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1. Introduction

In this paper, we consider a module structure of the Conley index of smooth
flows in R

n. If Ω is an isolating neighbourhood and (P1, P2) is a regular
index pair in Ω, then the cohomology H∗(P1, P2) is a module over H∗(Ω).
We define a notion of relative cup-length of H∗(P1, P2) over H∗(Ω). This
notion can be used to derive several results on nontrivial structure of invariant
sets. As an example we prove a theorem on a minimal number of periodic
solutions to Hamiltonian systems. A natural action of the group S1 on the
space of periodic functions is being used. Some other applications of this tool
to bifurcation theory are presented in the PhD thesis of the last author [17].

It is worth mentioning that the concept is not completely new. One
can find a cup-length applied to Conley theory in [2] and [4]. A variant of a
relative version appeared in [16]. We believe that our approach should also
be useful for other problems considered in the bifurcation theory.

The paper is organized as follows. Section 2 contains an abstract alge-
braic definition of the relative cup-length and simple properties. In Section 3
we recall basic concepts from Conley index theory (main source is [13]) and
specify the abstract notion to it. In Section 4 we prove an abstract result on

J. Fixed Point Theory Appl. 10 (2011) 233–252
DOI 10.1007/s11784-011-0065-9
Published online November 9, 2011
© The Author(s) 2011. This article is published 
with open access at Springerlink.com

Journal of Fixed Point Theory
and Applications



234 Z. Dzedzej, K. Gȩba and W. Uss JFPTA

a number of critical points for gradient-like flows. Section 5 contains a reduc-
tion procedure for bifurcation problems. In the latter sections this procedure
is applied to Hamiltonian systems.

2. Relative cup-length

Throughout this section we assume that A ⊂ X ⊂ Y are compact metric
spaces and we denote by H∗ the Alexander–Spanier cohomology with the
coefficients in the fixed abelian group G. The cup product (see [15, Sec. 5.6])

� : Hk(X)×H l(X,A) → Hk+l(X,A)

endows H∗(X,A) with a structure of an H∗(X)-module. If k : X → Y
denotes the inclusion map, then the formula

β · α := k∗(β)�α

defines on H∗(X,A) a structure of H∗(Y )-module. The following remark is
a simple consequence of the naturality property of the cup product (see [6,
Prop. 3.10]).

Remark 2.1. If B ⊂ A is compact, then

H∗(X,A) → H∗(X,B) → H∗(A,B)

is an exact sequence of H∗(Y )-modules, where the maps are induced by
inclusions.

Definition 2.1. Let β ∈ Hp(Y ), p > 0, β �= 0, and let A ⊂ X ⊂ Y be CW-
complexes. The relative cup-length of β with respect to (X,A) is the number
χ(β;X,A) ∈ N defined as follows:

• χ(β;X,A) = 0 if H∗(X,A) = 0;
• χ(β;X,A) = 1 if H∗(X,A) �= 0 and β · α = 0 for every α ∈ H∗(X,A);
• χ(β;X,A) = k ≥ 2 if there exists α0 ∈ H∗(X,A) such that βk−1 ·α0 �= 0

and βk · α = 0 for every α ∈ H∗(X,A).

Definition 2.2. The relative cup-length of the H∗(Y )-module H∗(X,A) is the
number given by

Υ(X,A;Y ) := max{χ(β;X,A); 0 �= β ∈ Hk(Y ), k > 0}.
If Hk(Y ) = {0} for k > 0 but H∗(X,A) is nonzero, we set Υ(X,A;Y ) = 1,
and if H l(X,A) are trivial for all l ≥ 0, then Υ(X,A;Y ) := 0.

Lemma 2.2. If B ⊂ A ⊂ X ⊂ Y , then

Υ(X,B;Y ) ≤ Υ(X,A;Y ) + Υ(A,B;Y ).

Proof. Let k1 = Υ(X,A;Y ), k2 = Υ(A,B;Y ), 0 �= α ∈ Hp(X,B), p ≥ 0,
0 �= β ∈ Hq(Y ), q > 0. Consider the following inclusions:

i : (X,B) → (X,A), j : (A,B) → (X,B).
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Since k2 = Υ(A,B;Y ), j∗(βk2 · α) = 0. By Remark 2.1, there exists γ ∈
H∗(X,A) such that βk2 · α = i∗(γ). Therefore,

βk1+k2 · α = i∗(βk1 · γ).
But βk1 · γ = 0 by definition of k1, and thus βk1+k2 · α = 0. This means that

Υ(X,B;Y ) ≤ k1 + k2,

which ends the proof. �

Lemma 2.3. If A ⊂ X ⊂ Y1 ⊂ Y2, then

Υ(X,A;Y2) ≤ Υ(X,A;Y1).

Proof. Consider the following inclusions:

s : X ↪→ Y, k : A ↪→ X, t : A ↪→ Y.

If β ∈ H>0(Y2), α ∈ H∗(X,A), then βα = t∗(β)�α = k∗(s∗(β))�α. Hence
χ(X,A;β) = χ(X,A; s∗(β)) for all β ∈ H>0(Y2). Since t = k◦s, the condition
t∗(β)�α �= 0 implies s∗(β)�α �= 0, and our inequality follows. �

Recall that the cross product is defined by the formula

a× b := p∗1(a)�p∗2(b),

where p1, p2 denote projections (X,A)× (Y,B) onto (X,A) and (Y,B). For
algebraic properties of the maps

× : Hk(X;R)×H l(Y ;R) → Hk+l(X × Y ;R),

× : Hk(X,A;R)×H l(Y,B;R) → Hk+l(X × Y,X ×B ∪A× Y ;R)

see, e.g., [6] or [1, pp. 240–242].
Let σ := generator H1(I, ∂I), I := [−1, 1].
The formula

S(a) := a× σ

defines a mapping

S : Hk(X,A) → Hk+1((X,A)× (I, ∂I)) = Hk+1(X × I,X × ∂I ∪A× I).

