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Abstract

The topic is the hat problem in which each of n players is randomly
fitted with a blue or red hat. Then everybody can try to guess simul-
taneously his own hat color by looking at the hat colors of the other
players. The team wins if at least one player guesses his hat color cor-
rectly, and no one guesses his hat color wrong; otherwise the team loses.
The aim is to maximize the probability of a win. In this version every
player can see everybody excluding himself. We consider such a problem
on a graph, where vertices correspond to players, and a player can see
each player to whom he is connected by an edge. The solution of the hat
problem on a graph is known for trees and for cycles on four or at least
nine vertices. We consider the problem on the cycle on seven vertices.
We prove that if in a strategy for this graph some vertex guesses its
color with probability at least one by two, then the chance of success is
at most one by two.
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1 Introduction

In the hat problem, a team of n players enters a room and a blue or red hat is
randomly placed on the head of each player. Each player can see the hats of all
of the other players but not his own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have
had a chance to look at the other hats, each player must simultaneously guess
the color of his own hat or pass. The team wins if at least one player guesses
his hat color correctly and no one guesses his hat color wrong; otherwise the
team loses. The aim is to maximize the probability of winning.
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The hat problem with seven players, called the “seven prisoners puzzle”,
was formulated by T. Ebert in his Ph.D. Thesis [13]. The hat problem was also
the subject of articles in The New York Times [26], Die Zeit [7], and abcNews
[25]. It is also one of the Berkeley Riddles [5].

The hat problem with 2k − 1 players was solved in [15], and for 2k players
in [12]. The problem with n players was investigated in [8]. The hat problem
and Hamming codes were the subject of [9]. The generalized hat problem with
n people and q colors was investigated in [24].

There are many known variations of the hat problem (for a comprehensive
list, see [22]). For example in the papers [2, 11, 19] there was considered
a variation in which passing is not allowed, thus everybody has to guess his
hat color. The aim is to maximize the number of correct guesses. The authors
of [17] investigated several variations of the hat problem in which the aim is
to design a strategy guaranteeing a desired number of correct guesses. In [18]
there was considered a variation in which the probabilities of getting hats of
each colors do not have to be equal. The authors of [3] investigated a problem
similar to the hat problem, in that paper there are n players which have random
bits on foreheads, and they have to vote on the parity of the n bits.

The hat problem and its variations have many applications and connections
to different areas of science, for example: information technology [6], linear
programming [17], genetic programming [10], economics [2, 19], biology [18],
approximating Boolean functions [3], and autoreducibility of random sequences
[4, 13-16]. Therefore, it is hoped that the hat problem on a graph considered
in this paper is worth exploring as a natural generalization, and may also have
many applications.

We consider the hat problem on a graph, where vertices correspond to play-
ers and a player can see each player to whom he is connected by an edge. This
variation of the hat problem was first considered in [20]. There were proven
some general theorems about the hat problem on a graph, and the problem
was solved on trees. Additionally, there was considered the hat problem on
a graph such that the only known information are degrees of vertices. In [21]
the problem was solved on the cycle C4. The problem on cycles on at least
nine vertices was solved in [23].

We consider the problem on the cycle on seven vertices. We prove that if
in a strategy for this graph some vertex guesses its color with probability at
least one by two, then the chance of success is at most one by two.

2 Preliminaries

For a graph G, the set of vertices and the set of edges we denote by V (G)
and E(G), respectively. Let v ∈ V (G). The open neighborhood of v, that is
{x ∈ V (G) : vx ∈ E(G)}, we denote by NG(v). The closed neighborhood of v,
that is NG(v) ∪ {v}, we denote by NG[v].
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The degree of vertex v, that is, the number of its neighbors, we denote by
dG(v). Thus dG(v) = |NG(v)|. The path (cycle, respectively) with n vertices
we denote by Pn (Cn, respectively).

