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Abstract

An approximation approach is applied to obtain a homotopy version of the Conley
type index in Hilbert spaces considered in [6]. The definition given in the paper is more
elementary and, as a by-product, gives a natural connection between indices from [13|
and [16] in a finite-dimensional case. Some geometric properties from [7] are discussed in
an infinite dimensional situation.

1 Preliminaries on set-valued maps

Let X,Y be metric spaces. By a set-valued map ¢ from X into Y (written ¢ : X —o Y))
we mean a map that assigns to each © € X a closed nonempty subset p(z) of Y. If, for any
closed (resp. open) set U C Y, the preimage ¢ ' (U) := {z € X | p(x) NU # 0} is closed
(resp. open), then we say that ¢ is upper (resp. lower) semicontinuous (written usc(resp.
Isc)); a map ¢ is continuous if it is upper and lower semicontinuous simultaneously. The graph
Gr(p) :={(z,y) € X xY | y € p(z)} of an upper semicontinuous map ¢ is closed. A map ¢ is
upper semicontinuous and has compact values (i.e., for each € X, the set ¢(z) is compact)
if and only if, for any sequence (x,,y,) € Gr(p) such that z,, — = € X, there is a subsequence
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(Yn, ) such that y,,, — y € ¢(x) (in other words the projection p, : Gr(p) — X is proper (?));
in this case the image p(K) :={y €Y |y € p(z) for some x € K} of any compact K C X
is compact. We say that a map ¢ is compact if it is upper semicontinuous and clp(X) is
compact; ¢ is completely continuous if the restriction ¢|p of ¢ to any bounded subset B C X
is compact.

A proper surjection p : X — Y is a Vietoris map if, for each y € Y, the fibre p~'(y) is
acyclic in the sense of the Alexander-Spanier cohomology. A map p : (X, X’) — (Y,Y’) of
pairs (X, X'),(Y,Y") (ie. p: X — Y and p(X') C Y’) is a Vietoris map, if p is a Vietoris
map and p~}(Y’) = X’ (observe that the restriction p’ : X’ — Y of p is a Vietoris map, too).
A map ¢ : X —o Y is admissible (in the sense of Gorniewicz) if there exist a space I', a Vietoris
map p : I' — X and a continuous map ¢ : I' — Y such that, for every x € X, ¢(z) = q(p~*(2)).
It is clear that admissible maps are upper semicontinuous with nonempty compact values.

The class of admissible maps is rich: for example any acyclic map ¢ : X — Y is admissible
(¢ is acyclic if it is upper semicontinuous and, for any x € X, ¢(z) is acyclic); it is determined
by the pair (py,,q,) where p, : Gr(¢) — X and ¢, : Gr(¢) — Y are the restrictions of the
projections X x Y — X and X XY — Y, respectively. Moreover a superposition of acyclic
maps is admissible. For more details concerning admissible maps - see [9]. Let us prove the
following elementary:

Proposition 1.1 Let X be a metric space, E - a linear normed space, and F : X — E a
map with nonempty values. Then for each € > 0 there exists a continuous map f : X — F
such that f(x) € conv(F(B.(z)).

Proof. For each x € X we can choose a point v, € F(zr). Let {\s}scs be a continuous
partition of unity subordinated to the covering {V;}, which is a locally finite refinement of the
covering {B.(x)},zex. For s € S we fix a point z such that supp A; C Vi C B.(x;) . Define a
continuous map

f@) =3 Mlao,

s€S
where vs = v,,. If s € S, = {s| A\s(x) # 0}, then z € B.(x5). Thus z; € B.(z), and hence
vs € F(B:(z)). Therefore f(x) € convF(B.(z)). O

Remark 1.2 Observe that E could be a topological vector space in the previous proposition.
The map f is locally Lipschitz if we take a locally Lipschitz partition of unity.

We say that a continuous map f : X — Y is a graph c-approximation of ¢ : X — Y if
f(x) € B.(@(B:(x))) for every x € X. The following is a version of a classical result of A.
Cellina |2] combined with the previous observation.

2Recall that a continuous map f : X — Y is proper if, for each compact K C Y, the preimage f~!(K) is
compact; it is worth reminding that f is proper if and only if it is perfect, i.e. continuous, closed and such
that, for any y € Y, f~!(y) is compact. Observe that a continuous surjection f : X — Y is perfect if and only
if the multivalued map Y > y — f~1(y) C X is upper semicontinuous and has compact values.
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Theorem 1.3 Let p: X —o E be usc with conver values, where X is a metric space and E s
a Banach space. Then, for every e > 0, there exists a locally Lipschitz graph e-approzimation
f of ¢ such that f(x) € conve(B:(z)) for every xz € X.

Proof. Let € > 0. From upper semicontinuity of ¢ it follows that for every x € X there exists

0 < d(x) < § such that o(Bjw(r)) C B.(¢(x)). Consider a locally finite covering {Vi}es

of X which is a star-refinement of the covering {Bs.)(%)}zex, ie., stars st(V;) = (JH{V; :
ViN'V, # 0} refine the covering {Bs,)(2) bzex. Let {As}ses be a locally Lipschitz partition of
unity subordinated to the covering {V;}. For each s € S we choose a point z; € V; and some

Ys € QO(CL’S).