The following lemma holds (cf. [6, Thm. 3.21] for more general version).

Lemma 2.4. If X ⊂ Y , then S is an isomorphism of H∗(Y )-modules. More
exactly,

S(b · a) = p∗(b) ·S(a),

where p denotes the projection Y × I onto Y .

Proof. Let b ∈ H∗(Y ), a ∈ H∗(X,A). Consider the following projections:

p1 : (X × I, A× I) → (X,A),

p2 : (X × I,X × ∂I) → (I, ∂I),

p1 : X × I → X.
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The following diagram is commutative, where i1(x, t) = (i(x), t):

X × I

p1

��

i1 �� Y × I

p

��
X

i �� Y

Using this diagram and the naturality and associativity properties of
the cup product (see [1, p. 239]), we obtain

S(b · a) = (b · a)× σ = p∗1(i
∗(b)�a)�p∗2(σ) = p∗1(i

∗(b))�p∗1(a)�p∗2(σ)

= p∗1(i
∗(b))�S(a) = i∗1(p

∗(b))�S(a) = p∗(b) ·S(a). �
Theorem 2.5. The following formula holds:

Υ((X,A)× (I, ∂I);Y ) = Υ(X,A;Y ).

Proof. Let us notice that formally X × I ⊂ Y × I and thus H∗(X × I,X ×
∂I ∪ A × I) is an H∗(Y × I)-module, but p∗ : H∗(Y ) → H∗(Y × I) is an
isomorphism which gives the naturally isomorphic H∗(Y )-module structure:
b
 a := p∗(b) · a for b ∈ H∗(Y ) and a ∈ H∗(X × I,X × ∂I ∪A× I). Taking
this into account, the desired equality follows directly from Lemma 2.4. �

3. Conley index and the relative cup-length

In this section, we recall the basic notions of the Conley index theory; the
reader can refer to [9] and [13] for details. Let X be a locally compact metric
space. A continuous map η : X×R → X is a flow if it satisfies the conditions

η(x, 0) = x,

η(x, t+ s) = η(η(x, t), s).

A set S ⊂ X is an invariant set for the flow η if

η(S,R) :=
⋃
t∈R

η(S, t) = S.

For an arbitrary set N ⊂ X one can define its invariant part

Inv(N, η) := {x ∈ N | η(x,R) ⊂ N}.
A compact setN ⊂ X is an isolating neighbourhood if Inv(N, η) ⊂ intN .

A set S is called an isolated invariant set if there is an isolating neighbourhood
N such that S = Inv(N,ϕ). A flow η : R×R

n → R
n is generated by a smooth

vector field F : Rn → R
n if η(x, t) is the solution of the Cauchy problem

u̇ = −F (u), u(0) = x evaluated at time t. Such a flow is a gradient flow if
F = ∇f for some smooth function f : Rn → R.

Let S be an isolated invariant set for the flow η. A compact pairN0 ⊂ N1
of subsets of X is called an index pair for S if the following hold:

(a) int(N1 \N0) is an isolating neighbourhood for S;
(b) N0 is positively invariant relative to N1; i.e., if x ∈ N0 and η(x, [0, t]) ⊂

N1, then η(x, [0, t]) ⊂ N0;
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(c) N0 is an exit set forN1; i.e., if x ∈ N1 and t1 > 0 such that η(x, t1) /∈ N1,
then there exists t0 ∈ [0, t1] for which η([0, t0], x) ⊂ N1 and η(x, t0) ∈
N0.

The following result implies the correctness of the definition of the ho-
motopy Conley index (cf. [9, Thms. 2.2.1 and 2.2.2] or [13, Thms. 23.7 and
23.12]).

Theorem 3.1. Let S be an isolated invariant set for the flow η. Then there
exists an index pair for S. Moreover, if (N1, N0) and (N ′

1, N
′
0) are index pairs

for S, then the pointed topological spaces

(N1/N0, [N0]) and (N ′
1/N

′
0, [N

′
0])

are homotopically equivalent.

Definition 3.1. Let S be an isolated invariant set for the flow η. The homotopy
Conley index of S is the homotopy type of the pointed space

h(S) = h(S, η) := [N1/N0, [N0]],

where (N1, N0) is an index pair for S.

It is useful to consider the cohomology Conley index defined by

CH∗(S) := H∗(N,L) = H∗(N/L),

where H∗ denotes the Alexander–Spanier cohomology and (N,L) is an index
pair for S. The last equality means that we identify H∗(N,L) and H∗(N/L)
via the isomorphism induced by the quotient map.

It is convenient to extend the index to an index of isolating neighbour-
hood: if N is an isolating neighbourhood for η, then the homotopy (resp.,
cohomology) Conley index of N is defined as

h(N) = h(N, η) := h(Inv(N, η)),(
resp., CH∗(N) = CH∗(N, η) := CH∗(Inv(N, η))

)
.

Before giving the definition of the relative cup-length of Conley index,
we need some useful lemmas. If (N0, N1) is an index pair and t ≥ 0, then,
following [13], we set

N t
1 := {x ∈ N1; η(x, [−t, 0]) ⊂ N1},

N−t
0 :=

{
x ∈ N1; there are x′ ∈ N0 and t′ ∈ [0, t]

with η(x′, [−t′, 0]) ⊂ N1 and η(x′, t) = x
}
.