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors,
where 1 corresponds to the blue color, and 2 corresponds to the red color.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where
c(vi) means color of vertex vi. The set of all cases for the graph G we denote
by C(G), of course |C(G)| = 2|V (G)|. If c ∈ C(G), then to simplify nota-
tion, we write c = c(v1)c(v2) . . . c(vn) instead of c = {(v1, c(v1)), (v2, c(v2)), . . . ,
(vn, c(vn))}. For example, if a case c ∈ C(C7) is such that c(v1) = 2, c(v2) = 1,
c(v3) = 1, c(v4) = 2, c(v5) = 1, c(v6) = 2, and c(v7) = 2, then we write
c = 2112122.

By a situation of a vertex vi we mean a function si : V (G) → Sc ∪ {0}
= {0, 1, 2}, where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The
set of all possible situations of vi in the graph G we denote by Sti(G), of
course |Sti(G)| = 2dG(vi). If si ∈ Sti(G), then for simplicity of notation, we
write si = si(v1)si(v2) . . . si(vn) instead of si = {(v1, si(v1)), (v2, si(v2)), . . . ,
(vn, si(vn))}. For example, if s3 ∈ St3(C7) is such that s3(v2) = 2 and s3(v4)
= 1, then we write s3 = 0201000.

We say that a case c for the graph G corresponds to a situation si of
vertex vi if c(vj) = si(vj), for every vj adjacent to vi. This implies that a case
corresponds to a situation of vi if every vertex adjacent to vi in that case
has the same color as in that situation. Of course, to every situation of the
vertex vi correspond exactly 2|V (G)|−dG(vi) cases.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function
gi : Sti(G) → Sc∪{0} = {0, 1, 2}, which for a given situation gives the color vi

guesses it is, or 0 if vi passes. Thus guessing instruction is a rule determining
behavior of a vertex in every situation. We say that vi never guesses its color
if vi passes in every situation, that is gi ≡ p. We say that vi always guesses its
color if vi guesses its color in every situation, that is, for every si ∈ Sti(G) we
have gi(si) ∈ {1, 2} (gi(si) �= 0, equivalently).

Let c be a case, and let si be the situation (of vertex vi) corresponding
to that case. The guess of vi in the case c is correct (wrong, respectively) if
gi(si) = c(vi) (0 �= gi(si) �= c(vi), respectively). By result of the case c we mean
a win if at least one vertex guesses its color correctly, and no vertex guesses
its color wrong, that is, gi(si) = c(vi) (for some i) and there is no j such that
0 �= gj(sj) �= c(vj). Otherwise the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi

is the guessing instruction of vertex vi. The family of all strategies for a graph
G we denote by F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team
wins using the strategy S we denote by W (S). Consequently, by the chance
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of success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By
the hat number of the graph G we mean the number h(G) = max{p(S) : S
∈ F(G)}. We say that a strategy S is optimal for the graph G if p(S) = h(G).
The family of all optimal strategies for the graph G we denote by F0(G).

By solving the hat problem on a graph G we mean finding the number
h(G).

Since for every graph we can apply a strategy in which one vertex always
guesses it has, let us say, the first color, and the other vertices never guess
their colors, we immediately get the following lower bound on the hat number
of a graph.

Fact 1 For every graph G we have h(G) ≥ 1/2.

The following two results are from [20]. The first of them is a sufficient
condition for deleting a vertex of a graph without changing its hat number.

Theorem 2 Let G be a graph, and let v be a vertex of G. If there exists
a strategy S ∈ F0(G) such that v never guesses its color, then h(G) = h(G−v).

The next theorem is the solution of the hat problem on trees.

Theorem 3 For every tree T we have h(T ) = 1/2.

The following results are from [23]. Let us consider strategies such that
every vertex guesses its color in exactly one situation. The next lemma gives
such strategy for which the number of cases in which some vertex guesses its
color wrong is as small as possible.

Lemma 4 Let us consider the family of all strategies for Cn such that every
vertex guesses its color in exactly one situation. The number of cases in which
some vertex guesses its color wrong is minimal for the strategy such that every
vertex guesses it has the second color when its neighbors have the first color.

