2×10

3
 MPa, v12 = 0.25. 

The mesh of CAMe16 elements used in the analysis consists of 10 elements per each flange, 4 elements for the 

web and 12 along the length of the structure. The results are depicted in Fig. 18. The graphs, obtained using arc-

length procedure, show significant difference between the responses of the structure for different laminations. 

Only for small values of load the graphs coincide. Some representative deformed configurations for  = 

0.0804374 in case of lamination [0/90/90/0] and  = 0.113801 for [90/0/0/90] are marked by dots in Fig. 18 and 

are depicted in Fig. 19. 

 

 

Fig. 17. Stiffened doubly curved cylindrical panel, geometry 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 21 

 

Fig. 18. Stiffened doubly curved cylindrical panel, load-displacement curves 

 

 

Fig. 19. Stiffened doubly curved cylindrical panel, deformed configurations  

5. CONCLUSIONS 

 In this paper, the composite shell formulation within the framework of the 6-parameter nonlinear 

general shell theory with drilling degrees of freedom has been presented. Assuming the ESL model, a material 

law has been derived as the straightforward extension of constitutive equations known for classical 5-parameter 

shell models. The proposed methodology enables a direct use of engineering constants for classical orthotropic 

continuum. 

The proposed material law has been implemented in the displacement (translation-rotation) based 

elements that stem from the underlying governing principle of virtual work of the discussed shell theory. 

Therefore, additional variables, such as those emanating from multi-field variational principles, do not appear. 

In order to minimize the locking effect always present in pure translation-rotation based elements and to omit 

discussion about elimination of locking, we have used 16-node elements with relatively dense meshes. 

The presented results allow us to formulate the following conclusions: 
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 it is possible to extend the material equations known for 5-parameter laminated shell theory to 

accommodate asymmetric membrane and bending strain measures, 

 the proposed methodology of computing material coefficients has been proven satisfactory, since in the 

comparison with the examples that can be solved using 5-parameter shell theory, the results obtained 

on the grounds of the present shell formulation are in a very good agreement,  

 the presented formulation is also capable of including a composite structure of the shell material in the 

irregular structures possessing folds, branches and intersections. 
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APPENDIX 1 INTERPOLATION ON SO(3) GROUP 

The interpolation scheme, as described by Eq.(12), is not available (with all the necessary mathematical 

formalism) for (3)SO -valued functions ( )Q ξ , 0

0 ( ) { ( )}iT ξ t ξ  and 0( ) ( ) ( ) { ( )}i T ξ Q ξ T ξ t ξ . In the 

present formulation, we employ the indirect 0C  interpolation that is based on a transport of the approximation 

domain into the neighborhood of the neutral element (3)SO1 , where interpolation error grows at the slowest 

rate. The procedure on (3)SO  consists of the following steps:  

  1. Establishing for the set (3)a U SO Q  a constant, average representative tensor (3)SOQ . 

  2. Transporting the set 
aQ  into the neighborhood of (3)W SO 1  by the kind of pull back with Q , that is 

creating a set of nodal tensors T

a aR Q Q . 

  3. Introducing three chosen (say Cayley, canonical, Euler) local parameters 
R ( )a p aR , ( ) R( )p a a  R  

in the map ( ,R)W . Note that the parametrization considered here does not have to be the same as the 

parametrization used in this paper, i.e. canonical. 

  4. Interpolating three scalar functions 
3( )p R ξ  through the nodal values ( )p a  according to Eq. (12).  

  5. Calculating the interpolating tensor function  1( ) R ( ) (3)p W SO  R ξ ξ . 

  6. Transporting back the tensor function ( )R ξ  into the initial position in (3)U SO  by the kind of push-

forward operation with : (3)W U SO Q , ( ) ( )Q ξ QR ξ  

The concept of the procedure is portrayed in Fig. 20. Consequently, ( )Q ξ  interpolates the given function 

( )( ) ( , (3))eC SOQ ξ  at the set of nodes ( )a eπξ . From ( ) ( )Q ξ QR ξ  it also follows that the interpolating 

function ( )Q ξ  always takes on the values in the rotation group (3)SO . Within finite elements, the proposed 

interpolation procedure practically removes any singularity which may follow from a local parameterization. 

The above scheme is used here for all (3)SO -valued functions, such as ( )Q ξ , 0 ( )T ξ  and ( )T ξ . 
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Fig. 20. Concept of interpolation on SO(3) 
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