For t ≥ 0, define a map

g : N1/N
−t
0 → N t

1/(N0 ∩N t
1)

by

g([x]) :=

{
[η(x, t)] if η(x, [0, t]) ⊂ N1 \N0;

∗ otherwise.
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It is known (see [13, Lem. 23.14]) that g is a homeomorphism. Therefore, it
induces an isomorphism

g∗ : H∗(N t
1, N0 ∩N t

1) → H∗(N1, N
−t
0 ).

Lemma 3.2. Assume that N is an isolating neighbourhood for η and (N1, N0)
is an index pair for S ⊂ N . If N1 ⊂ N , then the inclusion i : (N1, N0∩N t

1) →
(N1, N

−t
0 ) induces an isomorphism

i∗ = (g∗)−1 : H∗(N1, N
−t
0 ) → H∗(N1, N0 ∩N t

1).

Proof. Consider the following diagram, where the vertical arrows denote the
quotient maps.

(N1, N
−t
0 )

��

(N1, N0 ∩N t
1)

i��

��
N1/N

−t
0

g �� N1/(N0 ∩N t
1)

From the definition of g, it is obvious that the diagram is homotopy commu-
tative and the conclusion follows. �

Definition 3.2. Let N be an isolating neighbourhood for the flow η. We define
the relative cup-length of η with respect to N as

Υ(η,N) := Υ(N1, N0;N),

where (N1, N0) is an index pair for S.

The following lemma states that Υ(η,N) is well defined.

Lemma 3.3. Let N be an isolating neighbourhood for η and let S ⊂ N be an
isolated invariant set. If (N1, N0) and (N1, N0) are index pairs for S such
that N1, N1 ⊂ N , then

Υ(N1, N0;N) = Υ(N1, N0;N).

Proof. As in the proof of [13, Lem. 23.17], we consider the following sequence

of maps, where j, î, î1 are defined by inclusion maps of pairs of spaces and
g, ĝ are as above. All of them are homotopy equivalences of pointed spaces,
as it is proved in detail in [13]:

N1/N0
j �� N1/N

−t
0

g �� N t
1/
(
N0 ∩N−t

1

)
î1
��

N1/N0 N
t

1/
(
N0 ∩N

t

1

)
î�� N1/N

−t

0
ĝ��
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By Lemma 3.2 and definition of j, it follows that the following sequence of
isomorphisms

H∗(N1, N0) H∗(N1, N
−t
0

)≈�� H∗(N t
1, N0 ∩N−t

1

)≈��

H∗ (N1, N0
) ≈ �� H∗

(
N

t

1, N0 ∩N
t

1

) ≈ �� H∗
(
N1, N

−t

0

)≈
��

are all induced by inclusions. Therefore, they all are isomorphisms of H∗(N)-
modules and the conclusion follows. �

One of the main properties of the Conley index is the continuation. The
same holds true for the relative cup-length.

Lemma 3.4. Consider a continuous family of flows ηλ : X×R → X; λ ∈ [0, 1].
Let N ⊂ X be an isolating neighbourhood for all flows ηλ. Then

Υ(η0, N) = Υ(η1, N).

Proof. Similarly as in the proof of Lemma 3.3 we shall use parts of the
proof of [13, Thm. 23.31]. Given μ ∈ [0, 1], there exists a neighbourhood
W of μ in [0, 1] with the property that for all λ ∈ W , we can find pairs
(N1, N0) ⊂ (Pλ

1 , P
λ
0 ) ⊂ (N1, N0) such that (N1, N0), (N1, N0) are index

pairs for ημ in N , and (Pλ
1 , P

λ
0 ) is an index pair for ηλ in N (see [13,

Lem. 23.28]). Then it is shown in the proof of [13, Thm. 23.31] that the
inclusion i : (N1, N0) → (Pλ

1 , P
λ
0 ) induces a homotopy equivalence of pointed

spaces N1/N0 and Pλ
1 /P

λ
0 . The same argument applies to show that i∗ :

H∗(Pλ
1 , P

λ
0 ) ≈ H∗(N1, N0) is an isomorphism of H∗(N)-modules. Therefore,

Υ(ηλ, N) = Υ(ημ, N). Since [0, 1] is compact and connected, this completes
the proof. �

One easily sees that the continuation holds for more general parameter
space Λ as in [13].

4. Gradient-like flows

Throughout this section, as before, η denotes a flow on a locally compact
metric space X.

Let N be an isolating neighbourhood for η and let ϕ : intN → R be
continuous. The flow η is called gradient-like with respect to ϕ if η(x, [0, t]) ⊂
intN and η(x, t) �= x imply ϕ(η(x, t)) > ϕ(x). We define the critical level set
of ϕ with respect to η as

Crit(ϕ, η) := ϕ({x ∈ U ; η(x, t) = x for all t ∈ R}).
In other words, c ∈ Crit(ϕ, η) if and only if there is x ∈ N which is a rest
point of the flow and ϕ(x) = c.

The aim of this section is to give a proof of the following theorem.
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Theorem 4.1. Assume that X is locally contractible and N is an isolating
neighbourhood for η. If η is gradient-like with respect to ϕ : intN → R and
Crit(ϕ, η) is finite, then

#Crit(ϕ, η) ≥ Υ(η,N).

Before giving the proof of the theorem we shall recall some definitions
and results concerning Morse decompositions.

Recall that the omega limit set of x ∈ X is given by

ω(x) :=
⋂
t>0

cl
(
η(x, [t,∞))

)
and the alpha limit set is

α(x) :=
⋂
t<0

cl
(
η(x, (−∞, t])

)
.

