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MECHANISMS POSITIONED IN A NEIGHBOURHOOD OF THEIR 
SINGULAR POSITIONS - VELOCITY AMPLIFICATION IN THE 

ELECTROMAGNETIC DAMPING.  
PART 1 – BACKGROUND OF THE MECHANICAL STRUCTURE 

MODELING 
 

KRZYSZTOF LIPINSKI 
 
 

Abstract: In the present paper, modelling methods are presented for a numerical model of a mechanical 
part of a hybrid (continuous/multibody) system. In the system, vibrations of a continuous mechanical part 
are present. To dampen them, their energy is transformed into the electrical current (by use of a DC 
generator) and dissipated. To amplify the damping, a double-bar mechanism is introduced between the 
vibrating part and the damping element. Two structurally different subsystems are considered. The elastic 
part is composed of finite elements. The mechanism is modelled as a multibody system. Constraint 
equations are used to joint the subsystems. The common final model effects in a numerical tool, useful 
when verification of electromagnetic damping is considered. Key words: electromagnetic damping; 
velocity amplification; singular position; multibody modelling; finite elements; constraint equations. 

 
1. INTRODUCTION  
 

In the present paper, modelling methods are 
presented for a numerical model of a 
mechanical part of a hybrid (continuous/ 
multibody) system. In the second part, the 
resulting model is tested. As a final effect, 
common for the both parts, an effective 
damping method is searched for vibrations 
present in a continuous mechanical system. 
Announced mechanical vibrations are 
commonly observed in the everyday industrial 
practice, thus industrial significance of the 
problem is substantial. Except of some 
exceptional cases (when vibrations are 
generated intentionally), vibrations are non-
required. Their negative outcomes are 
commonly cited. The uncontrolled motion of 
the effectors is the main outcome. The 
phenomenon complexity has to be underlined, 
as few sources can be responsible for such 
disturbances. The manual (or automatic) 
control of the system can be noised, as 
vibrations indicate a noise signal introduced in 
the control loop [1]. In-between the rest of the 

outcomes, significant acoustic noises have to be 
pointed. Motions of the surrounding elements 
can be evoked, when synchronized in 
frequencies. Some long-term effects are 
commonly cited. Harmful influence on the 
human health [2-4], and the fatigue of the 
mechanical elements are the examples. 
Summarising it, a search for an effective 
damping method is the essential topics in the 
most of the industrial design processes.  
 

elastic element 

DC motor 

mechanism 

 
Fig.  1. Main elements of the considered system (a)  

 
Within the presently used applications, the 

methods based on the viscous dampers look as 
the dominant solution. However, even if 
successfully applied in the medium size 
applications (as vehicles for example), they are 
difficult to operate in the small size 
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applications. There, the electromagnetic 

effects look as the challenging ones [5-7]. Such 
devices are favoured by their simpler 
construction, lower dimensions, easier semi 
active control and luck of the potential oil 
impurities.  

As the internal structural damping is 
unavoidable in most of the industrial 
applications, high frequency vibrations (except 
of the self-excited or these present in the 
resonance cases) are damped well. None of the 
external actions is necessary. By contrast, when 
the low frequency vibrations are considered, the 
structural damping is ineffective. Velocities of 
the related motions are relatively low, and low 
damping forces are present. Such frequencies 
are damped badly, even when the external 
damping is present. To accelerate the damping, 
velocity amplification can be useful. The one 
considered focuses on a mechanism introduced 
between the vibrating element and the damper 
(Fig. 1).  

In the present part, fundaments of a hybrid 
(continuous/multibody) numerical modelling 
are presented. Five sections are introduced. As 
a multibody system is present in the final 
model, fundaments of the classical (rigid body) 
multibody formalism are presented firs. Section 
two is devoted for it. To obtain the required 
dynamics equations, a method presented in [8, 
9] is recalled. Three-like and closed loop 
systems are considered. The mass matrix 
formulas, as well as to the generalised forces 
formulas, are presented.  

The continuous structure is considered as 
composed of short deformable elements, i.e. the 
finite elements, are used. The structure drift 
motion is absent. The nodes displacements 
(displacements at a set composed of few 
selected points) are considered as system’s 
generalized coordinates. A method as proposed 
in [11-13] is used and required dynamics 
equations are obtained. These equations are 
linear in respect to the joint displacements, 
velocities and accelerations. Related formulas 
for the mass, dissipation and stiffness matrices 
are detailed in the third section.  

