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a Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
b Institute of Hydro-Engineering, Polish Academy of Sciences in Gdańsk and Koszalin Technical University, Poland
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The intention of the paper is to check the capability of a discrete element method (DEM) to simulate a
pattern of quasi-static shear zones in initially dense sand. Discrete calculations were carried out with a
rigid and very rough retaining wall, undergoing passive and active horizontal translation, rotation about
the top and rotation about the toe. To simulate the behavior of sand, the three-dimensional spherical dis-
crete model was used allowing for grain rolling resistance. The geometry of calculated shear zones was
qualitatively compared with experimental results of laboratory model tests using X-rays and Digital
Image Correlation technique (DIC), and quantitatively with finite element results obtained with a
micro-polar hypoplastic constitutive model. The results show that a discrete model is able to realistically
predict the experimental pattern of shear zones in the sand interior. A satisfactory agreement with exper-
iments and finite element calculations was achieved.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Earth pressure on retaining walls is one of the soil mechanics
classical problems. In spite of an intense theoretical and experimen-
tal research over more than 200 years, there are still large discrep-
ancies between theoretical solutions and experimental results due
to the complexity of the deformation field in granular bodies near
the wall caused by localization of shear deformation (which is a
fundamental phenomenon of granular material behavior, Roscoe,
1970; Vardoulakis, 1980; Tejchman and Gudehus, 2001; Gudehus
and Nübel, 2004; Tejchman, 2008). It was experimentally observed
(Vardoulakis, 1980; Han and Vardoulakis, 1991; Yoshida et al.,
1995; Desrues and Viggiani, 2004) that localization can appear as
single, multiple or pattern of shear zones, depending upon both ini-
tial and boundary conditions. It can be plane or curved. Within
shear zones, pronounced grain rotations and curvatures connected
to couple stresses, large strain gradients, and high void ratios to-
gether with material softening (negative second-order work) are
expected. The thickness of shear zones depends on many various
factors, as: the mean grain diameter, pressure level, initial void
ratio, direction of deformation, grain roughness and grain size dis-
tribution (Tejchman, 2008). The knowledge of both the distribution
ll rights reserved.

: +48 58 347 2044.
, tejchmk@pg.gda.pl (J. Tejch-
wpan.gda.pl (D. Leśniewska).
of shear zones and distribution of shear and volumetric strains
within shear zones is important to explain the mechanism of gran-
ular deformation. The multiple patterns of shear zones are not usu-
ally taken into account in engineering calculations.

Earth pressure on retaining walls is usually calculated within a
theory of elasticity and plasticity. In plastic limit states, there are
generally two approaches: static and kinematic. Within the first ap-
proach, assuming the material yielding behind the wall according to
the Mohr–Coulomb law, one can obtain mathematically closed
solutions of pressure distribution for simple boundary conditions
(Caquot and Kerisel, 1948; Negre, 1959). In the case of complex
boundary and load conditions, numerical solutions using a charac-
teristics method for stress and velocity fields can be obtained
(Sokolovski, 1965; Roscoe, 1970; James and Bransby, 1971;
Szczepiński, 1974; Bransby and Milligan, 1975; Houlsby and Wroth,
1982; Milligan, 1983). Within a simpler kinematic approach, based
on the force equilibrium, different failure mechanisms consisting of
slip surfaces are assumed. From the equilibrium of forces acting on
sliding rigid blocks, a resultant total earth pressure force can
be calculated (Coulomb, 1773; Terzaghi, 1951; Gudehus, 1978).
Theoretical solutions are very sensitive to the angle of internal fric-
tion of soil and soil-wall friction angle. They are not able to predict
consistently deformations (Leśniewska and Mróz, 2001). Finite
element calculations are more realistic than analytical solutions,
since first, they take into account advanced constitutive laws
describing the granular material behavior, and second, they can
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predict the evolution of localization of deformation. For FE-analyses
of earth pressures in granular soils, a perfect plastic (Nakai, 1985),
an elasto-plastic (Simpson and Wroth, 1972; Christian et al., 1977;
Potts and Fourie, 1984), an elasto-plastic with remeshing (Hicks
et al., 2001), a hypoplastic (Ziegler, 1986), and a micro-polar hypo-
plastic constitutive law (Tejchman and Dembicki, 2001; Nübel,
2002; Tejchman et al., 2007) were used. A characteristic length of
micro-structure was not taken into account in the analyses except
of calculations with a micro-polar hypoplastic law.

The intention of our paper is to check the capability of a discrete
element model (DEM) to simulate a pattern of quasi-static shear
zones in initially dense sand. The plane strain DEM calculations
were carried out with sand placed behind a rigid and very rough
retaining wall, undergoing passive and active movements: hori-
zontal translation, rotation about the top and rotation about the
toe. In a passive mode, a retaining wall moved towards the backfill
and in an active mode away from it. To simulate the behavior of
sand, the three-dimensional spherical discrete model YADE devel-
oped at University of Grenoble was used, allowing for introducing
grain rolling resistance in order to take into account the grain
roughness (Kozicki and Donze, 2008). The attention was laid on
the influence of the different wall movement on the characteristic
evolution of shear zones. The layout of calculated shear zones was
qualitatively compared with corresponding experimental results of
laboratory model tests performed by a number of researchers at
University of Cambridge employing X-rays (Leśniewska, 2000)
and also with some tests made by Niedostatkiewicz et al. (2010)
– the latter were recorded using digital photography and subse-
quently analyzed by Digital Image Correlation (DIC). The experi-
ments with X-rays and DIC were carried out with different sands,
granular specimen sizes and initial void ratios. The discrete
element (DE) results were also quantitatively compared with the
Fig. 1. Shear zones observed in experiments of passive mode with initially dense sand (r
wall rotation around the top (Arthur, 1962) and (c) during wall rotation around the toe
finite element (FE) results obtained by modeling the sand behavior
with a micro-polar hypoplastic constitutive model (Tejchman
et al., 2007; Tejchman, 2008) for the same sand, its initial void ra-
tio, specimen size and boundary conditions.

The capability of DEM to simulate a single shear zone during
plane strain compression, direct and simple shearing was several
times confirmed in the scientific literature (Iwashita and Oda,
1998; Thornton and Zhang, 2006; Pena et al., 2008; Ord et al.,
2007; Luding, 2008). However, its capability to simulate complex
patterns of shear zones in the interior of granulates has not been
comprehensively checked yet. This paper is focused mainly on a
direct comparison between finite and discrete results at the global
level, i.e. with respect to patterns of shear zones and load–
displacement diagrams. The comparative study of shear zones at
the micro-level using these both different approaches will be
published later.