If n ≥ 3 is an integer, then let

An = {c ∈ C(Cn) : c(vi−1) = c(vi) = c(vi+1) = 1, for some i ∈ {2, 3, . . . , n − 1}},

that is, An is the set of cases for Cn such that there are three vertices of the first
color the indices of which are consecutive integers. Let the sequence {an}∞n=1

be such that an = |An| (n ≥ 3), and also a1 = a2 = 0.

Now there is a recursive formula for an (with n ≥ 4).

Lemma 5 For every integer n ≥ 4 we have an = 2n−3 + an−3 + an−2 + an−1.
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If n is an integer such that n ≥ 3, then let

Bn = {c ∈ C(Cn) : c(vi−1) = c(vi) = c(vi+1) = 1 (for some i ∈ {2, 3, . . . , n − 1})

or c(vn−1) = c(vn) = c(v1) = 1 or c(vn) = c(v1) = c(v2) = 1},
that is, Bn is the set of cases for Cn such that there are three consecutive
vertices of the first color. Let the sequence {bn}∞n=3 be such that bn = |Bn|.

We have the following relation between the number bn (with n ≥ 6), and
the elements of the sequence {an}∞n=1.

Lemma 6 If n ≥ 6 is an integer, then bn = 5 · 2n−6 + an − 2an−5 − an−6.

3 Results

Let us consider strategies for the hat problem on the cycle on seven vertices
in which some vertex guesses its color with probability at least one by two.

Theorem 7 If S is a strategy for the cycle C7 such that some vertex guesses
its color with probability at least one by two, then p(S) ≤ 1/2.

Proof. First assume that some vertex, say vi, never guesses its color. From
the proof of Theorem 2 we know that p(S) ≤ h(C7 − vi). Since C7 − vi = P6

and h(P6) = 1/2 (by Theorem 3), we get p(S) ≤ 1/2. Now assume that every
vertex guesses its color, that is, every vertex guesses its color in at least one
situation. Without loss of generality we assume that v4 guesses its color with
probability at least one by two. Every vertex of the cycle has exactly two
neighbors, thus there are exactly 22 = 4 possible situations of each one of
them. Therefore guessing with probability at least one by two means guessing
in at least two situations. We are interested in the possibility when the number
of cases for which the team loses is as small as possible. We assume that v4

guesses its color in exactly two situations, and every one of the remaining
vertices guesses its color in exactly one situation. We prove that these guesses
suffice to cause the loss of the team in at least half of all cases. Let vi be
any vertex of C7. Any guess made by vi in any situation is wrong in exactly
27−3 = 24 = 16 cases. We want to minimize the number of cases in which
some vertex guesses its color wrong. Therefore we want the number of cases
in which vi guesses its color wrong, and at the same time also another vertex
guesses its color wrong to be as great as possible. We distinguish between the
following four possibilities about the behavior of the vertex v4: (v4:1) in both
situations v4 guesses it has the same color, and in both of them v3 has different
colors, and in both of them v5 has different colors; (v4:2) in both situations v4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2142 M. Krzywkowski

guesses it has the same color, and in both of them some neighbor of v4 has the
same color; (v4:3) in both situations v4 guesses it has different colors, in both
of them v3 has different colors, and in both of them v5 has different colors;
(v4:4) in both situations v4 guesses it has different colors, and in both of them
some neighbor of v4 has the same color;