To joint these structurally different sub-
models, constraint equations are proposed for 
the contact between the mechanism and the 
vibrating element. Details of the constraint 

equations are presented in section four. To 
obtain dynamics of the closed-loop systems, 
classical coordinate partitioning is used as 
proposed in [10]. Finally, conclusions and 
perspectives are presented in section nine. 
 
2. FUNDAMENTS OF THE USED 
MULTIBODY FORMALISM 
 

In the present paper, classical multibody 
modelling is considered. The used multibody 
system is composed of rigid bodies. They are 
inertial and joined together. Massless 
connections are used to joint the bodies. 
Displacements are associated to connections 
only, and their magnitude can be significant. As 
a relative coordinate formulation is considered, 
these displacements are treated as system’s 
generalized coordinates. 

In the general theory, different types of the 
generic bodies can be used. The main set is 
composed of finite size and finite inertia 
elements. A term material bodies (m-bodies) 
can be used to denote such elements. By 
contrast, the reference body is motionless. 
Massless bodies, but finite in dimensions are 
useful to formulate constraint equations. 
Finally, the massless and dimensionless bodies 
are used as the reference elements or as the 
connecting elements. These last are called point 
bodies (p-bodies).  
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Fig.  2: Examples of the multibody systems: tree 
structure (a); body numbering (b);  

 
In general, connections are some multi-

degrees of freedom elements. When restricted 
to one-degree-of-freedom (moreover restricted 
to prismatic or revolute type), the reduced set is 
sufficient to describe the multibody system. 
Such elemental connections are called joint. 
Any of the multi-freedom connections can be 
modelled as composed of joints and p-bodies.  

Then, when a set of bodies is considered 
(not independent but joint connected), a 
kinematical chain can be defined (Fig. 2a). 
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Among of the potential chains, the reference 
kinematical chain (i.e. the chain that connecting 
its generic body with the reference body) is the 
most significant. When its content is uniquely 
determinable, the chain is defined as an open 
kinematical chain. Otherwise, the chain is a 
closed kinematical chain (Fig. 2a). Moreover if 
none on the system chains is of the closed type, 
the system is called as a tree structure (Fig. 2b).  

 
2.1. Dynamics of the tree structures 

When a tree structure is considered, a 
numbering can be introduced for the bodies 
(Fig. 2b). The numbering correlates with the 
succession order, observed in the reference 
chain. According to it, numbers are lower when 
bodies of the reference chain are considered. 
Then a<b symbol is used when a belongs to the 
reference chain of the generic body b. A a+ 
symbol denotes the complete set of direct 
successors and a a- symbol denotes the direct 
predecessor of the body a. Finally, for the joint 
numbering, the joint that connect body a with 
the body a- is numbered as a.  
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Fig.  3: The main distances and the main interactions of a 

selected body of the multibody system 
 
To describe the geometrical properties, 

vectors are introduced for the generic body as 
presented in Fig. 3. Coordinates are constant for 
these vectors, when the coordinates are 
expressed in the body fixed coordinate system. 
By contrast, configuration dependent 
orientation matrices iT  are necessary to 
express them in the reference body system 
(reference coordinate system). The iT  matrices 
are calculated as the ordered products of the 
relative orientation matrices  present in the 
joints. Joints of the related reference chain have 
to be considered in the product. 
Simultaneously, vector  (it locates the mass 
centre of body i, with respect to the origin of 
the reference system) is a sum of dimensions of 

all the bodies. The distance has to be 
extended with the translations present in the 
joints, of the reference chain considered. It 
leads to [8, 9]: 

jR

ixr

 
 ( )∑∏ ≤≤

+==
ij:j

jiji
ij:j

ji dzx
rrr;RT   ,  (1) 

 
When differentiated in respect to time and 
when a matrix form is used, ones obtain 
velocity and acceleration relations [8, 9]:  
 
 ;; bibi x qAqA i1,i2, &

rr
&&

rr
⋅=⋅=ω   (2) 

 R,ibiR,ibi xx
r
&&&&

rr
&&

r
&&&

rr
& +⋅=+⋅= qAqA i1,i2, ;ωω  ,  (3) 

where: qb - column matrix of system 
generalized coordinates;  - row matrices 
of vectors

i,i, , 21 AA
rr

1; R,iR,i ,x ω
r
&

r
&& ,  - “remainders” 

independent of joint accelerations.  
 