2. Experimental shear zones

2.1. Shear zones recorded by X-rays

Comprehensive experimental studies on earth pressure prob-
lem in sand have been carried out at Cambridge University be-
tween 1962 and 1974. Two earth pressure apparatuses were
employed. In case of the so called ‘small earth pressure apparatus’,
the wall was 152 mm high and 152 mm wide (Arthur, 1962). In the
remaining cases, the ‘large earth pressure apparatus’ was used,
and the retaining wall was 330 mm high and 190 mm wide. The
sand used was rounded coarse quartz ‘‘Leighton Buzzard’’ sand
(grain size between 0.6 and 1.2 mm, mean grain diameter
d50 = 0.9 mm) (Cabalar and Cevik, 2010). The evolution of shear
localisation in sand was recorded using the radiographic technique
adiographs and schematically): (a) during wall translation (Lucia, 1966), (b) during
(Bransby, 1968) (O – rotation point) (radiographs from Leśniewska, 2000).
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(Roscoe, 1970; Vardoulakis, 1980) which was able to directly
detect a volume increase. Localized shear zones were detected in
initially dense sands only. The Cambridge model tests were
digitized and published by Leśniewska (2000).

Selected experimental patterns of cumulative density localiza-
tion in initially dense sand recorded by X-ray technique during dif-
ferent wall movements are shown in Figs. 1 and 2. One distinct
curved shear zone starting from the toe of the wall and accompa-
nied by a weaker, secondary, wide radial shear zone propagating
from the wall top were observed for a passively translating rigid
wall (Fig. 1a). In the case of passive tests with a rigid wall rotating
about its top, one distinct curved shear zone was observed in sand
and also a trace of an accompanying weaker zone, starting from the
same point (toe of the wall) and similar to the first one (Fig. 1b).
Multiple parallel curved shear zones of a similar shape were ob-
served during tests with a wall passively rotating about its toe
(Fig. 1c). They started to emerge at the top of the wall and propa-
gated towards the free boundary. For the active wall translation,
one almost straight shear zone behind the wall occurred propagat-
ing from the wall toe (Fig. 2a) (Niedostatkiewicz, 2009). When a
wall rotated around the top, a double curved zone was created
(Fig. 2b). A family of nearly parallel straight zones extending be-
tween the wall and the specimen free boundary was found in the
case of active tests with a wall rotating about its toe (Fig. 2c).
Fig. 2. Shear zones observed in experiments of active modes with initially dense sand (ra
(b) during wall rotation around top (Lord, 1969) and (c) during wall rotation around toe
2.2. Shear zones visualized by Digital Image Correlation technique

Similar patterns of shear zones to the ones described in the pre-
vious section were obtained by applying a Digital Image Correla-
tion technique (DIC) to digital photographs taken during recent
small scale model tests on walls, which layout corresponded to
the tests recorded by X-rays (Niedostatkiewicz et al., 2010). The
model tests were carried out in a metal strong box 360 mm long,
220 mm high and 20 mm wide. Dry cohesionless so-called ‘‘Boro-
wiec’’ sand with d50 = 0.8 mm and a uniformity coefficient U = 5
was used (Krasinski, 1998; Niedostatkiewicz, 2003).

DIC is an optical technique (White et al., 2003; Rechenmacher
and Finno, 2004; Skar _zynski et al., 2009) allowing to determine
displacements on the basis of comparing successive pairs of digital
photographs of a deforming specimen. The image intensity field as-
signs to each point in the image plane a scalar value, which reflects
the light intensity of the corresponding point in the physical space.
A so-called area of interest (AOI) is cut out of the digital image and
divided into small sub-areas called interrogation cells (patches). If
the deformation between two consecutive images is sufficiently
small, the patterns of interrogation cells are supposed not to
change their characteristics. A deformation pattern is determined
by comparing two consecutive images captured by a camera which
remains in a fixed position with its axis oriented perpendicular to
diographs and schematically): (a) during wall translation (Niedostatkiewicz, 2009),
(Smith, 1972) (O – rotation point) (radiographs from Leśniewska, 2000).
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Fig. 3. Experimental distribution of deviatoric strain ep in initially dense sand (passive mode) from DIC (O – rotation point): (a) horizontal wall translation, (b) rotation about
top and (c) rotation about toe (Niedostatkiewicz et al., 2010) (strain values are expressed by color scale).

1 For interpretation of color in Figs. 3, 4, 8, 11, 14, 15 and 19, the reader is referred
to the web version of this article.
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the plane of deformation. To find a local displacement between
images, a search zone is extracted from the second image. A correct
local displacement vector for each interrogation cell is accom-
plished by means of a cross-correlation function, which calculates
simply possible displacements by correlating all gray values from
the first image with all gray values from the next image. The peak
in the correlation function indicates that the two images are over-
laying each other. The correlation operations are conducted in the
frequency domain by taking the Fast Fourier Transform (FFT) of
each patch. The procedure is continued by substituting a second
image with a subsequent image. Thus, the evolution of displace-
ments in the specimen can be captured. A direct DIC evaluation
leads to an Eulerian description since the area of interest and the
interrogation cell size are fixed. The relative displacements are
next converted into a Lagrangian deformation field yielding total
deformations with respect to the initial configuration. The accu-
racy of the DIC method for granular flow was discussed by White
et al. (2003) and Slomiński et al. (2007).

Figs. 3 and 4 show the distribution of the resultant deviatoric
strain ep on the basis of surface displacements of initially dense
sand using DIC during passive (Fig. 3) and active (Fig. 4) wall
movement. The strain values are expressed by a color scale
attached to each figure1. The geometry of shear zones clearly resem-
bles this obtained previously with X-rays (Figs. 1 and 2).

In the case of passive wall translation (Fig. 3a), two most dis-
tinct shear zones – a curvilinear one, connecting the toe of the wall
with the specimen’s free surface (it is the main shear zone which
appears as the first one) and an accompanying radial shear zone
are visible. In addition, two secondary (not fully developed) shear
zones can be observed; one emerging slightly below the top of
the wall in the right up corner of the sample and propagating to
the free boundary, and the other one in the middle of the specimen,
parallel to the main shear zone and propagating also to the free
boundary (they appear slightly later as the first two shear zones).

For the passive wall rotation about its top (Fig. 3b), the main
shear zone propagates from the toe of the wall up to the free
boundary. It is initially horizontal along the bottom and later be-
comes inclined. In addition, two weaker secondary shear zones

http://mostwiedzy.pl


Fig. 4. Experimental distribution of deviatoric strain ep in initially dense sand (active mode) from DIC (O – rotation point): (a) horizontal wall translation, (b) rotation about
top and (c) rotation about toe (Niedostatkiewicz et al., 2010) (strain values are expressed by color scale).
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(one parallel and one perpendicular to the main inclined shear
zone) start in the lower specimen region. When the wall rotates
about its toe (passive mode, Fig. 3c), a family of curved, parallel
shear zones can be distinguished in the right up corner of the
specimen.