Assume that S is an isolated invariant set for η. A Morse decomposition
of S is a finite collection, {Mi : 1 ≤ i ≤ n}, of disjoint compact invariant
subsets of S which can be ordered (M1,M2, . . . ,Mn) in such a way that if
x ∈ S \⋃{Mi : 1 ≤ i ≤ n}, then there are indices i < j such that ω(x) ⊂ Mi

and α(x) ⊂ Mj . Such an ordering will be called admissible. The elements
Mi of the Morse decomposition of S will be called Morse sets of S. For an
admissible ordering (M1, . . . ,Mn) of a Morse decomposition S, define subsets
Mij , i < j, by

Mij := {x ∈ S : ω(x) ∪ α(x) ⊂ Mi ∪Mi+1 ∪ · · · ∪Mj}.
The proof of the following existence theorem can be found in [13, Thm.

23.7] or in [12, Cor. 4.4].

Theorem 4.2. Let S be an isolated invariant set for η and (M1,M2, . . . ,Mn)
an admissible ordering of a Morse decomposition of S. Then there exists an
increasing sequence of compact sets (a (Morse) filtration of S),

N0 ⊂ N1 ⊂ · · · ⊂ Nn

such that for any i < j, the pair (Nj , Ni−1) is an index pair for Mij. In
particular, (Nn, N0) is an index pair for S, and (Nj , Nj−1) is an index pair
for Mj.

Furthermore, given any isolating neighbourhood N of S, and any neigh-
bourhood U of S, the sets Nj can be chosen so that cl(Nn \N0) ⊂ U and each
Nj is positively invariant relative to N .

Proof of Theorem 4.1. Let

• S := InvN ;
• Crit(ϕ, η) = {c1 < c2 < · · · < ck};
• Mi := Crit(ϕ, η) ∩ ϕ−1(ci).

Choose

N0 ⊂ N1 ⊂ · · · ⊂ Nn
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satisfying the conditions of Theorem 4.2. Lemma 2.2 implies

Υ(Ni, N0;N) ≤ Υ(Ni−1, N0;N) + Υ(Ni, Ni−1;N) (1)

for i = 1, 2, . . . , k. Since Mi is finite and X is locally contractible, we can find
a neighbourhood U ⊂ N of Mi consisting of pairwise disjoint contractible
sets. Then we find an index pair (N ′

i , N
′
i−1) in U . Therefore, H∗(N ′

i , N
′
i−1)

has a trivial structure as an H∗(N)-module. Thus by Lemma 3.3, we obtain

Υ(Ni, Ni−1;N) ≤ 1.

Therefore,
Υ(η,N) = Υ(Nk, N0;N) ≤ k. �

5. Bifurcation

Throughout this section we let E1, E0 be Banach spaces, H a Hilbert space
and we assume that E1 ⊂ E0 ⊂ H, where the embeddings are continuous.

We assume also that a compact Lie group G acts orthogonally on H,
and the action on E1, E0 is by isometries (i.e., the norms on E1, E0 are
G-invariant).

Definition 5.1. Given an open Ω ⊂ E and a continuous f : Ω → E0, we
say that f is a generalized gradient map if there is an open Ω0 ⊂ E0, with
Ω ⊂ Ω0, and a C1-function ϕ : Ω0 → R such that

Dϕ(x)(y) = 〈f(x), y〉 for all x ∈ Ω, y ∈ E0.

Here 〈·, ·〉 denotes the scalar product in H. Similarly, in the case of an open
Ω ⊂ E × R and a continuous f : Ω → E0, we say that f is a generalized
gradient map if fλ : Ωλ → E0 is a generalized gradient map. Here Ωλ = {x ∈
E; (x, λ) ∈ Ω}.

If X is a Banach space, we denote the open ε-ball in X by BX(ε) :=
{x ∈ X; ‖x‖ < ε} and BX(x0, ε) := {x ∈ X; ‖x− x0‖ < ε}.

If V ⊂ E is a finite-dimensional linear subspace, then there is the or-
thogonal decomposition determined by V

E1 = W1 ⊕ V, E0 = W0 ⊕ V, (2)

where W0 := {x ∈ E0; 〈x, y〉 = 0 for all y ∈ V }, W1 := E1 ∩W0.

Definition 5.2. Let [λ1, λ2] ⊂ R. We say that a C1-gradient equivariant map

f : Ωf → E0,

where Ωf ⊂ E ⊕ R is open G-invariant, {0} × [λ1, λ2] ⊂ Ωf , defines a bifur-
cation problem on [λ1, λ2] if

f(0, λ) = 0 for (0, λ) ∈ Ωf

and
Dxf(0, λi) : E ≈ E0, i = 1, 2.

We shall also simply say that f is a bifurcation problem.
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Definition 5.3. Let fi : Ωi → E0, i = 1, 2, be two bifurcation problems on
[λ1, λ2]. We say that f1 and f2 are equivalent if there exists an equivariant
diffeomorphism

Ψ : Ω1 → Ω2

such that

f2 = f1 ◦Ψ.

Theorem 5.1. Let f : Ωf → E0 be a bifurcation problem on [λ1, λ2]. If there
exist decompositions

E1 = V ⊕W1, E0 = V ⊕W0, f(x, y, λ) = (f1(x, y, λ), f2(x, y, λ)),

such that

Df2(0, λ)|W1
: W1 ≈ W0 for λ ∈ [λ1, λ2],

then there exist

(1) an open invariant Ω ⊂ Ωf , {0} × [λ1, λ2] ⊂ Ω;
(2) g : Ωg → E0—a bifurcation problem on [λ1, λ2];

such that

(a) f|Ω is a bifurcation problem on [λ1, λ2] equivalent to g;

(b) g(V ∩ Ωg) ⊂ V and g−1(0) ⊂ V ;
(c) if D1f2(0, 0, λ) = 0, then D1g(0, 0, λ) = D1f1(0, 0, λ).

