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Abhstract:

The nonlinear interaction of acoustic and entropy modes in a bubbly liquid is considered. The reasons for

interaction are both nonlinearity and dispersion. In the field of intense sound, a decrease in the mixture
density is predicted. That corresponds to the well-established growth of bubbles volumes due to rectified
diffusion. The nonlinear interaction of modes as a reason for a bubble to grow due to sound, is discovered.
The example considers variation in the mixture density and bubbles radii caused by acoustic soliton.
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1. Introduction

The dependence of phase speed on frequency is called dis-
persion. In general, dispersion in unbounded inhomoge-
neous acoustical media is a weak effect, in contrast to the
strong dispersion of light in most optical media. In spite
that dispersion accompanies attenuation and both phe-
nomena are connected by the Kramers-Kronig relations
[1, 2], acoustical dispersion can normally be neglected.
Thermodynamic relaxation towards the equilibrium state,
such as molecular relaxation in air and seawater, and
boundary layers, are examples of weak relaxation [3, 4].

Among acoustical media with strong dispersion, waveg-
uides and bubbly liquids are of great importance. The dis-
persion relations in wavequides are established by solv-
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ing the eigenvalue problem for the normal modes. For
certain amplitude modulations, the effects of dispersion
and nonlinearity are in balance, and the pulse envelope
propagates without change in shape [5]. Presence of even
small concentrations of bubbles in a liquid dramatically
increases the compressibility and thus reduces the sound
speed. Ensemble of gas oscillators gives rise to disper-
sion. Nonlinearity due to bubbles can exceed, by orders
of magnitude, the nonlinearity due to liquid alone [4]. This
makes studies of nonlinear effects important not only rel-
atively to sound itself, but in connection with nonlinear
phenomena induced in the field of sound. Analysis of
finite-amplitude sound in bubbly liquids is quite compli-
cated and involves a number of theoretical models con-
cerning thermodynamic processes in bubble itself and its
surrounding liquid [4, 6-10].

As for nonlinear generation of non-wave modes, i.e., vor-
ticity and entropy modes (these names come from the the-
ory of flows of standard uniform fluids [11]) in the field
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of sound in a bubbly liquid, as far as the authors know,
there is still unexplored domain. Studies in this area must
start from equations describing fluid dynamics of the mix-
ture as a whole. These equations schedule all motions
which may exist in a bubbly liquid and should be conse-
quently decomposed in order to yield equations governing
every mode. Modes of infinitely small amplitude do not
interact far from boundaries. As a result of the proper
decomposition of equations, nonlinear terms become dis-
tributed between equations correctly. They include terms
of all modes and may be considered as “specific forces”
which are involved in any dynamic equation. As usual,
it is possible to solve the system of coupling equations
for interacting modes approximately under some simplify-
ing conditions, for example, in the case when one mode is
intense as compared with other. These general ideas con-
cern a wide variety of fluid flows, not necessarily flows of
bubbly liquids. The procedure was applied by one of the
authors in problems of acoustic heating and streaming in
newtonian and non-newtonian fluids [12-14]. In the the-
ory of acoustic streaming, the acoustic nonlinear terms are
called the "driving force” of streaming and actually pos-
sesses dimension of a mass force. In Sec. 4, the system of
coupling nonlinear equations which describes interaction
of modes in a bubbly liquid, is derived, as well as the ap-
proximate equation governing the “entropy” mode in the
field of intense sound. The illustration in Sec. 5 considers
exact solution of the Korteweg-de Vries equation which
describes sound propagation over a bubbly liquid [6], and
the entropy mode cased by it.