Define
@) =3 Ay

seS

Let S, = {s € S| A\s(x) # 0} and let s € S,. Then = € V,. It implies that d(zs,z) <
d(zs) < € and hence x5 € B.(z). Therefore

f@) = Au(x)ys € convip(Be(x)).

SGSI

Moreover, since x € [),g Vs, there exists z' such that J,.g Vi C Bswn(2'). Thus both
x,xs € Vi, and thus d(z,zs) < 20(2") < €. By our choice of §(z’) we have y; € B.(p(2')). But
the latter set is convex, thus f(z) = > As(2)ys € Bo(p(2)) C Bo(p(B:(z)) and the proof is
complete. [l

Corollary 1.4 If ¢ is completely continuous, then the approximation f in Theorem 1.3 is
also completely continuous.

Proof. For every bounded set U C X we have f(U) C convp(B:(U)), and the latter set is
relatively compact. 0

2  Multivalued flows

Let X be a metric space.

Definition 2.1 By a multivalued flow on X we mean an upper semicontinuous mapping
¢ : X X R — X with nonempty and compact values such that, for every s, € R and
T,y € X,

(i) ¢(z,0) = {x};
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(ii) if s -t > 0, then p(z,t + s) = p(p(z,t) x {s});
(ili) y € p(z,t) if and ounly if = € ¢(y, —t).

Let A CR. Amapo: A — X isa A-trajectory of p if, for every t,s € A, o(t) € p(o(s),t—s).
It is an easy exercise to prove that every trajectory is continuous. Indeed, let us consider a
sequence t,, converging to ty. Let U 3 o () be open. Since ¢ is upper semicontinuous, ¢~ !(U)
is open and (o(tg),0) € ¢ }(U), because o(tg) € p(o(tg),0). There exist § > 0 and an open
set V' C X such that (o(t),0) € V x (=4,8) C o (U). Therefore, for a large n, |t, — to| < &
and then o(t,) € p(o(ty),t, —to) C U.

Let z € N C X. The set of all A-trajectories in N originating in x (i.e., such that 0 € A,
0(0) =z and o(t) € N for t € A) is denoted by Try(¢; A, z).
Define the invariant, right-invariant, left-invariant (with respect to ¢) part of N by:

Inv(N,¢) :== {z € N | Try(¢; R, z) # 0},
Invt(N,p) :={x € N | Try(p;R,, x) # 0},
Inv™(N,p) :={x € A|Try(p;R_,x) # 0},

respectively.

Definition 2.2 A subset K C X is invariant (vesp. positively (negatively) invariant) with
respect to ¢ if Inv(K, ¢) = K (resp. Inv' (K, ) = K (Inv™ (K, ) = K)).

Note that, given N C X, the set K := Inv(N, ¢) is invariant with respect to ¢ and it is the
maximal invariant subset of V.

Proposition 2.3 ([6], Proposition 3.9) Let A be a metric space, N C X be closed and let
n: X xR xA— X be a family of multivalued flows (i.e., n is upper semicontinuous and, for
each A € A, n(-,A) : X xR — X is a multivalued flow). Then the graph of the set-valued map

A A= Inv(N,n(-,\))

is closed, i.e. for any sequence (x,, A\,) € N X A such that x, € Inv(N,n(-,\,)), if (x,\) =
limy, o0 (Tp, Ap), then x € Inv(N,n(-, A)).

Definition 2.4 A closed and bounded set N C X is an isolating neighborhood for ¢ if
Inv(N, ) C int N. We say that a set K invariant with respect to ¢ is isolated if there is
an isolating neighborhood N for ¢ such that K = Inv(N, ¢).

In particular, if X = R”, then each isolating neighborhood N for ¢ is compact and, by
Proposition 2.3, K = Inv(N, ¢) is closed in N, hence compact.
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3  Conley index in Hilbert spaces

We shall assume the following:

Let H = (H, (-, -)) be a real Hilbert space and L : H — H a linear bounded operator with
spectrum o(L). We assume the following

e H=P,°,H; with all subspaces Hj, being mutually orthogonal and of finite dimension;

L(Hy) C Hy where Hj is the invariant subspace of L corresponding to the part of
spectrum oo(L) = iR N o (L) lying on the imaginary axis,

L(H,) = Hy, for all k > 0,
e 0o(L) is isolated in o(L), i.e. oo(L) Nel(a(L) \ oo(L)) = 0.

Definition 3.1 A multivalued flow ¢ : H x R — H is called an L-flow, if it has the form
ola,t) = o+ Ut ),

where U : H x R —o H is an admissible map which is completely continuous.

Let A be a metric space. By a family of L-flows we understand a set-valued map 7 :
H x R x A — H of the form n(x,t,\) = efa + U(x,t,\), where U : H x R x A — H is an
admissible completely continuous mapping, such that, for each A € A, n(-,\) : H x R — H is
a multivalued flow.

It is clear that, if n : H x R x A —o H is a family of L-flows, then, for each A € A, n(-,\) :
H x R — H is an L-flow. Moreover, each L-flow is an admissible flow.

Proposition 3.2 (|6], Prop.3.15) If X C H is closed and bounded, then the set-valued map
A A= Inv(X,n(-,\) C X is usc and it has compact (possibly empty) values.

Definition 3.3 An usc mapping f : H — H is an L-vector field if it is of the form f(x) =
Lz + K(x), where K : H — H is completely continuous with compact convex values, and if f
induces an L-flow 7 on H.