The proof is based on the following two theorems.

Theorem 5.2 (Equivariant implicit function theorem). Let V1, V2, W be
Banach G-spaces, Ω ⊂ V1 × V2 a G-invariant open set, (x0, 0) ∈ Ω and
F : Ω → W be continuously differentiable G-map. Assume that F (x0, 0) = 0
and

D2F (x0, 0) : V2 → W

is a G-equivariant Banach space isomorphism. Then there exist ε1, ε2 > 0,
BV1(x0, ε1) × BV2(ε2) ⊂ Ω, and a continuously differentiable G-equivariant
map ψ : BV1(x0, ε1) → BV2(ε2) such that

F (x, ψ(x)) = 0 (3)

and

Dψ(x) = −(
D2F (x, ψ(x))

)−1
D1F (x, ψ(x)) (4)

for all x ∈ BV1
(x0, ε1). Furthermore, for every x ∈ BV1

(x0, ε1), ψ(x) is the
only solution of (3) in BV2(ε2).

Proof. The theorem is an equivariant reformulation of [7, Thm. 10.1]. Since
the mapping

G(x, y) := y − L−1
0 F (x, y), L0 := D2F (x0, 0),

defined in [7, p. 134], is in our case equivariant, the proof carries over directly.
�
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Theorem 5.3 (Parametrized equivariant implicit function theorem). Let V1,
V2, W be Banach G-spaces, Ω ⊂ V1×V2×R a G-invariant open set, (0, 0, λ) ∈
Ω for λ ∈ [λ1, λ2]. Assume that F : Ω → W is a continuously differentiable
G-map, F (0, 0, λ) = 0 if (0, 0, λ) ∈ Ω and

D2F (0, 0, λ) : V2 → W

is a G-equivariant Banach space isomorphism if (0, 0, λ) ∈ Ω. Then there
exist ε1, ε2 > 0, BV1(ε1)×BV2(ε2)×(λ1−ε1, λ2+ε1) ⊂ Ω, and a continuously
differentiable G-equivariant map ψ : BV1(ε1) × (λ1 − ε1, λ2 + ε1) → BV2(ε2)
such that

F (x, ψ(x, λ), λ) = 0 (5)

and

Dψ(x, λ) = −(
D2F (x, ψ(x, λ))

)−1
D1F (x, ψ(x, λ)) (6)

for all x ∈ BV1(ε1) × [λ1, λ2]. Furthermore, for every (x, λ) ∈ BV1(ε1) ×
[λ1, λ2], ψ(x, λ) is the only solution of (5) in BV2(ε2).

Proof. The theorem follows from Theorem 5.2. One should consider V1 ⊕ R
instead of V1 and then use the compactness of [λ1, λ2]. �

Proof of Theorem 5.1. We apply Theorem 5.3 to the map f2 and obtain a
G-equivariant mapping

ψ : BV (ε1)× (λ1 − ε1, λ2 + ε1) → BW0(ε2).

Observe that for each λ ∈ [λ1, λ2], the following holds true:

if x ∈ BV (ε1), y ∈ BW0(ε2) then f2(x, y, λ) = 0 ⇐⇒ y = ψ(x, λ).

Taking ε2 smaller if necessary, we define a G-equivariant diffeomorphism

Ψ : BV (ε1)× (λ1 − ε1, λ2 + ε1) → Ωf

by the following formula:

Ψ(x, y, λ) := (x, y + ψ(x, λ), λ).

The desired map g is given by

g := f ◦Ψ.

Since V is finite dimensional, for ε > 0 small enough, we have

g−1(0) ∩ (BV (ε)×BW1(ε)× [λ1, λ2]) ⊂ BV (ε)× [λ1, λ2].

Considering Dg(0, 0) in a block form, we obtain the last assertion. �
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244 Z. Dzedzej, K. Gȩba and W. Uss JFPTA

6. Bifurcation in R
n

In this section to simplify the notation, we consider a finite-dimensional bi-
furcation problem on I = [−1, 1] defined by a map f . More precisely, we
assume that f : R

n × R → R
n is a C1-map, f(0, λ) = 0 for λ ∈ R and

Df(0,±1) : Rn ≈ R
n.

Let Aλ := Dxf(0, λ). Then f(x, λ) = Aλ(x) + f0(x, λ). For τ ∈ [0, 1],
we set

fτ (x, λ) := Aλ(x) + τf0(x, λ).

Assume further that there exist ρ, C > 0 such that

〈fτ (x, 1), x〉 ≥ C|x|2 for |x| ≤ 2ρ (7)

and

〈fτ (x,−1), x〉 ≤ −C|x|2 for |x| ≤ 2ρ. (8)

For α > 0 and 0 < ε < ρ, define

Fτ : Rn+1 → R
n+1

by Fτ (x, λ) := (fτ (x, λ), α(|x| − ε)). Let

Ω = {x ∈ R
n; |x| ≤ 2ρ} × [−1, 1]

and M := sup{|fτ (x, λ)|; (x, λ) ∈ Ω, τ ∈ [0, 1]}.
Lemma 6.1. If

α ≥ 2M

ρ(ρ− ε)
,

then there exists δ > 0 such that δ < ε and for all τ ∈ [0, 1], the set N :=
{(x, λ) ∈ Ω; |x| ≥ δ} is an isolating neighbourhood for the flow generated by
Fτ .