2. Equations governing bubbly lig-
uid

We consider one-dimensional motions of the mixture which
consists of compressible liquid involving identical spheri-
cal bubbles of an ideal gas (along axis OX). All bubbles
are of the same radii at equilibrium, there is no heat and
mass transfer between liquid and gas. To simplify the
analysis, we assume that motions of the bubbles do not
influence each other (i.e., they are well separated), and
that they pulsate in their lowest, radially symmetric mode.
The characteristic scale of perturbation in the mixture is
much larger than a bubble radius, so that the mixture as
a whole may be treated as the homogeneous continuum.
Pressure in the mixture coincides with pressure of the lig-
uid [6, 15]. Quantities relating to gas, liquid or to the
mixture, are marked by index g, [ and m, correspondingly.
The unperturbed quantities are marked by additional zero,
and the disturbed ones are primed. Density of the mixture

is given by
Pg Pt
M

Pn = o

where x is a constant mass concentration of gas in the mix-
ture. It may be expressed by means of the initial volume
concentration of gas in the mixture, qp,

x= a2 2)

Pmo

Acoustics of incompressible liquids including bubbles was
originally studied by Wijngaarden [6]. Involving of liquid
compressibility enables us to account for effects of finite
sound velocity in pure liquid, ¢;, on the nonlinear phe-
nomena associated with sound. In particular, that corrects
the nonlinear parameter of sound [4, 16]. The requirement
that the mixture as a whole is homogeneously continuous
implies the possibility to use the conservation equations
in the differential form. They declare conservation of mo-
mentum, energy and mass:

av av 167,0’_

a Va0
o’ ,0p  cflvi—1) ,0p
P % a9y, 3
ot ot oo ot )

9, , AveL) _

ot Ox '
where v, p denote velocity and pressure in the mixture.
Consideration of three-dimensional flow would complicate
evaluations, because the vortex mode appears in flows ex-
ceeding one dimension. The vortex motion does not input
in variations in the mixture density, so that it is beyond the
scope of this study. The second equation in (3) is actually
a result of linear combination of continuity and energy
equations for pure liquid, with y,= %%g (g—gf ) ot G
and Cy denote heat capacities at constant pressure and
density. For water at normal conditions, it equals approx-
imately 7. Some other equations complement the system
(3). The first reflects constant mass of gas inside a spher-
ical bubble,

R3pg = R(?PQOr (4)

and the second one describes adiabatic behavior of gas in
it,

PapPg” = PgoPyo’ - ()

Eq. (4) imposes also constant density over the bubble vol-
ume, and Eq. (5) imposes, among spatially homogeneous
distribution of density and pressure in a bubble, no en-
ergy exchange between bubbles and surrounding liquid,
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Yo = gp—g Pulsation of each bubble is described by the

V.,

Ragle[gﬁl—Plesset equation:

RER 3[R’
a2 2\ ot

1 PR dR &R aR\*\ P, —p
—— [REC R 2 =) | =
c,z( o Narar T (ar) ) P

(6)

The surface tension is not taken into account by (6), but
it accounts for compressibility of a liquid [15, 17]. Eqs (4),
(5), (6) permit to rearrange the second equation from the
system (3) in terms of quantities describing the mixture p,
Pm, v. Eqg. (3) in the dimensionless quantities

’ ’

Ja_Vv d p d_ Pm d_X ,4_ tcm
,pl= X==, t=—, (7
Cm €2 Pmo P Pmo X A )

where A denotes the characteristic scale of perturbation,
and ¢, is the velocity of sound of infinitely small magni-
tude in a bubbly liquid [6],

1 _ (=)’ all- %)p0 ®)

2 2
Cm ] YgPg0

take the form [16]

ov dp _ dv_ Op
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Starting from Egs (9), upper indices by dimensionless
quantities will be omitted. The largest, quadratic terms
are held in the right-hand parts of all equations and ev-
erywhere below in this study. We will consider nonlinear
and dispersive terms of the same order. That provides
possibility of equilibrium between nonlinearity and dis-
persion. Egs (9) describe dynamic of pure liquid when
C(o—>0.