Given an L-vector field f := L + F' : H — H, F having a sublinear growth (i.e., there is
a constant C' > 0 such that, for each v € H and y € F(u), |ly|]] < C(1+ ||ul|)), the standard
fixed point argument (see, e.g., [11], Theorem 5.2.2) implies that, for each z € H, there is a
mild solution to the Cauchy problem

u € f(u) ae. on R;
W Lo ls
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i.e., a continuous function u : R — H and a locally (Bochner) integrable function w : R — H
such that w(t) € F(u(t)) and u(t) = ez + fot et=3)Lw(s) ds for all t € R.

Let S(z) C C(R,H) (*) be the set of all solutions to (1), z € H.
Consider a map ¢ : H x R — H given by the formula
(2) o(x,t) :={u(t) |ue S(x)}, veH, teR.

It is shown in [6],(Ex. 3.3) that ¢ is an admissible multivalued flow on H (we say that ¢ is
generated by f).

We consider here only flows generated by L-vector fields. In particular, if F is single-valued
and locally Lipschitz, then f generates a usual (single-valued) flow.

Recall that a suspension of a pointed space (X,zg) is the quotient space (SX,x*) :=
(ST x X)/(S* x {zo} U{so} x X), where S denotes a circle.

Let v : N — N be a given map.

Definition 3.4 A pair of sequences X = ((Xn, @0);2,, (x> (72)) is a spectrum provided the
maps v, : S*™X,, — X, are homotopy equivalences for some n; > n(X) and each n > n,.

We can define a natural notion of a map of spectra f : X — X' as a sequence of maps
fo: Xn = X ;n > ng = max{n(X),n(X")} such that the diagrams

Su(n) fn
Sz/(n)Xn Sy(n)X;l
Tn ~ Tn
Xn+1 f n+1 - X ;L »

are homotopy commutative for all n > ny.

Two spectra are homotopy equivalent if there is ny > ng such that f,, are homotopy
equivalences for n > ny. The equivalence class of this relation is called the homotopy type of
a spectrum X and is denoted by [X]. One observes that the homotopy type of a spectrum X
is determined by the homotopy type of the pointed space (X, x,) with n sufficiently large.

We denote by 0 the spectrum such that for each n > 0 the space X,, consists only of a
base point with the only maps €, : X,, — X, 1. This is called a trivial spectrum.

3C(R,H) stands for the Fréchet space (i.e., locally convex metrizable and complete) of all continuous maps
R — H with the topology of the almost uniform convergence.
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One can also define usual topological operations like a "wedge sum" and smash product
of spectra and on their homotopy types (see [10], Sec.2 for details).

Let now f = L+ K : H — H be a single-valued L-vector field and let ¢ : H x R — H be
an L-flow generated by f.

Denote by H" := @@}, H; and by P, : H — H an orthogonal projection onto H".

Let HE := H, N H* n > 1, where H" and H~ denote L-invariant subspaces of H cor-
responding to parts of the spectrum of L with positive and negative real parts, respectively.
Define v : NU {0} — NU {0} by v(n) = dimH_,.

Define f, : H" — H" by f,.(x) := Lz + P,(K(z)) and let ¢, : H* x R — H" be a flow
generated by f,.

Lemma 3.5 (|8, Lemma 4.1) Let N C H be an isolating neighborhood for ¢. Then there
exists ng such that, for all n > ng, the set N* = N NH" is an isolating neighborhood for o,

Thus the isolated invariant set S, = Inv(N™, ,,) admits an index pair (P, P»),(see [17]),
i.e. a compact pair (P, P,) such that

(i) the set P, \ P, is an isolating neighborhood for S, in N™;

(ii) (positive invariance of P, in Py) if x € P, with ¢, (z,t) € P, for every t € [0, %], then
on(x,t) € Py for every t € [0, o];

(iii) if x € P, and there is ¢t > 0 with ¢, (x,t) & P;, then there exists 0 < ¢y < ¢ such that
@n<x,t0) - PQ.

The classical homotopy Conley index of S, is the homotopy type of the pointed space [P/ Py, %].
By the use of the continuation property of the classical Conley index it was proved in [8], that
the family of such index pairs (P, Py') for n > ny forms a spectrum in the above sense. A
homotopy type of this spectrum is called an LS-index of the isolating neighborhood N.

Let us denote this index by hrs(N, ). The following two basic properties have been
proved in [8].

Proposition 3.6 (Nontriviality) Let ¢ be an single-valued L-flow and N C H an isolating
neighborhood. If hys(N,p) # 0, then Inv(N, @) # .

Proposition 3.7 (Continuation) Let A be a compact, connected and locally contractible met-
ric space. Assume that )y is a family of single-valued L-flows and let N C H be an isolating
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neighborhood for the flow ¢, for some A\ € A. Then there is a compact neighborhood C' C A
of \ such that
hﬁS(Nv QO'U,) = hES(N7 Qpl/) fOT all w, v € C.

Let us now consider a multivalued L-vector field L + F' : H — H. Denote by a(F,¢) the
set of all e-approximations of F' in the sense of Theorem 1.3.