If the wall moves horizontally in an active mode (Fig. 4a), only
one straight shear zone is created. When the wall rotates about its
top (Fig. 4b), a curvilinear shear zone appears propagating from the
toe of the wall up to the free boundary, but it splits later in the
upper part of the sample. In the case of wall rotating about its
top away from sand (Fig. 4c), two parallel zones emerge almost
at the same time, crossed by the ‘second family’ lines.

3. Patterns of shear zones obtained in finite element
calculations

The patterns of shear zones in ‘‘Karlsruhe sand’’ (Vardoulakis,
1980) (d50 = 0.50 mm, grain size among 0.08 mm and 1.8 mm,
U = 2, maximum specific weight cmax

d ¼ 17:4 kN=m3 and minimum
specific weight cmin
d ¼ 14:6 kN=m3) were calculated by the finite

element method (FEM) using a micro-polar hypoplastic constitu-
tive model (Tejchman et al., 2007; Tejchman, 2008; Tejchman
and Górski, 2008) which was obtained by enhancement of a
non-polar hypoplastic model (Bauer, 1996; Gudehus, 1996a) by
introducing a characteristic length of microstructure according to
the assumptions of a micro-polar theory.

A non-polar hypoplastic constitutive model describes the evolu-
tion of the effective stress tensor depending on the current void ra-
tio, stress state and rate of deformation by isotropic non-linear
tensorial functions according to a representation theorem by Wang
(1970). The constitutive model was formulated by a heuristic pro-
cess considering the essential mechanical properties of granular
materials undergoing homogeneous deformations. A striking fea-
ture of hypoplasticity is that the shear rate is homogeneous of
order 1 in the deformation rate. A hypoplastic model is capable
of describing a number of significant properties of granular
materials: non-linear stress–strain relationship, dilatant and
contractant behavior, pressure dependence, density dependence

http://mostwiedzy.pl
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and material softening. A further feature of hypoplastic models is
the inclusion of critical states, i.e. states in which a grain aggregate
can deform continuously at constant stress and constant volume.
In contrast to elasto-plastic models, a decomposition of deforma-
tion components into elastic and plastic parts, the formulation of
a yield surface, plastic potential, flow rule and hardening rule are
not needed. Moreover, both the coaxiality (understood as a coinci-
dence of the directions of the principal stresses and principal plas-
tic strain increments) and stress-dilatancy rule are not assumed in
advance (Tejchman and Wu, 2009). The hallmark of these models
is their simple formulation and procedure for determining material
parameters with standard laboratory experiments. The material
parameters are related to granulometric properties, viz: size distri-
bution, shape, angularity and hardness of grains (Herle and
Gudehus, 1999). A further advantage lies in the fact that one single
set of material parameters is valid for a wide range of pressures
and densities. A hypoplastic constitutive model without a charac-
teristic length can describe realistically the onset of shear localiza-
tion, but not its further evolution. A characteristic length can be
introduced into hypoplasticity by means of micro-polar, non-local
or second-gradient theories (Tejchman, 2004). In this paper, a
micro-polar theory was adopted (Mühlhaus, 1990). The micro-
polar model makes use of rotations and couple stresses which have
clear physical meaning for granular materials. The rotations can be
observed during shearing, but remain negligible during homoge-
neous deformations (Oda, 1993). Pasternak and Mühlhaus (2001)
have demonstrated that the additional rotational degree of
freedom of a micro-polar continuum arises naturally by mathe-
matical homogenization of an originally discrete system of
spherical grains with contact forces and contact moments. A
micro-polar continuum which is a continuous collection of
particles behaving like rigid bodies combines two kinds of defor-
mations at two different levels, viz: micro-rotation at the particle
level and macro-deformation at the structural level. For the case
of plane strain, each material point has three degrees of freedom:
two translations and one independent rotation. The gradients of
the rotation are related to the curvatures, which are associated
with the couple stresses. The presence of the couple stresses gives
rise to a non-symmetry of the stress tensor and to a characteristic
length.

The constitutive relationship requires the following 10 material
parameters: ei0, ed0, ec0, /c, hs, b, n, a, ac and d50 (which are defined
below). A precise calibration method of first eight material con-
stants was given by Herle and Gudehus (1999). The compression
parameters hs and n are estimated from a single oedometric
compression test with an initially loose specimen (hs reflects the
slope of the curve in a semi-logarithmic representation, and n its
curvature). The constants a and b are found from a triaxial or plane
strain test with a dense specimen and trigger the magnitude and
position of the peak friction angle. The critical friction angle /c is
determined from the angle of repose or measured in a triaxial test
with a loose specimen. The values of ei0, ed0, ec0 (maximum, mini-
mum and critical void ratio at pressure equal to zero) and d50 are
obtained with conventional index tests (ec0 � emax,ed0 � emin,ei0 �
(1.1–1.5)emax). In turn, a micro-polar parameter ac can be correlated
with the grain roughness (Tejchman and Gudehus, 2001). It can be
represented by a constant, e.g. ac = 1–5, or connected to the param-
eter a�1

1 , e.g. ac ¼ ð0:5� 1:5Þ � a�1
1 (a1 – parameter representing the

deviatoric part of the normalized stress in critical states
(Bauer, 1996)). The parameter a�1

1 lies in the range of 3.0–4.3 for
usual critical friction angles between 25� and 35�. The FE-analyses
were carried out with the material constants for the so-called
Karlsruhe sand: ei0 = 1.3, ed0 = 0.51, ec0 = 0.82, /c = 30�, hs =
190 MPa, b = 1, n = 0.5, a = 0.3, ac ¼ a�1

1 and d50 = 0.5 mm
(Tejchman, 2008).

