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Abstract

This study is devoted to derivation of approximate equations governing acoustic pulse
in flows with yield stress, including some time-dependent flows with slow dependence
of yield stress and apparent viscosity on time. Modeling of yield stress and apparent
viscosity in the vicinity of zero deformation rate allows to consider thixotropic fluid as
a Bingham plastic with coefficients dependent on time. The ordering scheme results in
equations valid in the leading order with respect to a number of small parameters. The
unusual property of domains of a waveform with positive and negative shear stress to
propagate with different velocities is discovered. The illustration concerns the bipolar
initially acoustic pulse which becomes positive after some time. The proposed theory
predicts broadening of a pulse due to the yield stress starting from some time from the
beginning of evolution.
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1 Introduction

Many fluids reveal non-newtonian behavior. In contrast with newtonian fluids, the non-
newtonian properties are cased by the viscous dissipation of energy due to collisions between
large particles, or to the distortion of or the collision between colloidal structures. One of the
main types in this group is Bingham plastic. Paints, slurries, pasts and some food products are
described by Bingham model, i.e., a yield stress followed by Newtonian behavior with constant
viscosity when shear rate differs from zero. Bingham plastics belong to the category of time
independent fluids, because their shear rate depends only on a shear stress and is a single valued
function of it.

The thixotropic fluids belong to the class of time dependent fluids, i.e. fluids, whose viscosity
depends on the duration of flow [1]. As for thixotropic fluid, stress tensor and apparent viscosity
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depend not only on shear rate at any instant, but on the previous history of a fluid, for example,
wether or not it has been stirred recently. That makes studies of the flows of these fluids fairly
difficult [1, 2, 3]. The apparent viscosity of thixotropic fluids usually decreases as the shearing
continues. The type of negative thixotropic fluids, which apparent viscosity increases with shear
rate and duration of shear, are much less common that the thixotropic kind [1]. Particles of
the shape of long needles, thin discs or polymeric particles are thixotropic to a greater degree
than molecules of uniform shapes such as spheres. Any theory of thixotropy must account for
the time dependence. Some thixotropic materials initially behave as Bingham plastics in that
they possess a yield value, below which no flow takes place. There are many food products
among them: molten chocolate and creams of all sorts, ketchup and other sauces [4, 5]. They
are sometimes referred to as thixotropic-plastic fluids, with values of yield stress and apparent
viscosity which should be remembered varies depending on shear rate and duration of shear.

The main idea of this study which is devoted to sound propagation in time-dependent flows
with threshold stress, is to consider the domain in the vicinity of zero deformation rates because
it is only of interest in the weakly nonlinear acoustics. That allows to apply the ordering scheme
which starts from establishing of stress tensor as the Taylor series in powers of shear rate with
coefficients (namely the yield stress and apparent viscosity) dependent on time. One more
simplifying condition will refer to the smallness of variations of these coefficients with time as
compared with variations of perturbations in the sound wave. In the considered example of time-
dependent foods, that is valid for enough large times. A Bingham plastic may be considered
as a simple limit of a thixotropic fluid with constant threshold stress and viscosity. As far
as the author knows, acoustics of Bingham plastics is a new domain to study. The ordering
procedure allows to establish approximate relations between perturbations in the sound wave
and to derive dynamic equations for it. In spite of evident difficulties in analytical description
of flow characteristics of time dependent fluids, the simplifying conditions make possible to
consider the problem in general and to conclude about distortion of sound waveforms in them.

2 Dynamic equations and stress tensor in a fluid with a

yield stress

The continuity, momentum and energy equations describing any viscous fluid flow without
external forces read:

∂ρ

∂t
+
−→∇ · (ρ−→v ) = 0

∂−→v
∂t

+ (−→v · −→∇)−→v =
1

ρ

(
−−→∇p + Div P

)
, (1)

∂e

∂t
+ (−→v · −→∇)e =

1

ρ

(
−p(

−→∇ · −→v ) + P : Grad −→v
)

,

~v denotes the displacement (or particle) velocity, ρ, p are density and pressure of a fluid,
respectively, e denote its internal energy per unit mass, and xi, t are the spatial coordinates
and time. The operator Div denotes the divergence of a tensor, Grad is a dyad gradient, and
P is the viscous stress tensor.