Proposition 3.8 Let N = U C H be an isolating neighborhood for a multivalued flow gen-
erated by L + F. There exists an € > 0 such that for arbitrary fo, fi € a(F,e) N is an
iwsolating neighborhood for o family of L-flows ny generated by the family of L-vector fields

Uy =L+ (1= A)fo+ i

Proof. Let r > 0 be such that N C B,(0), and find the Urysohn function w : H — [0, 1] such
that u(x) = 0 for z € B,(0) and u(x) = 1 for any = € H \ By, (0).

Consider a homotopy h : H x [0, 1] — H,

h(z,s) = Lo + (1 — u(x)) (mF(BS(x)) + T(O)) N cowv F(Ba, (0)).

Since convF(Bsy,(0)) is compact, the map h generates a family 7 of multivalued L-flows on
H. Notice that h(-,0) = L + F on B,.(0). From Proposition 3.2 it follows that the map
s +o Inv(N,n(-, s)) is usc with compact values.

Now, suppose the contrary to our claim. Then, for a sequence ¢, = %, there are approxi-
mations f§', f{* € a(F, +) and numbers X, € [0,1] with Inv(N, vy, ) ¢ U, where vy, is the flow
generated by L+(1—\,) fo+An f1. This implies that there are points y,, € Inv(N, v, JN(N\U).
Note that fy,(-) C convF(Bui(-)) + B1(0) for every n > 1. Since the map s —o Inv(N,n(-, s))
is usc with compact Values,nthere exists a subsequence (fy), where f; := f,\nk, such that
Inv(N,7y,) € Inv(N,¢) + B1(0) for every k > 1. Indeed, it is sufficient to notice that

Inv(N,vy,) C Inv(N,n(-, +)).

’nk

Now, we can choose a sequence (z;) C Inv(N,¢) such that |z, — y,,| < £. Since the set
Inv(N, ) is compact, we can assume that z; — 2o € Inv(N,¢). So, y,, — 20. But then
2o € Inv(V, ) N (N \ U); a contradiction. O

The above proposition proves that the following crucial notion of this note does not depend
on the approximation f.

Definition 3.9 If N is an isolating neighborhood for an L-flow ¢ generated by L + F', then
we define a homotopy index

h(Nv 50) = hES(N7 Sof)v
where ¢y is the flow generated by L + f; f € a(F,¢) with € > 0 sufficiently small.
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Now we establish some properties of the index. The first one is an obvious consequence of
Proposition 3.6.

Proposition 3.10 If N s an isolating neighborhood for a multivalued L-flow ¢ and the ho-
motopy index is nontrivial h(N, ) # 0, then Inv(N, @) # 0.

Proposition 3.11 If Ny, Ni are two isolating neighborhoods for an L-flow ¢ such that
Inv(Ny, ) C int Ny, Inv(Ny, @) C int Ny, then h(Ny, ¢) = h(Ny, ¢).

Proposition 3.12 Let ¢ : Hx |0, 1]xR — H be a family of multivalued L-flows and let N C H
be an isolating neighborhood for all (-, X\), A € [0,1]. Then h(N,¢(-,0)) = h(N, (-, 1)).

Proof. Consider the family of vector fields F : H x [0,1] —o H such that for every A € [0,1] the
multivalued flow ¢(-, A, -) is generated by the L-vector field L + F'(-,\) : HH — H. Applying

Theorem 1.3 to the map I we obtain, for every € > 0, a locally Lipschitz compact single-valued
map f : H x [0, 1] — H such that

(x)  flz,\) € convF(B.(z) x B:(\) 4 B.(0)) for all z € H,\ € [0,1].

Let us fix A € [0,1]. We shall show that N is an isolating neighborhood for the flows
generated by f(-, \'), where \' € (A — ¢, A +¢), if £ is small enough. Assume that N C B,(0).

Let us define a homotopy h : H x [0, 1] — H by the formula
h(z,s) = Lz + u(x)|(convF (B, () x By(\)) + B,(0)] NconvF (B, (0) x [0,1]),

where v : H — R is an Urysohn function such that u(z) = 1 for |z| < r and u(z) = 0 for
|z| > 2r.

Since h is a family of multivalued L-vector fields, it generates a family of multivalued
L-flows n(-, s). Moreover, h(-,0) = L+ F(-,A\). By Prop.3.2 the mapping s —o Inv(N,n(-, s))
is usc and Inv(N,n(-,0)) C int V. Therefore there exists s > 0 such that for all s < s we have
Inv(N,n(-.s")) Cint N. If we choose 0 < ) < 3, then for all X' € [\ — e, A+ €] we obtain by
Theorem 1.3 that for € < &

flz, X) € convF(B.(z) x B(X)) + B.(0) C convF(By(z) x B,()\)) + B,(0).

We can assume that also Bs(N) C B.(N) C Bs,(0). It follows that the map L + f(-,\) is a

selection of h(-,s). Therefore for the L-flow (-, \') generated by the vector field L + f(-, \)
we have the inclusion Inv(N, ¢ (-, \')) C int N, i.e., N is an isolating neighborhood.

Intervals Iy = (A — ex, A +¢€)) N[0, 1] form an open covering of [0,1]. Choosing a finite
subcovering Iy,, ..., I, we find € < min{e,,} such that, for f satisfying (*) with ¢ = g, the set
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N is an isolating neighborhood for flows generated by L + f(-,\) for all A € [0,1]. Thus by
Prop. 3.7 the homotopy index h(N, (-, \)) does not depend on .