The plane strain FE calculations were performed with a Kar-
lsruhe sand using a body of a height of H = 200 mm and length of
L = 400 mm to simulate an earth pressure test with a passive trans-
lating wall by Gudehus and Schwing (1986) performed at Kar-
lsruhe University (see also Nübel and Huang (2004)). Totally,
3200 triangular elements were used. The size of the quadrilaterals
was 620 � d50 = 10 mm for d50 = 0.5 mm. The height of the retain-
ing wall located at the right side of the sand body was assumed to
be h = 170 mm (h/H = 0.85). The calculations were performed out
with large deformations and curvatures (updated Lagrange formu-
lation) by changing the element configuration and the element
volume. The initial stresses were generated using a Ko-state with-
out polar quantities: r22 = cx2, r11 = r33 = K0cx2, r12 = r21 = m1 =
m2 = 0 (r11 – horizontal normal stress, r22 – vertical normal stress,
r21 – horizontal shear stress, r12 – vertical shear stress, m1 – hor-
izontal couple stress, m2 – vertical couple stress, c – initial volume
weight of sand, x2 – vertical coordinate measured from the top).
The pressure coefficient at rest was assumed for dense sand as
K0 = 0.47 on the basis of a so-called element test for oedometric
compression. Two sides and the bottom of the sand specimen were
assumed to be very rough: u1 = 0, u2 = 0 and xc = 0 (u1 – horizontal
displacement, u2 – vertical displacement, xc – Cosserat rotation).
The top of the sand specimen was traction and moment free. The
retaining wall was assumed to be stiff and very rough (u2 = 0 and
xc = 0). To prevent inadmissible stresses, a sub-stepping algorithm
was used (deformations and curvature increments were divided
into small parts within each step) (Tejchman, 2008). In addition,
to avoid tensile stresses near the wall base, a significantly smaller
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granular hardness was assumed there (hs = 0.1 MPa). However, if
tensile stresses were obtained in some elements, the stresses and
couple stresses in these elements were replaced by values equal
to zero.

The initial void ratio eo was distributed non-uniformly in ele-
ments of the sand body by means of a random generator in such
a way that the initial void ratio e0 = 0.60 was increased in every
element by the value 0.05 � r(eo = 0.60 + 0.05r), where r is a ran-
dom number with a linear distribution within the range of
(0.01,0.99). Thus, each element of the sand specimen had a differ-
ent initial void ratio at the beginning of deformation in the range
between 0.60 and 0.65 (thus, the mean initial void ratio was
eo = 0.625).

The FE-results of a plane strain earth pressure problem for ini-
tially dense sand within a micro-polar continuum are shown in
Figs. 5–7. Fig. 5 presents the evolution of the normalized horizontal
earth pressure force 2Eh/(ch2) versus the normalized horizontal
wall displacement u/h for three different wall movements
(c = 16.5 kN/m3). In the case of a rotating wall, the horizontal dis-
placement u is related to the wall displacement of the bottom point
(wall rotating about the top) or top point (wall rotating around the
bottom). In Figs. 5 and 6, the deformed meshes with the distribu-
tion of the void ratio and Cosserat rotation in the residual state
are shown. The darker region indicates the higher void ratio. The
Cosserat rotation is marked by circles with a diameter correspond-
ing to the magnitude of the rotation in the given step.
Fig. 6. Deformed FE-meshes with distribution of void ratio and Cosserat rotation at resid
wall, (b) wall rotating around toe and (c) wall rotating around top (Tejchman, 2008).
The evolution of the passive horizontal earth pressure force 2Eh/
(ch2) is similar in three cases (Fig. 5A). The horizontal force in-
creases, reach a maximum for about u/h = 1–5%, next shows soften-
ing and tends to an asymptotic value. For the wall rotation around
the bottom, a decrease of the curve after the peak is smaller (in the
considered range of u/h). The maximum horizontal force on
the wall is the highest for the wall translation, and the lowest for
the wall rotation about the top. The maximum normalized
horizontal earth pressure forces are high (2Eh/ch2 = 12–31) due to
the high initial void ratio of sand, large wall roughness, high ratio
between the mean grain diameter and wall height and low initial
stress level. They are in the range of the usual (engineering) earth
pressure coefficients (Gudehus, 1996b) determined under the
assumption of one circular slip line (Kpr = 11.3–25.8) and three
straight slip lines (Kpt = 13.4–23.7) at d = up = 40�–45� (d – wall
friction angle, up – internal friction angle of dense sand at peak).
However, the actual friction angles at peak up in the shear zones
are not known in advance (they depend strongly on the initial
and boundary conditions of the entire system). Therefore, it is dif-
ficult to obtain realistic earth pressures with a conventional earth
pressure theory. In addition (as the numerical calculations show),
the different friction angles are mobilized in the various shear
zones at the same time. The varying friction angles occur also along
the same shear zone.

In the case of active earth pressure, the horizontal normalized
forces drop sharply at the beginning of the wall movement, reach
ual state for initially dense sand from FEM (passive case, u/h = 0.05): (a) translating
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Fig. 7. Deformed FE-meshes with distribution of void ratio and Cosserat rotation at residual state for initially dense sand from FEM (active case, u/h = 0.03–0.06): (a)
translating wall, (b) wall rotating around toe and (c) wall rotating around top (Tejchman, 2008).

Fig. 8. Two spheres in contact (~Fs – tangential contact force vector, ~Fn – normal
contact force vector, ~M – contact moment vector, ~N - contact normal vector).
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the minimum at u/h = 0.001–0.002 and next increase continuously
(Fig. 5B). The lowest earth pressure force occurs with the wall
translation, and the largest with the wall rotation around the top.
Thus, the relationship between the minimum active earth pressure
and the type of the wall movement is inversed as compared to the
maximum passive earth pressure and the type of the wall move-
ment. The minimum normalized earth pressure forces (2Eh/
(ch2) = 0.10–0.16) are slightly smaller than the usual earth pres-
sure coefficients (Gudehus, 1996b) assuming a circular slip line
(Ka = 0.16–0.20) or a straight slip line (Ka = 0.14–0.16) with
d = up(up = 40�–45�).

The geometry of shear zones, which are characterized in ini-
tially dense granulates by the appearance of Cosserat rotation
and a strong increase of the void ratio, is very similar to those
in experiments (Figs. 1–4). For the wall translation (Fig. 6a), five
shear zones are obtained: one vertical along the very rough
retaining wall, one zone projecting horizontally from the wall
base, one inclined (slightly curved) zone spreading between the
wall bottom and free boundary, and two radial oriented shear
zones starting to form at the wall top (identically as in the test
by Gudehus and Schwing (1986)). The inclined shear zone be-
comes dominant in the course of deformation. The second radial
shear zone is not fully developed at u/h = 0.07. The maximum
Cosserat rotation in the shear zones (at residual state) is about
j15�j. In the case of the wall rotation about the top (Fig. 6b), only
one curved shear zone occurs. When the retaining wall rotates
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around the bottom (Fig. 6c), a pattern of curved parallel shear
zones is obtained.

In the case of the active wall translation, two pronounced shear
zones are obtained (Fig. 7a). A vertical one occurs along the wall,
and the second one propagates from the wall bottom up to the free
Fig. 10. Homogeneous triaxial test for granular specimen (to calibrate discrete
material parameters): (A) vertical stress r1 versus vertical axial strain e1 and (B)
volumetric strain ev versus vertical axial strain e1 (p = 200 kPa, eo = 0.53,
d50 = 0.5 mm): (a) experimental result (Wu, 1992), (b) discrete simulation
(Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0, b = 0.15) (Widuliński et al., 2009).
boundary. The internal shear zone is almost straight. When the
wall rotates around the top, two shear zones are obtained again:
the first along the wall and the second inside of sand starting from
the wall bottom (Fig. 7b). The shear zone is strongly curved. In the
case of a wall rotating around the bottom (Fig. 7c), three shear
zones are obtained: one shear zone along the wall and two parallel
internal shear zones.