To obtain the dynamic equations, free body 

diagrams are composed (Fig. 2c). All the joints 
are cut and joint interactions are introduced to 
replace the cut joints. Then, the Newton/Euler 
equations of dynamics are used [8, 9]:  

 
 ∑ +∈

−+=⋅
ij
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j

e
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ii fffxm
rrr
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 ( )
,i

jij
ij
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i
jC

e
iCi

ii
iC

iiiii

frttfrt

II
rrrrrrr

&rrr

∑∑ ++ ∈∈
×−−+×+=

=⋅+⋅× ωωω   (5) 

where:  - mass of the iim th body; iI  - ith tensor 
of moments of inertia about the mass centre;  

ii t,f
rr - force and torque at the joint; if

e
r

 - net 
external force; e

iCt
r

 - net external torque about 
the mass centre.  
 
Combining the dynamics equations (4) with the 
kinematics equations (3), ones obtain [8, 9]: 
 
 ;∑ +∈

−+=⋅+⋅
ij

i
j

e
ii

bbR,iib fff),(xm
rrr

&&&r&&
r

qqqB i1,   (6) 

 ( )
i
jij

ij
ij

i
jC

e
iCi

ii
iC

bbR,iiiiib

frttfrt

),(II
rrrrrrr

&&rrr
&&

r

∑∑ ++ ∈∈
×−−+×+=

=⋅+⋅×+⋅ qqqB i2, ωωω ,  (7) 

where: i2,i2,i1,i1, ABAB
rrrr

⋅=⋅= ii I,m  - matrices 
of coefficients (partial vectors). 
 

Unfortunately, the first summands of (6) and 
(7) are not the lonely terms dependent on the 
joint accelerations. The forces and the torques 
                                                           
1 All elements of these matrices are geometrical vectors 
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present in the successors’ joints are 

dependent on them, too. To obtain the explicit 
form, backward evaluation is employed. The 
leaf bodies (i.e. the bodies without a successor) 
are used to start the process. At each of the 
evaluation step, the i+ interactions are detected 
and replaced by the formulas obtained in the 
previous step. As the result, the ith interactions 
remain the only one present in the ith equations 
of dynamics. They are placed as the left side 
expressions in the dynamics equations, and the 
matrix expression is formulated as:  

 
 ,       ; i2,i2,i2,1,1,1, EDqCEDqC

rr
&&

rrrr
&&

rr
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To obtain the active components, 

interactions are projected onto joint mobility 
vectors ( ier  for rotational and iar  for 
translational). As the ier  vector is zero for the 
translational joint, and the iar  vector is zero for 
the rotational joint, it turns the dynamics 
equations into a matrix from [8, 9]  
 
  ,  (0,,,),( =++⋅ )t,()( bbbbbbbbb

ee tfqqQqqFqqM &&&& 10) 

where:  
 i2,i1, CCM

r
o

rr
o

r iib ea +=  ;  (11) 

 i2,i1, DDF
r

o
rr

o
r iib ea +=  ;   (12) 

 i2,i1, EEQ
r

o
rr

o
r iib ea += .  (13) 

 
2.2. Dynamics of closed multibody structures 

When a closed multibody structure is 
considered, its chains are cut. A reference tree 
structure is restored. The tree structure 
dynamics equations are obtained from (10). To 
preserve the chains consistency, the constraints 
equations are introduced. As proposed in [8, 9], 
their left side functions are grouped in a column 
matrix h. Then, the constraint equations are 
differentiated twice to obtain the velocities and 
accelerations constraints. Then, the dynamics 
equations of the reference tree are accompanied 

with the Lagrange’s multipliers. The resulting 
form of the dynamics equations is [8, 9]: 
   (;0) =b(qh 14) 

   (;0)() =⋅= bbb( qqJqh && 15) 

   (;0()() =+⋅= ),( bbbbb qqAqqJqh &&&&& 16) 

   (
,)()t,(

)t(
bTbbb

bbbbbb

0,,,
),(,

=⋅++

++⋅

λqJtfqqQ
qqFqqM

ee&

&&& 17) 

where:  J – Jacobian of the h;  λ – Lagrange’s 
multipliers. 
 