3. Decomposition of sound and the
entropy mode in the flow of infinitely
small magnitude

The linear analogue of the system (9) takes the form

oV
— + LY =0, 10
ar T (10)

;
wherelP:(v p p) ,

0 9
ox 1—0’)R2p262
L=| 24p2 0 0|, p=20=Riruc 4y
Ox s ox3 0 0 3(Vgpg0)2)\2 ( )
ax

are linear matrix operators including spacial derivatives
»Fp
. e
by f% following from the first and second equations in
the system (9) and valid in the leading order with respect
to powers of D. Studies of motions of infinitely-small

amplitudes begin usually with representing of all pertur-

and parameter responsible for dispersion. We replace

bations as a sum of planar waves:

f(x, t)= / F(k, t) exp(—ikx)dk =

/ (k) expliwt —ikx)dk, (12)

(7(k, t) denotes the Fourier transform of f(x,t), 7(k, t) =
217ff(x' t)edx). There are three roots of dispersion
equation, the first two being acoustic, specifying to the
sound progressive in positive and negative directions of
axis OX ( marked by indices 1 and 2, respectively), and
the third dispersion relation describing stationary (or “en-
tropy”) mode:

w1 =kV1 — DK2, wy=—kvV1 — DKZ, w3=0.  (13)

They determine relations of perturbations specific for ev-
ery mode:

V1 — Dk?
Wo=| 1-DK |pi
1
—V1 — Dk?
Y, = 1 — DK? 02, (14)
1
0
W= 1|0 |ps,
1
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where p, (n =1,2,3) are perturbations in density of a
bubbly liquid correspondent to every mode. The overall
perturbation in density is a sum of all them, p=Zi:1 Pn-
Eqgs (13), (15) may be expanded in series with respect to
powers of D. That significantly simplifies evaluations of
projectors but implies smallness of parameter of disper-
sion. Projectors are matrix operators decomposing every
mode from the total vector of perturbations,

1 1 D &
2 272 0
— 1 D 1
Pr=latdse 2 O
1_Dd 1_D2& g
2 4 ox 2 2 9x?
1 1 D &?
2 Tata 0
- 1_D& 1
Pa=1 -3 4 0x2 2 0.
14D 1_D2& |
2 4 ox 2 2 ox
0 0 0
Ps=10 0 0
2
0 —1+DZ% 1

Projectors (16) were firstly derived in [16]. Only the first
two terms in the Taylor series with respect to powers of
D (i.e., proportional to D° and D') are retained in the
elements of projectors. Projecting operators form a full
set of orthogonal projectors,

3
Y Pi=lPi-P;=0,i#j, P’=P, (16)

=

where | and 0 denote unit and zero matrix operators.

4. Coupled dynamic equations in
the nonlinear flow

Eqgs (9) accounting for nonlinear terms, take the form

oV
— Y=Y, 17
ot + ! (17)

The dynamic equations which govern any mode, may be
readily decomposed applying the projectors on the lin-
earized system (10). The projecting operators (16) point
the way for successful decomposision of equations govern-
ing every mode also in the nonlinear flow. The projection
results in dynamic equations with nonlinear terms respon-
sible for the modes interaction, i.e, the "specific forces” for

individual modes. In regard to the flow where sound is
intense as compared to the entropy mode, the correct de-
termination of sound itself is of importance. The effects
of sound wave are nonlinear, and the "exchange force”
caused by it in the equation for the entropy mode, is of the
second order. So that sound modes should be evaluated
within this accuracy, that add correctives of the second
order in the linear modes, Egs (15). These amendments
make sound propagating in the positive or negative di-
rections of axis OX isentropic in the leading order. The
emended modes take the form

1 02p1
m=pt e
((1—010)0,2"()’14'1) ciao(1—ao)2p%0(yg+1)_1) e
4¢? 4(vgpgo)? v

62p1
= Di
pi=p1+ E) +

((1—(7(0)6,2"(Y1+1) Cﬁqao(1—a0)zpfo(vg+1)_1)pz

(18)

26[2 2()/ng0)2 v
1 82p2
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45[2 4()’ng0)2 *
62p2
- pLP2
p2=p2t Lo+
((1 —ao)em(vi+1) | cpao(l = a0)*pig(ve +1) 1 ) 2
25[2 Z(Yngo)z .