Proof. First we prove that Ω is an isolating neighbourhood. We fix τ and let
η(x, λ, t) = (η1(x, λ, t), η2(x, λ, t)) ∈ R

n×R denote the flow generated by Fτ .
It is enough to show that for all (x, λ) ∈ ∂Ω,

(a) there exists T > 0 such that either η(x, λ, T ) �∈ Ω or η(x, λ,−T ) �∈ Ω.

Let K := {(x, λ) ∈ Ω; |x| = 2ρ, λ ∈ [−1, 1]}. If (x, λ) ∈ ∂Ω \ K, then (a)
follows immediately from the definition of Fτ .

To complete the proof of our first claim we start from the following
simple observations:

(b) if η(x, λ, t) ∈ Ω for all t ∈ [0, T ], then

|η1(x, λ, t)− η1(x, λ, 0)| ≤ TM for t ∈ [0, T ];

(c) if η(x, λ, t) ∈ A := {(x, λ) ∈ Ω; |x| ≥ ρ} for all t ∈ [0, T ], then

η2(x, λ, t)− η2(x, λ, 0) ≥ (ρ− ε)αt for t ∈ [0, T ].
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Let (x0, λ0) ∈ K and

T1 := inf{t ∈ (0,∞); η(x0, λ0, t) /∈ A}.
Since every point of A leaves A in a finite time, T1 < ∞. (One can call T1 the
exit time of (x0, λ0) from A.) Let (x1, λ1) := η(x0, λ0, T1). If (x1, λ1) ∈ ∂Ω,
then (a) holds. Suppose that (x1, λ1) ∈ Ω. Then |x1| = ρ, λ1 ∈ (−1, 1) and
(b) implies ρ ≤ MT1. Applying (c), one obtains

λ1 ≥ λ0 + α(ρ− ε)
ρ

M
> λ0 + 2 > 1.

We have obtained a contradiction. Therefore, Ω is an isolating neighbourhood
for all ητ and thus the invariant part

Inv(Ω, η) =
⋃

τ∈[0,1]

Inv(Ω, ητ ) ⊂ int(Ω)

is compact. Moreover, one easily checks that it is disjoint with {0} × [−1, 1].
Thus there exists ε > δ ≥ 0 such that Inv(Ω) ∈ int(N). This proves that N
is an isolating neighbourhood for all ητ . �

Assume now that V = (Rn, ϕ) is an orthogonal representation of a
compact Lie group G; i.e., ϕ : G → O(n) is a group homomorphism. Let
S(V ) := {x ∈ V ; |x| = 1}. The use of V instead of Rn is a bit of notation
abuse—we try to emphasize that S(V ) is a G-space.

Lemma 6.2. Let f : Ωf → R
n be a gradient equivariant bifurcation problem

on [−1, 1] and Aλ := Dxf(0, λ), λ ∈ [−1, 1]. Assume that there is C > 0 such
that

〈A1(x), x〉 ≥ C|x|2 for x ∈ R
n (9)

and

〈A−1(x), x〉 ≤ −C|x|2 for x ∈ R
n. (10)

Then for sufficiently small ε, the number of zero G-orbits of f in S(Rn, ε)×
(−1, 1) is not less than the cup-length of S(V )/G.

Proof. We keep the notation from the beginning of this section. From (9)
and (10), it follows that there exists ρ > 0 such that assumptions (7) and (9)
are satisfied. Now for ε < ρ, we find α and δ as in Lemma 6.1 and obtain
an isolating neighbourhood N = {(x, λ); δ ≤ |x| ≤ 2ρ,−1 ≤ λ ≤ 1} which
is clearly an invariant set with respect to the action of G (trivial on the
parameter space). By Lemma 3.4, it is enough to calculate the equivariant
Conley index (and the relative cup-length) for the flow generated by the map
g(x, λ) := (Dxf(0, λ)(x), α(|x| − ε)) = (Aλx, α(|x| − ε)).

Now we can make another simplification. Consider a map B : Rn×R →
R

n given by B(x, λ) = λx and a family of flows generated by vector fields
Fτ : R

n+1 → R
n+1, Fτ (x, λ) = (τAλx + (1 − τ)B(x, λ), α(|x| − ε)) with

τ ∈ [0, 1]. It is easy to verify that N is an isolating neighbourhood for this
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246 Z. Dzedzej, K. Gȩba and W. Uss JFPTA

family of flows. Thus we can do all the calculations for τ = 0. We can easily
find an index pair: N1 := N and

N0 := {(x, 1) : 1 ≥ |x| ≥ ε} ∪ {(x, λ); |x| = 2ρ, λ ∈ [0, 1]}
∪ {(x, λ); |x| = δ, λ ∈ [−1, 0]}
∪ {(x,−1); δ ≤ |x| ≤ ε}.

Since all the sets are G-invariant, their quotient sets constitute an index
pair for the flow generated on the orbit space. N is equivariantly homotopy
equivalent to S(V )× [−1, 1]× [−1, 1] and N0 ≈ S(V )×L, where L : {(t, s) ∈
∂([−1, 1] × [−1, 1]); ts ≥ 0}. Therefore, N1 := N1/G ≈ S(V )/G × [−1, 1] ×
[−1, 1], N0 := N0/G ≈ S(V )/G× L. Their quotient N1/N0 ≈ S(V )/G ∧ S1.
Thus, by Theorem 2.5, Υ(N1, N0;N1) is equal to the cup-length of S(V )/G.