Not all the elements are independent in the q 
matrix (the independency was valid for the tree 
structure). According to the dependence, 
independent coordinates, ub, as well as 
dependent coordinates, v, are present in the q 
matrix, now. The dependent coordinates, as 
well as Lagrange’s multiplier, have to be 
eliminated. Coordinate partitioning method 
proposed by Haug [10] can be employed. The 
constraint equations as well as the dynamics 
equations are partitioned. It leads to [10]:  
 
 ;  ;  (0=⋅+⋅ bbb )()( uuJvuJ uv && 18) 
  ;  (),)()( bbbbb uuAuuJvuJ uv &&&&&& (−=⋅+⋅ 19) 
   (;0=⋅+++⋅+⋅ λJQFvMuM T

vvvvv
b

vu &&&& 20) 
 .  (T

uuuuv
b

uu 0=⋅+++⋅+⋅ λJQFvMuM &&&& 21) 
 
With the use of (19), the dependent 

accelerations are eliminated. Next, (20) is used 
to calculate the multipliers. They are eliminated 
from (21). The resulting equation is [10] 
 
   ,  (

0, =+

++⋅

)t,,,(

),()t,(
bbbR

bbbRbbbR

ee tfuuQ

uuFuuM
&

&&& 22) 

where:  
( ) ( ) ;uu

TT
uuuuu

bR JJMMJJJJMMM vvvvvvv ⋅⋅−⋅−⋅⋅−= −−− 111   (23) 

( ) ( ) ;TT
uuu

bR AJMFJJAJMFF vvvvvvv ⋅⋅−⋅−⋅⋅−= −−− 111   (24) 
 ( ) vv QJJQQ TT

uu
bR 1−⋅−=  .  (25) 

 
3. FINITE ELEMENTS METHOD 
 

When a finite element is considered, its 
generalized coordinates refer to the nodes 
displacements (in general, to the element 
endpoints). In the general case, six degrees of 
freedom are associated to each of the nodes (i.e. 
three translational and three rotational). In 
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particular cases, lower number is considered. In 
the present case, when a planar beam element is 
considered (Fig. 4a), two degrees of freedom 
are sufficient to describe the displacements (a 
vertical translation and an in-plane rotation).  

To express its dynamics, a global coordinate 
system is fixed to the reference body. Some 
additional local systems coincide with the non-
deformed elements. When the element 
parameters are expressed in the local coordinate 
system, ^ symbol (located above of the 
parameter) is used to mark it. Next, according 
to the generally accepted convention, the 
vertical displacements are performed along the 
y2 axis, while the rotations are performed about 
the y3 axis. Then, when the nodes of the 
element are numbered as i and j, the elements 
coordinates are [11-13]:  

 
 )( 6262 jjii q,q,q,qcol )))))

=eq ,  (26) 
where: 22 , ji qq ))  - translations of the beam nodes, 

66 , ji qq ))  - rotations of the beam cross sections 
(Fig. 4a).  
 

In the general situation, the loads (when 
present in the system) can be distributed over 
all the particles of the element. In the paper 
case, they are attached in the nodes, only. Thus, 
the nodes loads are denoted as [11-13]:  

 
 )( 6262 jjii P,P,P,Pcol

)))))
=eP ,  (27) 

where: 22 , ji PP
))

 - forces collinear to y2;  66 , ji PP
))

- 
torques collinear to y3.  
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Fig.  4: Details of the finite element - displacements for a 

beam element;  
 

In the presently considered case, it states that 
a linear function can be used to approximated 
relations between the point and the nodes 
displacements, when a potential displacement 
of a generic point A is considered. The used 
weight coefficients depend on the generic point 
relative position, i.e. depending on a parameter 
describing its relative position within the 

element. In the general case, nonlinear 
functions (polynomials for example) are used to 
express the coefficients. As some 
approximation errors are non-eliminable, 
elements size should be reduced in order to 
minimize the errors. Summarising it, when a 
displacement of the generic point A is 
considered, it can be express as [11-13] 
 
 ,  (ee qNq ˆˆˆ A ⋅= 28) 
 
where:  – displacements of the generic point 
A; e  - matrix of shape 
functions; e - vector of 
the nodes displacements. 

Aq̂
)N,...,N,N,N(colˆ

w321=N
q )ˆ,...,ˆ,ˆ,ˆ(colˆ

wqqqq 321=

 
Next, the element relative strains, , can be 

got from differential relation [11-13] 
Aε

 

,
000
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:
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312

321

e

e
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qBε

ˆˆ

ˆˆˆ
T

xxx

xxx

xxx

l

lA

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⋅=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ ,  (29) 

where: - matrix that relates displacements 
and strains.  

lB̂

 
As a planar state of stresses is considered, 

the stress / strain relation is [11-13] 
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=⋅=

−
2

1
2 01

01

1
:

)(.sym

Eˆˆ
υ

υ

υee DεDσ
.  (30) 

where: E – elasticity modulus; υ  - Poisson’s 
number.  
 