Relations (19) result, among other, in the leading-order
equation governing sound progressive in the positive di-
rection of axis OX,

6p1 6p1 6p1 D63p1
—_— 4+ = — 4+ =——— =0, 19
at Tox TP e 20 (19)
where
e (0= a)ea(vi+1) | cnoo(l = a0)*pip(vg +1)

2C12 2(vgPpg0)?
(20)

denotes the parameter of nonlinearity of sound in a bubbly
liquid. Eq. (19) imposes intense rightwards propagating
sound as compared with other modes. This equation is
the well-known Korteweg-de Vries equation, which in the
case of bubbly liquid has been discussed in details [6, 8, 9].
The parameter of nonlinearity, given by Eg. (20), coincides
with this evaluated in [4]. In this last paper, the expres-
sion obtained for incompressible liquid is completed by the
terms following from the nonlinearity in equations different
from the pressure-density relation for the mixture. Unlike,
Eq. (20) is immediate result of considering of the total
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system of conservation equations describing compressible
liquid including bubbles. The system of equations which
describes interaction of different modes, may be obtained
by use of links specific for the modes, and by applying the
projecting operators on the system (9). Projecting reduces
terms of all other modes in the linear parts of equations
and distributes the nonlinear "forces” between them cor-
rectly [12, 16]. That allows to rearrange Eqs (17) into the
system in terms of reference quantities for every mode:

ot

i,j=1 i,j=1
(21)
The coefficients B;; and n;; are determined by Tables 1
and 2, respectively, where ¢, = <, =1, 3 =0, F =
—(1—ap)c2 Wﬁ, and My = M, = D, M3 =0. In studies
of nonlinear effects connected with intense sound, both
acoustic modes were re-defined in accordance to relations
(19) and analogous ones for the second mode. The context
of the nonlinear generation of non-acoustic modes in the
field of sound, such as acoustic heating and streaming,
imposes intense sound as compared with the other modes.
As for the entropy mode caused by the first acoustic mode,
that is valid over temporal and spatial domain where |p;| >
> |p3|- The dynamics of sound itself is described in this
domain by equation Eq. (19) which approximates the first
equation from the set (21) when impact of other modes on

the first one is ignored.

5. Growth in the bubbles radii in-
duced by sound. Example of acoustic
soliton

The example relates to generation of the entropy mode
in the field of intense first acoustic mode (progressive in
the positive direction of axis OX) comparatively with other
modes. Application of the third verse of projector P; on the
main system (9) reduces all terms belonging to the acous-
tic modes in the linear part of equation. In its nonlinear
part, we will consider only the largest terms originated
from the first acoustic mode. Finally, one obtains the dy-
namic equation governing an excess density of the entropy
mode:

6p1

d
P p1a3,

ot = Ple=2

(22)
where € and D are constants determined by equations
(20) and (11), respectively. An acoustic excess density in
the right-hand side of Eq. (22) must be solution of the
leading-order equation, Eq. (19). The form of Eq. (22) re-
veals, that the reasons for excitation of the entropy mode

an an a M63ﬂ
P+” P Zﬁupli"'z Mo P/ Pn _

by sound are both nonlinearity and dispersion. In the
standard thermoviscous flows, the phenomenon of nonlin-
ear generation of the entropy mode in the field of sound,
is well-studied. It is known as acoustic heating [18]. Its
origins are nonlinearity and the total attenuation, making
nonlinear loss in acoustic energy. In the dispersive media
like bubble liquid, dispersion is the prerequisite of modes
interaction instead of attenuation, or it is better to say, in
addition to attenuation. In this study, we do not consider
neither viscosity of both pure phases, nor thermal conduc-
tion of gas (this is important for small bubbles) [19, 20],
nor radiation attenuation connected with dynamics of a
bubble, but only phenomena associated with dispersion.
The set of stationary solutions of Eq. (19) which tend to
zero at infinite x (positive and negative), take the well-
known form of solitons depending on constant ¢;:

~ _ -
p1(5)=6(c18_1)[1+cosh( 2(“0‘”5)] @)

where ¢; is velocity of the stationary waveform, exceeding
the unit velocity of sound in the mixture for positive D,
¢1 > 1,and & = x — ¢ t. In fact, non-dimensional width of
a pulse is unit, this determines ¢;:

- D
G=1+5. (24)

Eqgs (22), (23) may be readily rearranged as

3(e — 3
pr(6=>24(0) pg(s)=W/ 6004

$(&)=[1 + cosh (&)] . (25)

The acoustic soliton and the entropy mode induced in its
field, are shown in the Fig. 1(a, b). The perturbation in
density p; is negative (in the bubbly water, € may achieve
10" at ap ~ 107, and is smaller than 10 only for very high
volume concentrations ag in the vicinity of 1 [4], so that the
factor by integral is positive). In view of low compressibil-
ity of liquid as compared to gas, the bubble radii increase.
The increase in volume concentration of bubbles Aa, and
that in a bubble radius, AR, equal approximately

1p3
Aa ~ — AR~ ———=R,. 2
ax —ps, 3a 0 (26)

The equalities are exact in the case of incompressible lig-
uid. Efficiency of generation of the entropy mode in the
field of acoustic soliton is low (its amplitude is approxi-
mately D? times smaller compared to that of the soliton),
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Table 1. The coefficients B7.

Bl Bij Bl

I 1 23 1o 2 3 o 2 3

L L L

1 € -3 1 0 2-¢ 1 1 0 2-20

2 e-2 03 2 ¢ - -3} 22-22 0 0

3 -MF+2)3F0 3 -JF 3(F+2) 0 3 F+2 —(F+2)0

Table 2. The coefficients n;;

fl?,,— ’7,‘2,1' ’7,‘3,1'
E 1 2 3 ) 1 2 30 1 2 3
L L L
1 IDEe-6) IDEe—-2) -ID 1 1D@Be-4) IDEe—1) -ID 1 D2-¢) 1DB-4e) D
2 ID1—¢) 1D@4-3¢) ID 2 1D2-¢) ID6-¢) ID 2 ID@Ae-3) DEe-2) -D
3 ioFr -IDF+2) 0 3 ID(F+2 —-IDF 0 3 -IDRF+1) IDRF+1) 0

but the example of acoustic soliton is remarkable because
it is exact solution of Eq. (19). In general, nonlinear ef-
fects are hardly expected to be large if cased by a single
waveform. They may be noticeable when cased by enough
extended in time acoustic source like wavepackets. The
example of acoustic soliton is also important in view of
that any initial waveform transforms with time into a set
of solitons in a dispersive medium [5, 19, 22].

6. Conclusions

The main result of this study, Eq. (22), reveals the new
(once more) reason for a bubble to grow in the acoustic
field, namely the nonlinear generation of the “entropy”
mode in the field of sound. Enlargement of bubbles was
well-studied experimentally and explained by shell and
rectifying effects, see [19] and references therein. Diffusion
of gas dissolved in liquid, occurs towards bubble during its
expansion, and in the opposite direction during its com-
pression. Since the surface of a bubble is smaller during
compression, and the thickness of the liquid layer, which
participates in aerogenesis, is larger (supporting smaller
gradient of gas concentration) as compared to expansion,
the averaged over the period flow of gas is directed to-
wards bubble. That makes it to grow. The velocity of
increase in mass of a bubble is found to be proportional
to the squared sound pressure. In this study the discov-
ered growth of a bubble radius in the field of sound is
of different origin as compared with the rectified diffusion.
The reason for that is the nonlinear interaction of entropy
and sound modes which may take place without diffusion

and does not connect with increase in the bubble mass.
The analogous phenomenon in the standard thermovis-
cous fluids is isobaric acoustic heating which is followed
by decrease in fluid density. The increase in the bubble
mass m in unit time due to rectified diffusion which was
derived by Neppiras [23], ‘ZT’;', is proportional to radius of
a bubble Ry, squared acoustic pressure, and to the fac-
tor depending on sound frequency, ((1 — Q?)% + Q?d?)~",
where Q) is the ratio of sound frequency and the natu-

3vgpgo
pwRE !
the inverse Q-factor of a bubble as oscillator, which typ-
ically is about 10. So, the rate of mass variation achieves

ral frequency of a bubble wy = QO = w/wy, dis

maximum approximately at the resonance frequency. As
for the nonlinear generation of the entropy mode, its ef-
ficiency is also proportional to squared acoustic pressure
and to radius of a bubble Ry. It is proportional to w?. In
standard thermoviscous flows, the efficiency of heating is
proportional to w?. This agrees with the general conclu-
sion of nonlinear acoustics that nonlinear effects of sound
are larger for big frequencies.