On the other hand, the approximation fcan be taken with an additional condition satis-
fied:

F(,i) € a(F(-,i),¢), fori=0,1.
In order to assure this condition is satisfied, one repeats the proof of Theorem 1.3 with the
following modification: For (x, ) with A & {0, 1} we take B\ (2, A) such that Bse (2, A) N
(H x {0,1}) =0, Bs,0)(x,0) N (H x {1}) =0, Bs)(z,1) N (H x {0}) = 0 and for a locally
finite covering {V;} of H x [0,1] we choose (zs,\s) € Vi such that A\; = i,i € {0,1}, if
Vo (H x {i}) # 0.

This finishes the proof. O

Proposition 3.13 Let ¢ : H x R — H be an L-flow and let Ny, Ny, N be isolating neigh-
borhoods for ¢ such that Ny N Ny = (), Ny UNy C N and Inv(N,p) C Ny U Ny. Then
h(N, ) = h(N1,¢) V h(Na, ¢).

Proof. The property follows from the obvious observation that for each n H*NN; Ny = () and
thus the appropriate index pairs (P, () defining the classical Conley index for the isolating
neighborhood N N H™ can be chosen in the form of disjoint sums (P, U P, Q1 U @)3), where
(P1,Q1), (P2, Q2) are index pairs for Ny, Ny, respectively. The rest is the definition of the
wedge sum of spectra (see [10] for details). O

In [6] a cohomological version of the Conley index for multivalued L-flows in a Hilbert
space was established starting from the finite-dimensional case given in [16]. Instead of the
homotopy type of index pairs the authors consider the Alexander-Spanier cohomology groups
of these pairs. Since all the maps in the spectra are homotopy equivalences for n large enough,
the inverse limit of the groups is well-defined

CHY(N, ) = im{H"""")(Y,, Z,), 7. }.
—

Similarly as in the single-valued case (see [10]) we obtain

Proposition 3.14 Let N be an isolating neighbourhood for a multivalued L-flow p. Then
the cohomology index from [6] is equal to the cohomology of our spectrum: CHIY(N,p) =
HY(h(N, ) for all q € Z.

As a by-product we obtain that the cohomology index of Mrozek ([16]) for a multvalued flow
@ in R™ generated by a differential inclusion is just a cohomology of the homotopy index
considered by Kunze in [13].
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An interesting question appears: can the homotopy index h(N,¢) be described using a
behavior of an L-vector field L + F on the boundary of a prescribed set of constraints? In [7]
the author gave a positive answer for differential inclusions in a finite dimensional space. We
show that an infinite-dimensional version of this result is possible.

We will need the following extension result on graph approximations. Recall that P, :
H — H"™ denotes the ortogonal projection.

Lemma 3.15 Let B = B(0,r) C H be a closed ball in H and B" := P,(B) C B. Let
F : B — H be a compact upper semicontinuous map with conver values and F, := P, o F.
Then, for every € > 0 there exists ng > 1 such that for any n > ng there exists a 6, > 0 such
that any continuous (locally Lipschitz) 0,-approzimation f : B® — H" of F,, over B™ may be
extended to a continuous (locally Lipschitz) e-approzimation g : B — E of F, i.e., g|pn = f.

Proof. Let € > 0 be arbitrary. We will proceed in several steps.

Step 1. There exists a locally Lipschitz function 1 : B — (0, 00) such that, for every z € H,
there is 2’ € B(x,¢) such that B, o(F (B (x))) C B-(F(z')).

Indeed, for each x € B we choose 0 < r, < ¢ such that F'(By,, (2)) C B./2(F(x)), since F
is usc, and take a locally finite and locally Lipschitz partition of unity {\}scs subordinated to
the covering {B(z,7;)}sep. For each s € S denote rg := r,_, where supp \; C B(xg,r,,) for
some z € B.

Define n : B — (0, 00),
n(x) = Z As(x)rs, =€ B.

seS

Obviously, 7 is locally Lipschitz. Let z € B, and let S, := {s € S;A;(z) > 0}. Since
the partition of unity is locally finite, we can find s € S, such that n(x) < r,. Hence,
||z — a5]| <7 <eand, for any y € By (@), ||y — x| < ||y — || + ||z — x4|| < 2rs. Therefore
By (x) C By, (v5) and

F(Bﬁ(x)(x)) C F(By,(25)) C Ba/2<F(Is))'
Hence, putting ' := x,, we obtain

Bejao(F(By)(w))) C Be(F(a")).

Step 2. For any (z,y) € B x B we define

Uz, y) = [0~ ((n(2)/2,00)) N By 2(2)] x Beya(y)

and an open neighborhood of the graph of F

U= U Uz, y).

(z,y)€Gr(F)


http://mostwiedzy.pl

A\ MOST

12 Z. Dzedzej & G. Gabor

Notice that, if W C B is any subset, and a continuous map f : W — H satisfies Gr(f) C U,
then, for each # € W, there exists (2/,3') € Gr(F) such that (z, f(z)) € U(x,y). Hence,
f(x) € Beja(y') and ||z — 2'|| < n(a')/2 < n(x). This implies that f(x) € B.jo(F(Byw(x))) C
B(F(B:(x))).