Now we can apply Theorem 4.1, since the gradient flow generated by f
gives rise to a gradient-like flow on the orbit space and the critical points of
this flow are images of the zero G-orbits of f . �

7. Bifurcations of periodic solutions to Hamiltonian systems

By

J : R2N = R
N ⊕ R

N → R
N ⊕ R

N = R
2N

we denote a linear automorphism given by the matrix(
0 I
−I 0

)
.

Throughout this section we assume that H : R2N → R is a C2-function
(Hamiltonian) such that

(H1) H(0) = 0, ∇H(0) = 0;
(H2) the Hessian ∇2H(0) is nondegenerate.

The main object of our investigation is periodic solutions to the following
equation:

u̇(t) = J∇H(u(t)). (11)

We shall use the following Banach spaces:

(1) E0 := C(S1,R2N ). The elements of E0 are identified with continuous
functions

u : R → R
2N , u(t+ 2π) = u(t), ‖u‖ := sup{|u(t)|; t ∈ R}.

(2) E := C1(S1,R2N ). As a linear space E is a subspace of E0. The norm in
E is defined by a formula

‖u‖1 := ‖u‖+ ‖u̇‖.
The above automorphism J defines also automorphisms of our Banach spaces

J : E → E , J : E0 → E0.
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More precisely,

J

(
2N∑
i=1

uiei

)
:=

2N∑
i=1

uiJ(ei),

where {e1, e2, . . . , e2N} is the standard basis of R2N .

In the space E0 we have a continuous inner product

〈u, v〉 :=
2N∑
j=1

∫ 2π

0
uj(t)vj(t)dt, (12)

where

u =
2N∑
j=1

ujej , v =
2N∑
j=1

vjej .

(In other words, we consider E0 as a subspace of L2(S1,R2N ).)

The formula

L(u) := J(u̇)

defines a bounded linear operator

L : E → E0.
Denote by

H : E → E0
a map (nonlinear in general) given by a formula

(H(u))(t) := ∇H(u(t)).

Our further considerations are based on the following well-known remark.

Define a map

f : E × (0,∞) → E0, f(u, λ) := L(u) + λH(u). (13)

Remark 7.1. A function u ∈ E is a periodic solution to equation (11) of period
2π
λ if and only if f(u, λ) = 0. The map f is (generalized) gradient in the sense

introduced in Definition 5.1 with respect to the potential χ(u) :=
∫ 2π
0 u(t)dt.

A change of variables t �→ λt gives the first part of the remark. The
second part is well known.

Let A := ∇2H(0). The map JA is a Hamiltonian (i.e., (JA)TJ +
J(JA) = 0). Observe that in [8] the notion Hamiltonian matrix is used.

Now we describe briefly the spectral decomposition of JA. We try to
follow the notation of [8, Sec. 3.3], where further details can be found.

The eigenvalues of JA fall into three groups (because of (H2)):

(1) the pure imaginary ±iω1, . . . ,±iωr;
(2) the real eigenvalues α1, . . . , αs;
(3) the truly complex ±β1 ± iγ1, . . . ,±βt ± iγt.
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This defines a direct sum decomposition

R
2N = V⊕ X⊕ Y, (14)

where their complexifications are composed of generalized eigenspaces as fol-
lows:

V
c =

r⊕
j=1

(
η†(iωj)⊕ η†(−iωj)

)
,

X
c =

s⊕
j=1

(
η†(αj)⊕ η†(−αj)

)
,

Y
c =

t⊕
j=1

(
η†(βj + iγj)⊕ η†(βj − iγj)⊕ η†(−βj + iγj)⊕ η†(−βj − iγj)

)
.

We are especially interested in part (1):

σ0(JA) = σ(JA) ∩ {iR}
= {±iω1,±iω2, . . . ,±iωr}, 0 < ω1 < ω2 < · · · < ωr.

(15)

Denote by Vj , Uj the subspaces of R2N such that

V
c
j := η†(iωj)⊕ η†(−iωj), U

c
j := η(iωj)⊕ η(−iωj).

Obviously,

V =
r⊕

j=1

Vj (16)

and each summand is A-invariant (and so are X, Y and Uj).

Denote by Ac : C2N → C
2N the complexification of A and let Uj ⊂ R

2N ,
j = 1, . . . , r, denote the subspace such that

U
c
j = Ker(A+ iωj)⊕Ker(A− iωj).

Let dj :=
1
2 dimUj . Clearly dj is an integer. Let

d = d(A) := d1 + d2 + · · ·+ dr. (17)

In order to make our setup precise, we introduce the following terminol-
ogy. If u : R → R

2N is a periodic C1-solution to (11) and τ ∈ R, then we let
uτ denote the periodic solution to (11) defined by uτ (t) := u(t + τ), t ∈ R.
We say that two periodic solutions u, v to (11) are geometrically distinct if
uτ �= v for all τ ∈ R.

Now we can formulate the main result of this section.

Theorem 7.2. If H satisfies (H1) and (H2), then there exists an ε0 > 0 such
that 0 < ε < ε0 implies the existence of at least d geometrically distinct
periodic solutions to (11) in {u ∈ C(R,R2N ); ‖u‖ = ε}.
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8. Proof of Theorem 7.2

Define the operators A,Dλ : E → E0 by

A(u)(t) := A(u(t)) = (∇2H(0))(u(t)), Dλu := Ju̇+ λA(u). (18)

Note that Dλ = Df(0, λ). For any subspace Z ⊂ R
2N , we denote

E(Z) := C1(S1,Z), E0(Z) := C0(S1,Z).

We consider the above function spaces together with the S1-action defined
by

(γu)(t) := u(t− θ) for γ := eiθ.

Notation. Throughout this section we tacitly assume that the considered
maps are S1-equivariant and gradient (in the generalized sense, see Defini-
tion 5.1). The gradient structure should be clear from the context.