The computation time was about 10 h on PC 2.0 GHz.
4. Discrete element method

To simulate the behavior of sand, a three-dimensional spherical
discrete model YADE was developed at University of Grenoble
(Kozicki and Donze, 2008) by taking advantage of the so-called
soft-particle approach (i.e. the model allows for particle deforma-
tion which is modeled as an overlap of particles). A dynamic
behavior of the discrete system is solved numerically using a
force–displacement Lagrangian approach and tracks the positions,
velocities, and accelerations of each particle individually. It uses an
explicit finite difference algorithm assuming that velocities and
Table 1
Microscopic material parameters for discrete simulations of earth pressure problems.

Material parameter Value

Modulus of elasticity of grain contact Ec [GPa] 30
Poisson’s ratio of grain contact tc [�] 0.3
Grain size [mm] 0.2–0.8, 0.7–1.3, 2.0–8.0
Mean grain diameter d50 [mm] 0.5–5.0
Normal grain stiffness Kn [kPa] 7.5 � 103(d50 = 0.5 mm)

1.5 � 104(d50 = 1.0 mm)
7.5 � 104(d50 = 5.0 mm)

[1] Tangential grain stiffness Ks [kPa] 2.25 � 103(d50 = 0.5 mm)
4.50 � 103(d50 = 1.0 mm)
2.25 � 104(d50 = 5.0 mm)

Inter-particle friction angle l [�] 30
Rolling stiffness coefficient b [�] 0.15
Moment limit coefficient g [�] 1.0
Initial void ratio e0 [�] 0.63
Mass density q [kNs2/m] 2.6
Damping coefficient a [�] 0.3
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accelerations are constant in each time step. To calculate forces
acting in particle–particle or particle–wall contacts, a particle
interaction model is assumed in which the forces are typically
subdivided into normal and tangential components. The total
forces and moments acting on each particle are summed. Next,
the problem is reduced to the integration of Newton’s equations
of motion for both translational and rotational degrees of freedom.
Fig. 11. Deformed granular body with distribution of rotation for initially dense
sand from discrete simulations during passive earth pressure with translating wall:
(a) d50 = 5 mm, (b) d50 = 1 mm and (c) d50 = 0.5 mm (u/h = 0.05, eo = 0.63,
Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0, b = 0.15) (values of grain rotation in arc
measure are expressed by scale).
As the results, the accelerations of each particle are obtained. The
time step is incremented and accelerations are integrated over
time to determine updated particle velocities and positions. To
maintain the numerical stability of the method and to obtain a
Fig. 12. Resultant normalized earth pressure force 2Eh/(ch2) versus normalized wall
displacement u/h from discrete simulations during passive earth pressure with
translating wall with different mean grain diameter d50: (a) d50 = 5 mm, (b)
d50 = 1.0 mm, (c) d50 = 0.5 mm (Eh – horizontal earth pressure force, c– density,
h – wall height, u – horizontal wall displacement) (eo = 0.63, Ec = 30 GPa, tc = 0.3,
l = 30�, g = 1.0, b = 0.15).

Fig. 13. Resultant normalized earth pressure force 2Eh/(ch2) versus normalized wall
displacement u/h from DEM for: (A) passive case and (B) active case: (a) translating
wall, (b) wall rotating around top, (c) wall rotating around toe (Eh – horizontal earth
pressure force, c – density, h – wall height, u – horizontal wall displacement)
(eo = 0.63, d50 = 1 mm, Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0, b = 0.15).
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quick convergence to a quasi-static state of equilibrium of the
assembly of particles, damping forces have to be introduced
(Cundall and Strack, 1979).

Discrete elements can have different geometries (Ketterhagen
et al., 2008), but to keep a low calculation cost, usually the simplest
spherical geometry is chosen (dealing with realistic shapes would
lead to a prohibitive calculation cost). However, the spherical
geometry is too idealized to accurately model phenomena exhib-
ited by real granular materials. It has been shown that spherical
Fig. 14. Deformed granular body with distribution of rotation for initially dense sand from
(c) wall rotating around toe (eo = 0.63, d50 = 1 mm, Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0, b
particles have a smaller angle of repose and reduced shear strength
as compared to non-spherical particles (Rothenburg and Bathurst,
1992). It is due to that the rotation is only resisted by frictional
contacts with neighboring particles whereas for non-spherical par-
ticles the rotation tends to be inhibited by mechanical interlocking.

In the paper, spherical elements were used only. To simulate
grain roughness, additional moments were introduced into a 3D
model, which were transferred through contacts and resisted par-
ticle rotations (Kozicki and Donze, 2008). In this way, grains were
DEM (passive case, u/h = 0.06) for: (a) translating wall, (b) wall rotating around top,
= 0.15) (values of grain rotation in arc measure are expressed by scale).
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in contact with their neighbors through a certain contact surface.
The importance of rolling resistance on the contact behavior of
granular bodies in 2D discrete simulations was shown among oth-
ers by Iwashita and Oda (1998), Jiang et al. (2005) and Mohamed
and Gutierrez (2010). The limitation of all discrete methods is a
necessity of long computational time and a difficulty to validate
it experimentally.

Fig. 8 presents two spherical discrete elements A and B in
contact. The radii of two spheres are RA and RB. The positions of
their centers are denoted by ~XA and ~XB. During each time step,
two spheres may remain in contact. The interaction force vector
Fig. 15. Deformed granular body with distribution of rotation for initially dense sand fro
wall rotating around toe (eo = 0.63, d50 = 1 mm, Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0, b = 0
~F represents the action of the element A on the element B and
may be decomposed into a normal and tangential vector, respec-
tively. Both forces are linked to displacements through the normal
stiffness Kn and tangential stiffness Ks

~Fn ¼ KnU~N; ð1Þ
~Fs ¼~Fs þ KsD~Xs; ð2Þ

where U is the penetration depth between elements, ~N denotes the
normal vector at the contact point and D~Xs is the incremental
tangential displacement. The tangential force ~Fs is obtained by
m DEM (active case, u/h = 0.06): (a) translating wall, (b) wall rotating around top, (c)
.15) (values of grain rotation in arc measure are expressed by scale).
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Fig. 16. Deformed granular body with distribution of rotation for initially dense
sand from DEM at the beginning of passive earth pressure with translating wall: (a)
u/h = 0.01, (b) u/h = 0.02 (eo = 0.63, d50 = 1 mm, Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0,
b = 0.15).
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summing its increments. The stiffness parameters are calculated
with the aid of the modulus of elasticity of the grain contact Ec

and grain radii R (to determine the normal stiffness Kn) or a with
the aid of the modulus of elasticity Ec and Poisson’s ratio tc of the
grain contact, and grain radii R (to determine the tangential stiff-
ness Ks) of two neighbouring spheres, respectively:

Kn ¼ Ec
2RARB

RA þ RB
and Ks ¼ Ectc

2RARB

RA þ RB
: ð3Þ

If RA = RB = R, the stiffness parameters are equal to: Kn = EcR and
Kt = tcEcR (thus Kn/Kt = 1/tc), respectively. Shearing starts at the con-
tact point when the contact forces ~Fs and ~Fn satisfy a frictional
Mohr–Coulomb equation

k~Fsk � k~Fnk tanl 6 0; ð4Þ

with l as the inter-particle friction angle.
The program YADE differs from other DEM codes by the fact

that contact moments between spheres are introduced to increase
the rolling resistance. Due to that the real grain roughness can be
simulated in 3D simulations. Only the normal force contributes
to rolling resistance. The contact moment increments are calcu-
lated using the rolling stiffness Kr

DM ¼ KrD~x; ð5Þ

with

Kr ¼ bKsRARB; ð6Þ

where b is the dimensionless rolling stiffness coefficient and D~x is
the angular increment rotation between two spheres calculated as

D~x ¼ vecðA
�
ðA
�
0Þ�1B

�
0ðB
�
Þ�1Þ; ð7Þ

where A
�
0 and B

�
0 are the unit quaternions representing orientations

of the sphere A and sphere B when the contact was established, A
�

and B
�

are their current orientations and vecð�Þ is a function that
converts rotation represented by a unit quaternion into a rotation
vector. In turn, the dimensionless rolling coefficient g controls the
limit of the rolling behavior

k~Mk � g
RA þ RB

2
k~Fnk 6 0: ð8Þ

No forces and moments are transmitted when grains are separated.
The assumed tangential, normal and rolling contact relationships in
the model are demonstrated in Fig. 9a–c, respectively. To dissipate
kinetic energy, a local non-viscous damping scheme was adopted
(Cundall and Hart, 1992)

~Fk ¼~Fk � a � sgnð~VkÞj~Fkj; ð9Þ
~Mk ¼ ~Mk � a � sgnð~xkÞj~Mkj: ð10Þ

A positive numerical damping coefficient a is smaller than 1 (sgn(�)
returns the sign of the argument). The equations are separately ap-
plied to each kth component of a 3D vector. In general, the damping
parameter a can be different for each translational and rotational
degree of freedom (but this is not the case in our quasi-static
calculations).

The following five main local material parameters are needed
for discrete simulations: Ec, tc, l, b and g which were calibrated
with corresponding triaxial laboratory test results with Karlsruhe
sand (Wu, 1992). In addition, the particle radius R, particle density
q and damping parameters a are required.

5. Calibration of discrete material parameters with triaxial test

The material sand parameters in our discrete model were cali-
brated with discrete simulations of a homogeneous triaxial test
for cohesionless ‘‘Karlsruhe sand’’ (Widuliński et al., 2009), which
were directly compared with the corresponding experimental re-
sults of several triaxial tests performed by Wu (1992) at Karlsruhe
University. The calculations of a triaxial test were carried out with
the real mean grain diameter of sand (d50 = 0.5 mm) using a linear
size distribution curve (the radius of spheres varied between
0.2 mm and 0.8 mm). In numerical comparative simulations of a
homogeneous triaxial test, a cubic granular specimen of
10 � 10 � 10 cm3 including about 10,000 spheres with contact mo-
ments was used. The spheres were distributed at random. The test
was modeled using confining smooth rigid wall elements (without
inducing shear localization). Isotropic compression took place un-
der gravity free conditions. The top and bottom boundaries moved
vertically as loading platens under strain-controlled conditions to
simulate the confining pressure p. The initial density of sand was
obtained using a radius expansion method based on a Weibull dis-
tribution. In this method, the inter-particle friction was assumed to
be zero and gravity was varied to obtain a different initial density
caused by grain overlapping (thus, it was possible to exactly repro-
duce the experimental sand density).

Fig. 10A and B shows a direct comparison between discrete and
experimental results (Wu, 1992) with initially dense Karlsruhe
sand (eo = 0.53, d50 = 0.5 mm) at confining pressure p = 200 kPa
up to e1 = 12% (with the following discrete material parameters:
Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0 and b = 0.15, q = 2.6 kNs2/m,
a = 0.3). The both experimental curves (global axial normal stress
versus global axial strain and global volumetric strain versus global
axial strain) are very well reproduced. The calculated maximum
internal friction angle, / = 42.3�, compares well with the experi-
mental value of / = 43.7� (Wu, 1992). The calculated dilatancy an-
gle w = 27.1� and modulus of elasticity E = 101 MPa are also in a
satisfactory agreement with experimental outcomes of w = 28.5�
and E = 104 MPa. The other calculations show (Widuliński et al.,
2009) that the local friction angle l has a strong effect on both
the peak stress and dilatancy angle, but an insignificant effect on
the residual deviatoric stress. An increase of l causes obviously
the growth of /p and w. The rolling stiffness coefficient has a very
strong effect on the entire stress–strain curve and a small effect on
volume changes (the higher the parameter b, the greater is the
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mobilized global internal friction angle). The moment limit coeffi-
cient g has a pronounced influence on the stress–strain curve up to
the residual state but an insignificant effect on volume changes
(the higher the coefficient g, the greater is the peak global friction
angle). The global modulus of elasticity and Poisson’s ratio of sand
grow with increasing Ec. Table 1 includes the material parameters
assumed in further discrete simulations of earth pressures. The
numerical damping was a = 0.3 for each translational and rota-
tional degree of freedom (its effect on our quasi-static results
was negligible).

6. DEM results of earth pressure problem

The plane strain discrete calculations were performed with a
sand body of a height of H = 200 mm and length of L = 400 mm to
compare them directly with the FE results (Section 3). The height
of the retaining wall located on the left-hand side of the granular
body was assumed to be h = 200 mm. The vertical retaining wall
and the bottom of the granular specimen were assumed to be stiff
Fig. 17. Distribution of grain rotation x[�] across shear zones at residual state durin
Ec = 30 GPa, tc = 0.3, l = 30�, g = 1.0, b = 0.15), x2/d50 – normalized co-ordinate along she
and very rough, i.e. there were no relative displacements along a
vertical and bottom surface. The granular specimen depth was
equal to the grain size.