(v4:1) Without loss of generality we assume that v4 guesses it has the second
color in the situations 0010100 and 0020200. From Lemma 4 we know that
if every vertex guesses its color in exactly one situation, then we may assume
that every vertex guesses it has the second color when both its neighbors have
the first color. Since NC7 [v1] ∩NC7 [v4] = ∅ and NC7 [v7] ∩NC7 [v4] = ∅, we may
assume that the vertices v1 and v7 guess their colors when their neighbors have
the first color, and then they guess they have the second color. Moreover, since
v1, v2 /∈ NC7 [v4], we may assume that v2 guesses its color in a situation in which
v1 has the first color, and in this situation it guesses it has the second color.
In one situation in which v4 guesses its color the vertex v3 has the first color,
and in the another it has the second color. Thus independently from that
which color has the vertex v3 in the situation in which v2 guesses its color,
the intersection of the set of cases in which v2 guesses its color wrong with
the set of cases in which v4 guesses its color wrong has the same cardinality.
Without loss of generality we assume that in the situation in which v2 guesses
its color the vertex v3 has the first color. Thus v2 guesses it has the second
color in the situation 1010000. Similarly we may assume that v6 guesses it has
the second color in the situation 0000101. Now let us consider the behavior
of the vertex v3. Since v2 /∈ NC7 [v4], we may assume that in the situation in
which v3 guesses its color the vertex v2 has the first color. In one situation
in which v4 guesses its color v3 has the first color, and in the another it has
the second color. Thus independently from that which color v3 guesses, the
intersection of the set of cases in which v3 guesses its color wrong with the set
of cases in which v4 guesses its color wrong has the same cardinality. Since v2

guesses its color when v3 has the first color, we may assume that v3 guesses
its color wrong when it has the first color, that is, v3 guesses the second color.
Similarly we can assume that v6 guesses its color in a situation in which v5 has
the first color, and then it guesses it has the second color. Now it remains to
analyze which color has v4 when v3 guesses its color, and which color it has
when v5 guesses its color. Since in every case in which v4 guesses its color
wrong it has the first color (as it guesses it has the second color), we may
assume that v3 and v5 guess their colors when v4 has the first color. Now we
conclude that every vertex excluding v4 guesses it has the second color when
both its neighbors have the first color.

Now let us count the cases in which some vertex guesses its color wrong.
First let us consider the set of cases in which some vertex other than v4 guesses
its color wrong, or v4 guesses its color wrong in the situation 0010100. This set
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consists of cases such that there are three consecutive vertices of the first color.
By the definition of the sequence {bn}∞n=3, there are b7 such cases. Now let us
consider the set of cases in which v4 guesses its color wrong in the situation
0020200, while at the same time no other vertex guesses its color wrong. Thus
this set consists of the cases such that c(v3) = 2, c(v4) = 1, and c(v5) = 2,
while at the same time there are no three consecutive vertices from the set
{v1, v2, v6, v7} which have the first color. It follows from the definition of the
sequence {an}∞n=1 that this set has 24−a4 = 16−a4 elements. Now we conclude
that the number of cases in which some vertex guesses its color wrong is equal
to b7 + 16 − a4. Using Lemma 5, the definition of the sequence {an}∞n=1, and
the fact that a3 = 1 (as 111 is the only one such case), we get

a1 = 0,
a2 = 0,
a3 = 1,
a4 = 2 + a1 + a2 + a3 = 2 + 0 + 0 + 1 = 3,
a5 = 22 + a2 + a3 + a4 = 4 + 0 + 1 + 3 = 8,
a6 = 23 + a3 + a4 + a5 = 8 + 1 + 3 + 8 = 20,
a7 = 24 + a4 + a5 + a6 = 16 + 3 + 8 + 20 = 47.

By Lemma 6 we get

b7 = 5 · 2 + a7 − 2a2 − a1

= 10 + 47 − 2 · 0 − 0
= 57.

Now we get b7 + 16− a4 = 57 + 16− 3 = 70. This implies that the team wins
for at most 58 cases. Consequently, p(S) ≤ 58/128 < 64/128 = 1/2.