Step 8. There is ng > 1 such that ||P,(y) — y|| < €/4 for every n > ny and y € F(B). Fix
n > ng, and define

Uz, y) = [n""((n(2)/2,00)) N Bya)12(2)] x Beya(y)

and an open neighborhood of the graph of F,, in B x H

U, = U ﬁ(x,y)

(z,y)€Gr(Fy)

Notice that, if (u,v) € (7(95, y), then v € B.4(y) and y = P,(y') for some 3y’ € F(x). Hence,
v =[] < |lv—yl|l+|ly — ]| <e/2. Tt implies that (u,v) € U(x,y’) and, consequently,
U, CU.

Using the partition of unity technique, as in Step 1, it is easy to find a continuous func-
tion p' : H" — (0,¢) such that, any p'(-)-approximation f : B" — H" of F,, i.e., f(x) €
By ) (Fn(Byy(x))) for any x € B", satisfies Gr(f) C U,. Analogously, let § : H — (0,¢) be
a continuous function such that any 6(-)-approximation f : B — H of F, satisfies Gr(f) C U
(comp. [12], Prop. 1.2).

Since B™ is compact, there exists 0 < 0 = §,, < min{p'(z);x € B"}.

Step 4. Now, let f: B™ — H" be any locally Lipschitz d-approximation of F,, over B". Then
Gr(f) C U,. Since B™ is a Lipschitz retract of B, there exists a locally Lipschitz extension
k:B — H of f. Since U,, C U and U is open in B x H, there is an open neighborhood €2 of
B"™ in B such that (x,k(z)) € U for every x € Q. Hence,

k(z) € Bejo(F(Bywm(x))) for every x € €.

Take an open set Qy C B with B™ C Qg C Qy C Q and a locally Lipschitz Urysohn function
B : H — [0,1] with 8(Q) = {1} and B(H \ Q) = {0}. Take any locally Lipschitz 0(-)-
approximation h : B — H of F, where 6(-) is from Step 3. Then Gr(h) C U. Define
g:B—H, g(x) = B(x)k(z) + (1 — B(z))h(zx) for every x € B. Obviously, g|gn = f.

Take any = with S(x) > 0. Then x € Q, and
{k(x), h(z)} C Bepa(F(By)(2))).

By Step 1, {k(x), h(x)} C B.(F(2')) for some 2’ with ||z —2'|| < €. By the convexity of values
of F,
g(x) € B-(F(2')) C B<(F(B:(x))).
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If B(x) = 0, then, since O(x) < ¢ for every z € B, g(z) = h(z) € B.(F(B:(x))), too. Hence, g
is the required approximation. [l

In the sequel we will use the following

Theorem 3.16 (comp. [7], Theorem 4.1) Let K = IntK be a subset of a finite dimensional
space E and F' : E — E be an usc map with compact convex values and a sublinear growth and
such that K~ (F) is a closed strong deformation retract of some open neighborhood V.C K of
K=(F) in K. Assume that int Tx(x) # 0 for every x € K\ K~ (F), and Tk(-) is lsc outside
K= (F).

Then
h(Inv(K, @), @) = [K/K™(F),[K™ (F)]],

where ¢ is a multivalued flow generated by F, and h(Inv(K, ), ) is defined, if K is an isolat-
ing neighborhood, as the Conley index for any flow generated by a sufficiently close Lipschitz
approximation of F.

Here Tk (z) denotes the Bouligand tangent cone:

i K
Tk (z) := {v € R"| liminf dist(z + hv, K)
h—0+ h

= 0}.
Let L + F : H — H be a multivalued L-vector field, and let ¢ be an L-flow generated by
L + F. On the boundary of a set K C H of constraints we consider the following exit set:
K (L4 F):={x9 € 0K | Vx € S(xo)¥t >0 : 2([0,t]) & K}.

It means that all trajectories starting at points in K~ (L 4+ F') immediately leave the set K.
Assume that K is an isolating neighborhood for ¢.

Suppose that the pair (K, K~ (L + F')) generates a spectrum (K, /K, ), where K, is the

exit set for K,, = K N H" with respect to L + P,F. Moreover, for some N > 1 and each
n > N, let the following regularity conditions be satisfied:

(H1) Each K, is epi-Lipschitz outside K, i.e., int Tk, (z) # () for every x € K,, \ K, .
(H2) K, is sleek outside K, i.e., Tk, (-) is Isc on K, \ K, .

(H3) K, is a strong deformation retract of some open neighborhood V,, of K in K,.

Denote by [K, L + F| the homotopy type of the spectrum (K, /K, )).
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Theorem 3.17 Under the above assumtions,

WK, o) = [K,L+ F).

Proof. Let € > 0 be such that h(K, ) := hes(K, py), for any f € a(F,e). Let B = B(0,r) be
a ball in H such that K C int B, and let ng > N be such that K, is an isolating neighborhood
for each n > ng, and ny is as in Lemma 3.15. We want to find f € a(F,¢) such that h.s(K, py)
is a homotopy type of a spectrum (Y,,/Z,)n>ny, and ([Yn/Zn, [Z0]]) = (KW /K, , [K,]))-

From Theorem 3.16 it follows that there exists a d,,-approximation g,, : B" — H" of
Py F'|gro such that its Conley index [Yy,,/Zn,, [Zn,]] equals [K,, /K, [Ky,]]. We extend g to
an e-approximation f : B — H of F. Since the spectrum (Y,,/Z,)n>n, for L + f is uniquely
determined up to a homotopy type by (Ys.,/Znos [Zn,]), and Yoy /Zng, [Zne]) is homotopy equiv-
alent to (K,,/ K, , [Ky,]), we obtain h(K,¢) = [K, L+ F]. O