The entropy mode in the uniform fluid is specified by iso-
baric variations in density followed by variations in its
temperature. As for the bubbly liquid, variations in tem-
perature are different inside a bubble and in the surround-
ing liquid. However, the “entropy” mode exists in a bubbly
liquid even if liquid itself is incompressible and there is
no variations of temperature in it. In this case, density of
the mixture varies solely by change in volumes of bubbles.
In the linear flow, this mode is stationary. Nonlinearity
and dispersion are the reasons for excitation of the en-
tropy mode. The result of this is decrease in the mixture
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(a)

£ p3(8)
9D (&-2)

Figure 1. The stationary solution of Eq. (19), £p1() = (&), (b)
variations in density in the entropy mode, ﬁpﬂé) =

S 924 dE (Eas (25)).

density and correspondent increase of the bubbles radii.
The example in Sec. 5 considers acoustic soliton and non-
linear excitation of the entropy mode in its field. As for
efficiency of the entropy mode generation by the periodic
in time sound, it is low. Simple evaluations of averaged
over the sound period (27 in dimensionless quantities)
velocity of density variation, follow from Eq. (22):

0 d
(%2 )0l -2 (055 ) - @)
(e B 2) ap1 o |t+2m
~pE (—at ) -0, (28)

where angle brackets denote averaging over the sound pe-

riod, (f)=4- ftHZ" fdt. In the standard attenuating uni-

form fluids, the periodic sound produces non-zero quan-

tity. The rigzht—hand side of the correspondent equation
P

includes p; 55t standing by total attenuation [21]. The

averaged over the sound period decrease in a medium
density is followed by increase in its temperature. This
phenomenon in the field of periodic sound is known as
acoustic heating [18, 22].

The results of this study account for the liquid compress-
ibility. The limit of incompressible liquid (¢, — o0), among
other, does not permit to account for nonlinear features of
wave motion in a liquid. Neither heat and mass trans-
fer between bubbles and surrounding liquid, nor non-
uniformity of pressure and temperature inside bubble, nor
vaporization in the case of bubbles including vapor, were
considered. The numerical studies have taken into ac-
count these phenomena [20, 24], and the features due to
them are well-established. Without giving fundamentally
new results, consideration of these phenomena would sig-
nificantly complicate mathematic content of the study. Ac-
count for higher-order nonlinearity or nonlinear dispersion
may be a reason for some peculiarities in the sound propa-
gation, they are, among other, non-elasticity of interaction
of solitons or weak destroying of an acoustic soliton due to
radiation [4]. We do not consider these phenomena. Since
the thermal conductivity should be taken into account for
small bubbles (which radius is smaller than resonant one)
[19, 20], but is out of the scope of the present study, in
concrete evaluations enough large quantities should be

used. If the characteristic length of the thermal wave in
2x

PgoCp.gw

the viscous losses in studies of a bubble oscillations are

important (x is the thermal conductivity of gas). For large

a gas is larger than radius of a bubble, R,

2x P _
bubbles, Ry > ParCrg’ the radiation caused by com

pressibility of liquid and viscous losses are of importance.

It was experimentally established, that liquid compress-
ibility is dominant as compared to viscosity at frequen-
cies 10 KHz and Ry>2 mm. In the simple evaluations for
bubbly water, we may use the following data: Ry=2 mm,
pio =10 kg/m3, pgo=10° Pa, yo =14, y;=7, ¢, =1500
m/s. Value of the initial volume concentration of gas in the
mixture ap=10"*, results in maximum increase in bubbles
radii cased by acoustic soliton about 16%, and ap = 107
yields 3.6%.
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