(v4:2) Without loss of generality we assume that v4 guesses it has the second
color in the situations 0010100 and 0010200. The only one difference about
the behavior of v4 comparing to the possibility (v4:1) is that now v4 guesses
it has the second color in the situation 0010200 instead of 0020200. The only
two vertices besides v4 the closed neighborhood of which contains the vertex
v3 are v2 and v3. Since in every case in which v3 has the first color the vertex
v4 guesses its color, and in no case in which v3 has the second color the vertex
v4 guesses its color, we may assume that v2 guesses its color in a situation in
which v3 has the first color. Thus we assume that v2 guesses it has the second
color in the situation 1010000. In every case in which v3 has the first color the
vertex v4 guesses its color, and in no case in which v3 has the second color the
vertex v4 guesses its color. Moreover, in some cases in which v3 has the first
color the vertex v2 guesses its color, and in no case in which v3 has the second
color the vertex v2 guesses its color. Therefore we may assume that v3 guesses
its color wrong when it has the first color. Thus v3 guesses it has the second
color in the situation 0101000.
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Now let us count the cases in which some vertex guesses its color wrong.
First let us consider the set of cases in which some vertex other than v4 guesses
its color wrong, or v4 guesses its color wrong in the situation 0010100. In
the same way as in (v4:1) we conclude that this set has b7 elements. Now
let us consider the set of cases in which v4 guesses its color wrong in the
situation 0010200, while at the same time no other vertex guesses its color
wrong. Let us consider any case which belongs to this set. Since v4 guesses
its color wrong, we have c(v3) = c(v4) = 1 and c(v5) = 2. Only v4 guesses
its color wrong, so particularly v3 does not guess its color wrong. Therefore
c(v2) �= 1, that is c(v2) = 2. To avoid a wrong guess of v7 we cannot have
c(v6) = c(v7) = c(v1) = 1. Thus c(v6) = 2 or c(v7) = 2 or c(v1) = 2.
Then the only one vertex which guesses its color wrong is v4. Let us observe
that the considered set has 7 elements as there are seven possible colorings
of the vertices v1, v6, and v7 excluding this in which all these vertices have
the first color. Now we conclude that some vertex guesses its color wrong
in b7 + 7 = 57 + 7 = 64 cases. Thus the team wins for at most 64 cases.
Consequently, p(S) ≤ 64/128 = 1/2.

(v4:3) Without loss of generality we assume that in the situation 0010100
the vertex v4 guesses it has the second color, and in the situation 0020200 it
guesses it has the first color. The only one difference between the behavior
of v4 comparing to the possibility (v1:1) is that in the situation 0020200 it
guesses it has the first color instead of the second color. The only two vertices,
besides v4, the closed neighborhood of which contain the vertex v4 are v3 and
v5. Similarly as in the possibility (v4:1) we assume that in some situation v3

guesses it has the second color. Since in some cases in which v3 and v4 have
the first color the vertex v4 guesses its color wrong, we may assume that v3

guesses its color in a situation in which v4 has the first color. Similarly as in
the possibility (v4:1) we assume that v4 guesses it has the second color in the
situation 0101000. Similarly we can assume that v5 guesses it has the second
color in the situation 0001010.

Now let us count the cases in which some vertex guesses its color wrong.
First let us consider the set of cases in which some vertex other than v4 guesses
its color wrong, or v4 guesses its color wrong in the situation 0010100. In the
same way as in the previous possibilities we get that this set has b7 elements.
Now let us consider the set of cases in which v4 guesses its color wrong in the
situation 0020200, while at the same time no other vertex guesses its color
wrong. Let us consider any case which belongs to this set. Since v4 guesses its
color wrong, we have c(v3) = c(v4) = c(v5) = 2. Thus no one of the vertices v2,
v3, v5, and v6 guesses its color wrong. To avoid that v1 or v7 guesses its color
wrong, we cannot have three consecutive vertices from the set {v1, v2, v6, v7}
which have the first color. In the same way as in the possibility (v4:1) we get
that there are 16 − a4 such cases. Now we conclude that in b7 + 16 − a4 = 70
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cases some vertex guesses its color wrong. Thus the team wins for at most 58
cases. Consequently, p(S) ≤ 58/128 < 64/128 = 1/2, a contradiction.