4 Conley index for finite dimensional gradient differential
inclusions

Let L : R? — R? be a linear operator, and let f : R — R be a locally Lipschitz function
satisfying
(3) sup |yl < e(1+ Ju|) for some ¢ > 0 and every u € R
yef(u)

Then the function ® : RY — R,

(4) O(u) = %(Lu,u) + f(u), for u € RY

is locally Lipschitz, and the Clarke generalized gradient
F(u) == 0®(u) = Lu+ 0f (u)

is well defined (see |1], [4] for definitions and properties of the gradient ). Moreover, F' : R —o
R? is usc with compact convex values and of sublinear growth. Hence, the differential inclusion
& € F(z) generates a multivalued admissible flow (see Preliminaries). We say that & € 0®(x)
is a gradient differential inclusion.

Assume that F : RY — R? is of the form F(u) = Lu + ¢(u) for some usc map ¢ with
compact convex values and sublinear growth. We say that F' has a wvariational structure,
if there exists a locally Lipschitz function f : R — R such that 0®(u) C F(u), where ® is
defined in (4). As we will see in the sequel, multivalued maps with a variational structure plays
an important role in our investigations. If E is a Hilbert space, P% : H — H¢ is the ortogonal
finite-dimensional projection, and F' : H — H is of the form F(u) = Lu + 0f(u) for some
linear bounded operator L : H — H with L(H¢) C H?, and a locally Lipschitz map f : H — R,
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then the map Fy : HY — HY, Fy(x) := Lz + Py(9f(ia(z))), where iq : H? — H is the inclusion
map, has a variational structure, since Lz + 0(f o i4)(x)) C Lx + Py(0f (ia(x))) (see [1],[4]) )-
Moreover, F,; need not be a generalized gradient of any locally Lipschitz function.

Example 4.1 Consider a 1-Lipschitz function f : R? — R,

Flz,y) = { x| for |z] <y,

ly|  otherwise.

Obviously, O(f oi)(x)) = {0}, where i(x) := (z,0), while Fi(xz) = P,(9f(z,0))) = {0} for
x # 0 and Fy(0) = P1(9f(0,0))) = [—1,1]. Hence, F} is not a generalized gradient of any
locally Lipschitz function.

For multivalued flows generated by differential inclusions with compact convex valued
right-hand sides a homotopy index has been constructed (see [13]). Below we repeat the
construction and investigate the index in the context of gradient differential inclusions.

Let K be an isolated invariant set, and let N be its isolating neighborhood, i.e., K =
Inv(N, F) := Inv(N, ), where ¢ is a multivalued flow generated by the inclusion & € F(z).
By Proposition 3.2 it follows that K is a compact subset of int N (see also [13], Lemma 5.2.3).
Now it is easy to prove ([13], Lemmas 5.2.5 and 5.3.1) that for each £ > 0 there exists a smooth
e-approximation of I generating a global flow on R?, and there is 06 > 0 such that for each two
such smooth J-approximations gy, go the set N is an isolating neighborhood and they generate
global flows with the same Conley homotopy index h(Inv(N, g1), g1) = h(Inv(N, g2), go)-

Definition 4.2 Let K be an isolated compact invariant set, and K = Inv(N, F'). By the
homotopy index of K we mean the homotopy type

H(K,F) := h(Inv(N,g),9)

for sufficiently near smooth approximation g of F.

One can easily check that this definition does not depend on the choice of an isolating neigh-
borhood N of K and the choice of g.

For F' = 0®, where ® is of the form (4), the index can be described using smooth approx-
imations of the given locally Lipschitz map f, as we can see below.

We say that f :U — Ris a C-approzimation of a locally Lipschitz function f: U — R,
where U C R? is open and € : U — (0, +00) is a continuous map, if

1) |f(z) — f(x)\ < g(x), for every z € U,
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(ii) V[ is an e-approximation® of df.

In the sequel we will apply only a simplified version of the following result with a constant
function e(x) = ¢ > 0.

Proposition 4.3 ([3], Theorem 3.7) Suppose f : U — R, where U C R? is open, is a lo-
cally Lipschitz function. Then for any continuous map € : U — (0,+00) there exists a C°-
approximation of f.

Assume that F : RY — R, F'(u) = Lu+p(u) has a variational structure with a multivalued
selection 0® = L + 0f. If K = Inv(N, F'), then

H(K,F) = H(Inv(N,0®),8®) = h(Inv(N, V), f)

for every sufficiently near C2°-approximation f of f, since near approximations of 0® are near
approximations of F.

The index given in Definition 4.2 has standard important properties collected in the fol-
lowing proposition.

Proposition 4.4 comp. (|13], Theorems 5.3.1, 5.3.2, 5.3.4)

(Pr1) (EX1STENCE)® If H(K, F) # 0, then K # 0, i.e., there is a full trajectory in N,
where N is an isolating neighborhood of K.

(Pr2) (ApprTivity) If Ky, Ky are disjoint isolated invariant sets, then K = Ky U Ky is
an isolated invariant set and

H(K,F)=H(K,, F)V H(K, F).