With the obtained formulas, the total kinetic 
and potential energies can be formulated as 
 
 ∫∫ ⋅⋅=⋅⋅=

ee V

T

m

T dVˆˆVdmˆˆE σεqq 2
1

2
1 ; ee

&& .  (31) 

 
Next, when Eqs. (28), (29) and (30) are used, it 
can be rewritten to: 
 
 ,; 2

1
2
1

e
T
ee

T
e

ˆˆˆVE qCqqAq ee ⋅⋅=⋅⋅= ee &&   (32) 
where: 
 ∫ ∫ ∫ ⋅⋅⋅⋅⋅=

e e ex y z e
T
e dzdydxˆˆ NNAe ρ  ;  (33) 

 ∫ ∫ ∫ ⋅⋅⋅⋅⋅=
e e ex y z

T dzdydxˆˆˆ
lele BDBC .  (34) 
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When a beam element is considered, cubic 

functions can be set as the shape functions. As 
compatibility with the continuity condition has 
to be preserved, related shape matrix is [11-13]:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−

+−
−

−+−+−+−
= ζζζζζζζζ

ζζζζζζζζζ
ζ 2361436

322132
2

2
2

2

23232323

ee

ee

l
)(

l
)(

)(l)(l
)(eN

)  , (35) 

 
where: e1 lx)=ζ  - relative position of the 
considered point; le – length of the element (see 
Fig. 4a).  
 
Then, displacements and velocities of the 
generic point can be obtained and expressed as:  
 
 ;)()( 62 ee qN ))

⋅= ζAA q̂,q̂col   (36)  
 ee qN &))

&& ⋅= )()( 62 ζAA q̂,q̂col .   (37) 
 
With the presented matrices, the mass and the 
elasticity matrices are calculated from Eqs. (32) 
and (34) [11-13]:  
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4
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−
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=

e

e

eee
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eee
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l
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  (38) 
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e
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eee
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⎡

−
−
−

=

2
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3

4
612

264
612612

eC
  (39) 

 
To fulfil the list of the matrices, the damping 

matrix is approximated as a linear combination 
of the mass and the elasticity matrices [11-13] 
 
 

eee CAB ˆˆˆ βα += .  (40) 
 

Then, when the local system and the global 
system are oriented identically (identity 
orientation matrix), the related matrices in the 
global system are [11-13]:  
 
  ee qq )

= ;   ee PP
)

= ;   ee AA ˆ= ;   ;  ee CC ˆ= ee BB ˆ= .  (41) 
 

To join the set of the independent elements 
into the common construction, vectors of 
nodes’ displacements and vectors of elements’ 
loads are partitioned on sub-vectors of nodes 
displacements and nodes’ loads. Then, they are 
collected into the common matrices:  

 
   ;     :    i=1,2,…,w ,  ()( i

* qq colc = )( i
* PP colc = 42) 

where:  i  – sub-vector of displacements at iq th 
node;  – sub-vector of loads at iiP

th node.  
 
Next, to obtain the element global matrices 

 (matrices of the element dynamics 
expressed with generalized coordinates of the 
completed system), nodes corresponding cells 
are selected in the local matrices as well as in 
the global ones. Required cells can be found at 
the crossing places for rows and for columns 
with numbers matching to the numbers of the 
element nodes. Corresponding cells of the local 

eee  matrices are placed in the identified 
cells of the global matrices . The 
other elements are kept to be zero. Then, the 
system’s global matrices are obtained as sums 
of the elements’ global matrices (summation is 
performed over all the elements of the 
considered continuous system). It leads to the 
following formulas [11-13]:  

*
e

*
e

*
e BCA ,,

BCA ,,
*
e

*
e

*
e BCA ,,

 
    ,     ,   ,  (∑ =

= en

e
c*

1
*
eAA ∑ =

= en

e
c*

1
*
eCC ∑ =

= en

e
c*

1
*
eBB 43) 

where: e - number of elements in the 
considered continuous system.  