(v4:4) Without loss of generality we assume that in the situation 0010100
the vertex v4 guesses it has the second color, and in the situation 0010200 it
guesses it has the first color. The only one difference between the behavior
of v4 comparing to the possibility (v4:2) is that in the situation 0010200 the
vertex v4 guesses it has the first color instead of the second color. The only
two vertices besides v4, the closed neighborhood of which contain the vertex
v4 are v3 and v5. Similarly as in the possibility (v4:2) we assume that the
vertex v3 guesses its has the second color in the situation 0101000, and that
in some situation the vertex v5 guesses it has the second color. Thus in every
case in which v5 guesses its color wrong it has the first color. The vertex v4

guesses its color wrong in some cases in which both vertices v4 and v5 have
the first color, and in some cases in which both vertices v4 and v5 have the
second color. The vertex v3 guesses its color in a situation in which v4 has the
first color. Therefore we may assume that v5 guesses its color in a situation
in which v4 has the first color. Similarly as in the possibility (v4:2) we assume
that v5 guesses it has the second color in the situation 0001010.

Now let us count the cases in which some vertex guesses its color wrong.
First let us consider the set of cases in which some vertex other than v4 guesses
its color wrong, or v4 guesses its color wrong in the situation 0010100. Similarly
as in the previous possibilities we get that this set has b7 elements. Now let
us consider the set of cases in which v4 guesses its color wrong in the situation
0010200, while at the same time no other vertex guesses its color wrong. Let us
consider any case which belongs to this set. Since v4 guesses its color wrong, we
have c(v3) = 1 and c(v4) = c(v5) = 2. If c(v2) = 1, then c(v1) = 2, otherwise
v2 guesses its color wrong. There are 4 such cases as there are four possible
colorings of the vertices v6 and v7. Then only v4 guesses its color wrong. Now
assume that c(v2) = 2. To avoid that v7 guesses its color wrong, we cannot
have c(v6) = c(v7) = c(v1) = 1. Thus c(v6) = 2 or c(v7) = 2 or c(v1) = 2.
There are 7 such cases. Then only v4 guesses its color wrong. Now we conclude
that some vertex guesses its color wrong in b7 + 7 + 4 = 68 cases. Thus the
team wins for at most 60 cases. Consequently, p(S) ≤ 60/128 < 64/128 = 1/2,
a contradiction.

Corollary 8 If h(C7) > 1/2, then h(C7) = max{p(S) : S ∈ F(C7) : every
vertex guesses its color in exactly one situation }.
Proof. By Fact 1 we have h(C7) ≥ 1/2. Let S1 be an optimal strategy
for the graph C7. If some vertex, say vi, never guesses its color, then by
Theorem 2 we have h(C7) = h(C7 − vi) = h(P6) = 1/2. Since by Theo-
rem 3 we have h(P6) = 1/2, we get h(C7) = 1/2, a contradiction to the
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assumption that h(C7) > 1/2. Henceforth, in the strategy S1 every vertex
guesses its color in some situation. If some vertex guesses its color in at
least two situations, then by Theorem 7 we have p(S) ≤ 1/2. By the def-
inition of an optimal strategy we get h(C7) = p(S1) ≤ 1/2. This is a con-
tradiction to the assumption that h(C7) > 1/2. Thus in the strategy S1

every vertex guesses its color in exactly one situation. This implies that
S1 ∈ {S ∈ F(C7) : every vertex guesses its color in exactly one situation}.
Therefore p(S1) ≤ max{p(S) : S ∈ F(C7) : every vertex guesses its color in ex-
actly one situation}. By the definition of an optimal strategy we get h(C7)
= p(S) ≤ max{p(S) : S ∈ F(C7) : every vertex guesses its color in exactly one
situation}.

On the other hand, by definition we have h(C7) = max{p(S) : S ∈ F(C7)}.
Since the set {S ∈ F(C7) : every vertex guesses its color in exactly one situ-
ation } is a subset of F(C7), we have max{p(S) : S ∈ F(C7) : every vertex
guesses its color in exactly one situation} ≤ max{p(S) : S ∈ F(C7)}.
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