(Pr3) (CONTINUATION) Let F : [0,1] x R? — R be a compact conver valued usc map

with  sup |y| < c(1 + |u]) for some ¢ > 0 and every (\,u) € [0,1] x R If K, =
yEF(\u)

Inv(N, F(-,\)) Cint N for every A € [0,1], then H(Ky, F(-,\)) is independent of A €

[0,1].

Remark. In the continuation property Theorem 5.3.4 in [13] the author assume that F(\,-)
is usc, and F(-,u) is continuous for every u € R% and usc uniformly on bounded subsets of
R?. As the author proves in Lemma 5.3.3, under these assumptions the map F is jointly

Tt means that dp(p(s,-()) (f(2)) < e(z) for every z € U.
5This is also called the Wazewski property.
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usc in every (A, u), so the assumption in (Pr3) is weaker than in Theorem 5.3.4 in [13|. Our
formulation is suitable for gradient inclusions. Indeed, if ® : [0,1] x R? — R is of the form

(5) B(A, 1) = %(Lw,w +fOvu), forueRY

where A — L,(-) and f are locally Lipschitz, then the generalized gradient of ® with respect
to the second variable satisfies

0P\, u) = Lyu+ 0, f(\,u),

and it is jointly usc in every (A, u) € [0,1] x R% Note also that the continuation property is
true if an isolating neighborhood ranges during a homotopy.

Example 4.5 One can check that for a function ® : [0, 1] xR, ®(\,u) := f(\,u) = |[u]*™ i.e.,
with L = 0, the generalized gradient 0,9 is not continuous with respect to the first variable.

Proof of Proposition 4.4. For (Prl) and (Pr2) see [13]. We prove (Pr3).

Let 7 > 0 be such that N C B(0,r). By the Cellina approximation theorem and a

standard mollifiers technique (see [13]|, Lemma 5.3.4) it follows that for every ¢ > 0 there
exists a continuous bounded map f : [0,1] x R? — R? such that f(},-) € C*(R? R?Y) and

v u) e F((A =& +eln0,1]) x B(u,)) + B(0,¢)
for every (A, u) € [0,1] x B(0,7). Moreover, using Lemma 2.1 in [7] we can choose an approx-
imation f with
fAu) € F({A} x B(u,€)) + B(0,¢),

i.e., such that f(A,-) is an e-approximation of F'()\,-). Since K, C int N for every A € [0, 1]

and the set K = |J K, is closed (see Proposition 3.2), K is a compact subset of int V.
A€[0,1

Hence, there is 6 > [O ]such that for every d-approximation f of F' chosen as above one has

Inv(N, f(A,-)) C int N for every A € [0,1] (see [13], Lemma 5.3.5). Continuity of f implies

that the corresponding flows 7, continuously depend on A. From the continuation property

of the homotopy Conley index for flows one obtains

H(Ko, F(0,-)) = h(Inv(N, £(0,-), f(0,-)) = h(Inv(N, f(1,-), f(1,-)) = H(Ky, F(1,-)),

and the proof is finished. O]

Corollary 4.6 If Ky, Ky are disjoint isolated invariant sets, K]UKy C K, and K = Inv(N, F).
IfHK,F)# H(Ky,F)V H(Ks, F), then there exists a full trajectory in K which is not con-
tained in Ky U Ky. In particular, it is the case if H(K,F) = 0 and H(K;, F) # 0, for some
ie {12}
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Corollary 4.7 Assume that F' : R — RY, F(u) = Lu + o(u) has a variational structure
with o multivalued selection 0® = L 4+ 0f. Let py,py be critical points of ® in an isolating
neighborhood N for F', which are isolated invariant sets for F'. Assume that (0®(u),0P(u))~ >
0 for every u € N \ {p1,p2}, where (0®(u),0P(u))” = min{(y, ') | v,y € 0P(u)}.

If HInv(N, F),F) # H{p1}, F) V H{p2}, F'), then there exists a heteroclinic or homo-
clinic nontrivial orbit in N. In particular, if ({p1},{p2}) is an attractor-repeller pair, then
there is a trajectory joining the equilibria.

Proof. Notice that p1, ps are the only critical points of ® in N. From Lemma 4.5 in |7] it follows
that {p1} and {p>} are isolated invariant sets for 0®. Therefore H({p;}, F)) = H({p;}, 0P) for
i € {1,2}. Since 09 is a selection of F', we have

H(Inv(N,09),00) = H(Inv(N,F),F) #
7 H({p:}, F)V H({p2}, F) = H({p:},09) V H({ps}, 0®).

Now, Corollary 4.6 applies, and there is a full trajectory x(-) for 0® (so, for F) in N with
z(0) = zp € N. Lemma 4.4 in 7] shows that w(zg) U a(z¢) C {p1,p2}. The proof is finished.
O

Remark. Note that the only critical points pi, ps of ® need not be isolated sets for F'. For
example, we can examine the map F': R —o R,

_f1 for |z| > 1,
F(x) —{ ~1,1] for |z| < 1,

with the selection 0®, where

r+2 forz<—1,
O(x)=4 —x for |z| <1,
x—2 foraxz>1.

Obviously, ® has two critical points —1 and 1 which are not isolated sets for F. Notice
that H(Inv([-2,2],F),F) = 0 and H({-1},F) v H({1},F) = X% Vv X! # 0. Moreover,
(09(x),0P(z))” =1>0for x ¢ {—1,1}. One can easily find a trajectory joining 1 with —1.
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