n

 
Finally coordinates of the locked nodes have 

to be eliminated. With the zero values of their 
displacement, velocities and accelerations, 
related rows and columns are eliminated from 
the global matrices. The final form of the 
dynamics equation is [11-13]  
 
 .  (ccccccc PqCqBqA =⋅+⋅+⋅ &&& 44) 
 
4. CONSTRAINT EQUATIONS 
 

With the multibody system joined to the 
elastic structure, a rotational joint constraint is 
introduced to model this connection. As within 
the elastic structure, the spherical joint position 
is constant, relatively simpler relation can be 
used when the point coincides with a system 
node. In such case, the shape functions are not 
necessary to formulate the constraint equation, 
and at the position level the constraint 
equations are: 
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  ,  (;)), 221

c
j

bcb q(p(h −= qqq 45) 
  ,  (const(p(h bb −= )) 12 qq 46) 

where: pr  – vector that express position of the 
point at the multibody structure; pi – ith 
component of the vector pr .  
 

When the  and  symbols are introduced 
(they express Jacobians of the vertical and the 
horizontal components of the vector 

b
vJ

b
hJ

pr  
respectively, calculated in respect to multibody 
coordinates, only), the time derivatives of the 
constraint equations are: 
 
   (bb

h
c
j

bb
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⋅
∂
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∂
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=
)(
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)(

12
  (50) 

 
In addition, the dynamics equations Eqs. (10) 
and (44) have to be accompanied with 
Lagrange’s multipliers. According to it, the 
dynamics equations become: 

 
   (;

Tbbbbb 0=⋅+++⋅ λJQFqM && 51) 
 .  (cTccccccc PλJqCqBqA =⋅+⋅+⋅+⋅ &&& 52) 
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⎥
⎦

⎤−
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⎡
=

jnj

c

c

J 54) 

 
The introduced Lagrange’s multipliers, as 

well as the dependent coordinates, have to be 
eliminated. A modified version of the classical 
coordinate partitioning method (presented in 
section 3.2) is proposed for it. For simplicity, 
the multibody coordinates are considered as the 
dependent ones (in the present case, all the 
multibody coordinates have to be eliminated). 
Thanks of it, the following formulas can be 
obtained after this elimination 
 
 .  (:cRccRccRccR PqCqBqA =⋅+⋅+⋅ &&& 55) 
   (cbbTbTcccR JJMJJAA ⋅⋅⋅⋅+=

−− 1 56) 

   (;; ccRccR CCBB == 57) 

.  ()(1 bbTbTccbbTbTcccR QFJJJJAJJPP +⋅⋅+⋅⋅⋅⋅−=
−−− 58) 

5. CONCLUSIONS AND PERSPECTIVES 
 

The goal of the paper is associated to a 
search of an effective damping method. 
Vibrations present in a continuous mechanical 
system have to be damped. A damping method 
is base on the electromagnetic effects. To 
increase the damping effectives, velocity 
amplification is introduced. Proposed 
amplification could be possible when an 
amplification mechanism is set between the 
vibrating element and the DC generator.  

The proposed modelling method combines 
the multibody modelling and the finite elements 
modelling. The background of the proposed 
methodology is presented in the paper. It is 
expected that the modelling method can be 
found as an effective. The proposed model is 
based on the constraint equations. It is an 
interesting an effective alternative to the 
classical models of elastic contacts.  
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LES MECANISMES SITUES SUR LE VOISINAGE DE LA POSITION SINGULIERE – L’AMPLIFICATION 
DE LA VITESSE DANS L’AMORTISSEMENT ELECTROMAGNETIQUE DES VIBRATIONS 

 
Dans cet article, des méthodes de modélisation sont présentées pour un modèle numérique d'une part mécanique 

d'un système hybride (continu / multicorps). Dans le système, on présente les vibrations d’une part continue. Pour 
introduire l’amortissement, leur énergie est transformée en courant électrique (par l'utilisation d'un générateur de 
courant continu) et dissipée. Pour amplifier l'amortissement, le mécanisme de double-barre est introduit entre la partie 
vibrante et l'élément d'amortissement. Deux sous-systèmes structurellement différents sont considérés. La partie 
élastique est composée des éléments finis. Le mécanisme est modélisé comme un système multicorps. Les équations de 
contrainte sont utilisées pour joindre ces sous-systèmes. Le modèle final va être utilisé comme un outil numérique, 
efficace pour la vérification de l'amortissement électromagnétique. 
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