Define an equivalence relation in the set S := {ω1, ω2, . . . , ωq} by

ωj ∼ ωk ⇐⇒ nωj = mωk, n,m ∈ N.

This relation divides S into pairwise disjoint classes

S =

p⋃
k=1

Sk.

For k ∈ {1, 2, . . . , q}, set Jk := {j ∈ {1, . . . , r};ωj ∈ Sk}, Dk := Dλk
,

Wk :=
⊕
j∈Jk

Vj , bk :=
∑
j∈Jk

dj ,

Wk := E(Wk) ∩KerDk.

For each k, let νk denote the greatest real number such that for every
ω ∈ Sk there is n ∈ N such that ω = nνk and let λk := ν−1

k .

Suppose ωj ∈ Sk and let nj :=
ωj

νk
∈ N.

If z = x + iy ∈ C
2N , x, y ∈ R

2N , is an eigenvector corresponding
to the eigenvalue iωj of (JA)c, then (JA)c(x) = −ωjy, (JA)c(y) = ωjx and
thus x−iy is an eigenvector corresponding to the eigenvalue −iωj . Therefore,
vectors x, y span a subspace of R2N which is invariant for A. Let zp = xp+iyp,
p := 1, . . . , dj , be a basis of Ker((JA)c + iωjI). Then the vectors

x1,y1,x2,y2, . . . ,xdj ,ydj (19)

form a basis of Uj . Let cj(t) := cos(njt), sj(t) := sin(njt). Denote by Uj the
2dj-dimensional subspace of C1(S1,Uj) ⊂ E spanned by

cjxp + sjyp, sjxp − cjyp, p = 1, . . . , dj .

Then

Uj = E(Vj) ∩KerDk and Wk =
⊕
j∈Jk

Uj .
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Remark 8.1. The assignments

cjxp + sjyp �→ ep, sjxp − cjyp �→ iep, p = 1, . . . , dj ,

where {ep} denotes the standard basis of Cdj , define an isomorphism of real
linear spaces

Aj : Uj → C
dj .

Lemma 8.2. The cup-length of S(Wk) equals bk.

Proof. Consider the complex linear space

V :=
⊕
j∈Jk

C
dj

whose points we write as z = (z1, . . . , zq), zj ∈ C
dj . Let Y and Z denote,

respectively, the representations of S1 on V determined by

γ(z1, . . . , zq) := (γd1z1, . . . , γ
dqzq),

γ(z1, . . . , zq) := (γbkz1, . . . , γ
bkzq).

To avoid misunderstandings we denote by X the standard representation of
S1 on V. Let α : S(X) → S(Y), β : S(Y) → S(Z) denote the S1-equivariant
maps between unit spheres in corresponding representations defined by

α(z1, . . . , zq) := (zd1
1 , . . . , zdq

q ),

β(z1, . . . , zq) := (zbk−d1
1 , . . . , zbk−dq

q ).

Obviously S(X)/S1 = CP d−1. A slight modification of the arguments given
in [6, Sec. 3.2] permits to prove that S(Z) is diffeomorphic to CP a−1 and
β ◦ α induces a monomorphism of cohomology rings

(β ◦ α)∗ : H∗(S(Z)/S1) → H∗(S(X)/S1).

Therefore,

α∗ : H∗(S(Y)/S1) → H∗(S(X)/S1)

is also a monomorphism. Thus the cup-length of S(Y) equals bk. Since⊕
j∈Jk

Aj : Wk → Y

is an isomorphism of real representations of S1, the proof is completed. �

Let

W⊥,0
k := {w ∈ E0(Wk); 〈w, v〉 = 0 for v ∈ Wk},
W⊥

k := E(Wk) ∩W⊥,0
k .

From (12) and (18), we have

〈u,Dk(v)〉 = 〈Dk(u), v〉 = 0 for u ∈ Wk, v ∈ E(Wk).
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Therefore, Dk(W⊥
k ) ⊂ W⊥,0

k . Since Dk, as an operator from E(Wk) into

E0(Wk), is Fredholm of index 0, it maps isomorphically W⊥
k onto W⊥,0

k .
Applying Theorem 5.1, we obtain an ε > 0 and a mapping

g : B(E , ε)× [λk − δ, λk + δ] → E0,
where B(E , ε) := {u ∈ E ; ‖u‖ < ε}, such that

• f and g determine equivalent bifurcation problems on [λk − δ, λk + δ];
• g(B(Wk, ε)× [λk − δ, λk + δ]) ⊂ Wk;
• Dg(0, λ) = Df(0, λ) for λ ∈ [λk − δ, λk + δ].

Setting ϕ(w, λ) := g(w, λ), w ∈ Wk, we obtain

ϕ : Wk × [λk − δ, λk + δ] → Wk,

which determines a finite-dimensional bifurcation problem on [λk − δ, λk + δ]
(one may call it a reduction of f to Wk). Applying Lemmas 8.2 and 6.2, we
obtain the following conclusion.

Conclusion 8.3. For each k ∈ {1, . . . , q}, there exist δ, ε > 0 such that

(a) the mapping ϕ defines a bifurcation problem on [λk − δ, λk + δ];
(b) f−1(0)∩(S(E , ε)×[λk−δ, λk+δ]) contains at least bk different S1-orbits.

Now, to complete the proof of Theorem 7.2, it is enough to observe that,
for sufficiently small δ and ε, different S1 orbits in

f−1(0) ∩
(

q⋃
k=1

S(E , ε)× [λk − δ, λk + δ]

)

correspond to geometrically distinct solutions to (11).
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