6.1. Effect of mean grain diameter

First, to investigate the effect of a mean grain diameter of sand
d50 on shear localization, the discrete calculations were carried
with three different mean grain diameters d50: 0.5 mm, 1.0 mm
and 5 mm during a uniform horizontal passive translation u of
the wall against the backfill. Five thousand spheres with different
radii in the range 2–8 mm (d50 = 5 mm), 31,000 spheres with dif-
ferent radii of 0.7–1.3 mm (d50 = 1.0 mm) and 110,000 spheres
with different radii of 0.2–0.8 mm (d50 = 0.5 mm) were assumed
for calculations. The initial void ratio was about eo = 0.63 (similar
as in FE analyses). Fig. 11 presents the deformed granular body
with the distribution of grain rotation x for initially dense sand
from DEM during passive earth pressure with translating wall.
The values of grain rotations in the arc measure are expressed by
g passive earth pressure with translating wall (u/h = 0.05, eo = 0.63, d50 = 1 mm,
ar zone width.
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a scale attached. The gray color indicates no rotations (x = 0), the
color between gray and white symbolizes rotations in the right
direction (positive rotation, i.e. x 2 0.0–0.5) and the color between
gray and black symbolizes rotations in the left one (negative rota-
tion, i.e. x 2 �0.5 to 0.0). To clearly distinguish the limits of grain
rotations, in addition two colors were introduced. The color above
the white one denotes the grain rotation higher than 0.5 and the
color below the black one denotes the grain rotation smaller than
�0.5. The geometry of shear zones was similar independently of
d50. In turn, the width of shear zones (Fig. 11) and the load–
displacement curve (Fig. 12) strongly depended upon d50 (the
maximum earth pressure force obviously increased with increas-
ing d50). The thickness of the main curved shear zone was 35 mm
(7 � d50) with d50 = 5.0 mm, 22 mm (22 � d50) with d50 = 1.0 mm
and 18 mm (36 � d50) with d50 = 0.5 mm.

The computation time was about 24 days (d50 = 0.5 mm), 7 days
(d50 = 1.0 mm) and 1 day (d50 = 5 mm) on PC 3.2 GHz.

6.2. Effect of wall movement type

The discrete simulations results for passive and active earth
pressure problem are shown for initially dense sand (eo = 0.63) in
Figs. 13–15. To reduce the computation time, further simulations
were solely carried out with d50 = 1.0 mm. Fig. 13 presents the evo-
Fig. 18. Effect of micro-mechanical parameters in discrete simulations on resultant norm
DEM (passive wall translation): (A) effect of l (a) l = 20�, (b) l = 30�, (c) l = 40�, (B) effec
g = 3.0 (with eo = 0.63, d50 = 5 mm, Ec = 30 GPa).
lution of the normalized horizontal earth pressure force 2Eh/(ch2)
versus the normalized horizontal wall displacement u/h for three
different active (Fig. 13A) and passive (Fig. 13B) wall movements.
In the case of a rotating wall, the horizontal displacement u is re-
lated to the wall displacement of the bottom point (wall rotating
about the top) or top point (wall rotating around the bottom). In
turn, the deformed granular body with the distribution of grain
rotations is demonstrated in Fig. 14 (passive case) and Fig. 15 (ac-
tive case).

The evolution of the horizontal earth pressure force 2Eh/(ch2)
against the wall displacement is very similar as in FE calculations
(Fig. 5). The maximum normalized passive horizontal forces 2Eh/
ch2 are between 9 and 25 (in FEM: 2Eh/ch2 = 12–31, respectively),
and the minimum normalized active earth pressure forces 2Eh/
ch2 lie between 0.08 and 0.16 (in FEM: 2Eh/ch2 = 0.10–0.16, respec-
tively). In turn, the calculated minimum (residual) earth pressure
coefficients are about 3–18 in a passive case (in FEM: 2Eh/
ch2 = 4–20, respectively).

The pattern of shear zones in DEM simulations on the basis of
grain rotations (Figs. 14 and 15) is similar as in FE calculations
(Figs. 6 and 7) and experiments (Figs. 1–4). However, some
discrepancies exist. For the passive wall translation (Fig. 14a), in
contrast to FE-calculations (Fig. 6a) and experiments recorded by
X-rays (Fig. 1a), one radial zone (as in experiments with DIC,
alized earth pressure force 2Eh/(c h2) versus normalized wall displacement u/h from
t of b (a) b = 0.15, (b) b = 1.0, (c) b = 3.0 and (C) effect of g (a) g = 0.15, (b) g = 1.0, (c)
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Fig. 3a) was obtained instead of two. In addition, secondary shear
zones were not numerically obtained. The shear zones from dis-
crete simulation are straighter than these from the FEM (during
wall rotation around the toe). The differences between calculations
and experiments are probably due to the fact that different sand
was used in laboratory tests and in FE and DE analyses and due to
a too small deformation range assumed in numerical calculations.

A horizontal shear zone and a radial shear zone develop first at
the beginning of the passive wall translation (Fig. 16a). The mate-
rial starts to generate grain rotations there. Next, a shear zone
(starting from the wall base) curves upwards (Fig. 16b). At the
same time, it is reached by a radial shear zone. The thickness of
a shear zone reaching a top boundary surface is about
22 � d50(d50 = 1.0 mm) with the inclination of 43� to the horizontal
(in FEM: 30 � d50 with d50 = 0.5 mm and 40�, respectively) and of a
radial shear zone is also about 22 � d50 with d50 = 1.0 mm (Fig. 16).
In the case of the passive wall rotation around the top, the
thickness of a curved shear zone is 25 � d50 (the thickness of a
curved shear zone from FEM was 25 � d50 with d50 = 0.5 mm).
Fig. 19. Effect of micro-mechanical parameters in discrete simulations on deformation fi
effect of b (a) b = 0.15, (b) b = 1.0, (c) b = 3.0 and (C) effect of g (a) g = 0.15, (b) g = 1.0,
measure are expressed by scale).
The thickness of parallel shear zones during the passive wall rota-
tion around the bottom is about (15–18) � d50 with d50 = 1.0 mm
(in FEM the thickness was about 15 � d50 with d50 = 0.5 mm). Their
mean inclination against the bottom is 43�.

In the case of the active wall movement, the thickness of the
interior shear zones is 25 � d50 (wall translation, wall rotation
around the top) and (15–18) � d50 (wall rotation around the toe),
respectively (with d50 = 1.0 mm). The shear zone inclination to
the horizontal is 58� (wall translation), 60� (wall rotation about
the top) and 62� (wall rotation about the toe), respectively. In
FEM, the thickness of the interior shear zones was 32.5 � d50 (wall
translation) 27.5 � d50 (wall rotation around the top) 25 � d50

(wall rotation around the toe), respectively (with d50 = 0.5 mm),
and the shear zone inclination into the horizontal was 50� (wall
translation), 60� (wall rotation about the top) and 60� (wall rota-
tion about the toe), respectively.

The maximum grain rotation in the shear zones is about
±(15�–35�) at the residual state during passive wall translation
(Fig. 17). It is obviously higher in shear zones which form earlier
eld (passive wall translation): (A) effect of l (a) l = 20�, (b) l = 30�, (c) l = 40�, (B)
(c) g = 3.0 (with eo = 0.63, d50 = 5 mm, Ec = 30 GPa) (values of grain rotation in arc
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(e.g. in a horizontal shear zone at the bottom). In turn, the resultant
grain rotation in the middle of the radial shear zone from the area
5d50 � 5d50 is about 10� (and is approximately equal to the maxi-
mum Cosserat rotation in FE calculations Tejchman et al., 2007).

6.3. Effect of micro-mechanical parameters

Figs. 18 and 19 demonstrate the effect of micro-mechanical
parameters on the geometry of shear zones and load–displacement
curve during passive wall translation (with a high mean grain
diameter d50 = 5 mm).

The maximum horizontal passive force on the wall grows with
increasing parameters l, b and g. In turn, the residual horizontal
passive force depends on the parameter b only (it grows with
increasing b). The maximum horizontal passive force on the wall in-
creases by: 15% (if the inter-particle friction l increases from l = 20�
up to l = 40�), 20% (if the rolling stiffness coefficient b increases
from b = 0.15 up to b = 0.30) and 20% (if the limit rolling coefficient
g increases from g = 0.15 up to g = 0.30). In turn, the residual hori-
zontal passive force on the wall increases by 40%, if the rolling stiff-
ness coefficient b increases from b = 0.15 up to b = 0.30.

When the inter-particle friction l is small, the main inclined
shear zone is more curved and the radial zone is steeper. A larger
stiffness parameter b contributes to that, a radial shear zone is
steeper and the inclination of the main shear zone to the horizontal
is smaller. If the rolling parameter g is high, an additional shear
zone parallel to the radial zone is obtained.

6.4. Internal work, external work and dissipation

Figs. 20 and 21 show the calculated internal work, external
work and dissipation in initially dense sand specimen of Fig. 11b
Fig. 20. Passive wall translation: (a) external work, (b) internal work and (c)
dissipation from discrete simulations (d50 = 1.0 mm).

Fig. 21. Internal work done by: (a) normal contact forces, (b) tangential contact
forces and (c) contact moments and during passive wall translation from discrete
simulations (d50 = 1.0 mm).
during passive wall translation (d50 = 1.0 mm). The internal work
dU was done by contact tangential forces on tangential displace-
ments, contact normal forces on penetration depths and contact
moments on angular rotations. The external work dW was done
by the external horizontal force on the horizontal wall displace-
ment. The total dissipation dD was calculated from the difference
between the external work done on the assembly and internal
work done by contact forces and moments.

The evolution of three components of the internal work (Fig. 21)
is similar to the evolution of the horizontal wall force (Fig. 7). The
normal contact forces, tangential contact forces and contact mo-
ments increase up to the peak, indicate softening and reach their
asymptotes. The largest internal work at peak was performed by
contact normal forces (45% of the total work) and contact tangen-
tial forces (40% of the total work) and the smallest one by contact
moments (15% of the total work). In the residual state, the work
performed by normal and tangential contact forces was similar
and the work performed by contact moments was about 3 times
smaller than the remaining ones.

The total dissipation in the granular specimen during deforma-
tion was about 25% at peak and 10% at the residual state, respec-
tively (as compared to the total external work) (Fig. 20).
7. Conclusions and future work

The numerical simulations of earth pressures behind a retaining
wall show that a discrete element method is capable to reproduce
the most important macroscopic properties of cohesionless granu-
lar materials without being necessary to describe the granular
structure perfectly. The results confirm the previous discrete
element results obtained for a single shear zone in granular bodies.
Comparing discrete simulations with experimental tests and
continuum calculations demonstrates that a discrete model
realistically predicts experimental results of a complex pattern
of shear zones in the interior of initially dense sand. Thus, it
can be used to comprehensively study the mechanism of the
initiation, growth and formation of multiple shear zones at the
micro-level.

The following detailed conclusions can be also drawn:

� The geometry of shear zones depends strongly on the direction
and type of the wall movement (passive or active, translation or
rotation). The experimental patterns of shear zones were realis-
tically reproduced in discrete calculations. The finite element
and discrete results were very similar with respect to the geom-
etry of shear zones and load–displacement curves.
� The largest passive earth pressures occur with the horizontal

translation of the wall, they are smaller with the wall rotation
around the bottom and again smaller with the wall rotation
around the top. The smallest active earth pressures are created
during wall translation, and the largest during wall rotation
around the top.
� A mean grain size has a significant effect on a load–displacement

diagram in DEM when shear localization is taken into account.
� The granular material tends to a critical state inside shear zones.

The grain rotations are noticeable only in shear zones.
� The largest internal work in DEM simulations is performed by

contact normal forces and the smallest one by contact
moments.
� The maximum horizontal passive force on the wall grows with

increasing micro-mechanical parameters l, b and g. In turn, the
residual horizontal passive force depends on b only.
� Conventional earth pressure mechanisms with slip surfaces are

roughly reproduced. Realistic earth pressure coefficients can be
obtained with actual values of internal friction angles only.
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� A continuum model is more advantageous due to a possibility to
simulate larger granular specimens with smaller grain sizes.
The discrete model is still limited by computation time. How-
ever, a discrete model has a smaller amount of parameters to
be calibrated.

Since shear zones entirely control a global post-peak response,
it is necessary to understand the underlying nature of granular
material behavior within shear zones to fully characterize the soft-
ening and critical state material response at the macro-level. In the
next step, a detailed DE analysis of shear zones will be performed
at the micro-level with respect to a micro-polar rotation (based on
grain rotations), void ratio, stresses (based on normal and tangen-
tial contact forces) and couple stresses (based on contact mo-
ments). The DE results will be again compared with the FE
outcomes. Thus, the results from discrete simulations will allow
us to better understand a mechanism of the formation of a pattern
of shear zones (depending upon the particle size, roughness and
distribution) and to better calibrate a micro-polar hypoplastic con-
stitutive model, wherein micro-polar rotations play a crucial role
(what requires an accurate characterization of the micro-scale
kinematics occurring in shear zones).
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Ł. Widuliński et al. / International Journal of Solids and Structures 48 (2011) 1191–1209 1209

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Sokolovski, V.V., 1965. Statics of Granular Media. Pergamon Press.
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