The thermodynamic function e(p, ρ) complements the system (1). It may be written as series
of the excess internal energy e′ = e − e0 in powers of excess pressure and density p′ = p − p0,
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ρ′ = ρ− ρ0 (ambient quantities are marked by index 0):

e′ =
E1

ρ0

p′ +
E2p0

ρ2
0

ρ′ +
E3

p0ρ0

p′2 +
E4p0

ρ3
0

ρ′2 +
E5

ρ2
0

ρ′p′ + . . . , (2)

where E1 = ρ0Cvκ
β

, E2 = −Cpρ0

βp0
+ 1, E3, E4, E5 are dimensionless coefficients, Cv, Cp denote the

heat capacities per unit mass under constant volume and pressure, and κ, β mark compress-
ibility and the thermal expansion, respectively:

κ = − 1

V

(
∂V

∂p

)

T

=
1

ρ

(
∂ρ

∂p

)

T

, β =
1

V

(
∂V

∂T

)

p

= −1

ρ

(
∂ρ

∂T

)

p

. (3)

The series (2) allows consideration of a wide variety of fluids in the general form: discrepancies
are manifested by the different coefficients for different fluids. Infinitesimal sound velocity in a
non-viscous fluid (when P = 0), is

c0 =

√
(1− E2)p0

E1ρ0

. (4)

Determination of stress tensor is the main point in studies of any viscous flow. As for studies of
weakly nonlinear dynamics of a sound and associated with it phenomena, the ordinary scheme
focuses on equations including nonlinear terms of order not higher than second in the acoustic
Mach number M = v0/c0, where v0 is a typical velocity magnitude in a fluid. We will consider
one-dimensional motion along axis OX with one-component shear rate γ̇ ≡ ∂v/∂x and shear
stress Px,x ≡ σ. In this study, the ordering scheme, along with the Mach number, refer to
some other small parameters. The first is associated with viscosity η. For sound to be the
wave process, it must be weakly attenuated during its period. The second condition requires
smallness of the yield stress, σ0. Hereafter will be shown that the yield stress contributes to the
sound speed in a fluid. We will consider the additional term stipulated by the yield stress small
compared with the sound speed in a medium without yield stress. To facilitate implementation
of the ordering scheme, we will consider the first parameter of order M , and the second one of
the same order or smaller,

ηΩ

ρ0c2
0

= O(M),
σ0

E1ρ0c2
0

= O(Mn), (5)

where n ≥ 1, and Ω denotes a characteristic frequency of sound. The first requirement may
be easily satisfied by choice of correspondent frequency of sound. It is well-known that sound
of higher frequency attenuates stronger. The second demand refers to the properties of the
medium itself. Typically, yield stress is not a large quantity in structured liquids, it varies
from units till thousands Pa [4]. The denominator in the second condition is expected to
be large. For example, E1ρ0c

2
0 in water at normal conditions is about 2 · 1010 Pa (water is

not thixotropic fluid, but in contradistinction to most of them, its thermodynamic properties
is well-studied). The typical value of the Mach number varies from 10−3 till 10−2. So that,
the second parameter from Eq.(5) may be considerably smaller than the first one, but it is of
importance since it participates in the linear part of energy equation and hence is responsible
for the linear dynamics of sound. Our primary objective is to derive model equations including
nonlinear terms at order M2 outside thermoviscous boundary layers of a viscous fluid. In view
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of this, the terms including γ̇0 and γ̇1 only are of importance in the series of stress tensor. In
the vicinity of zero shear rate, positive or negative, shear stress may be expanded in the Taylor
series and takes the form dependent on the sign of shear rate:

σ =

{
σ0 + ηγ̇, if γ̇ > 0,
−σ0 + ηγ̇, if γ̇ < 0.

(6)

If γ̇ = 0, the shear stress may take values from −σ0 till σ0. Eqs (6) describes exactly a Bingham
plastic if σ0 and η are constants [6] (in this case, it is correct not for only small shear rates) and,
in general, a thixotropic fluid if σ0 and η vary with time. That makes possible not to consider
dependence of these quantities on shear rate. The figure below illustrates this simple idea.

S
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te
s

Σ0HtL

Α, tgHΑL=ΗHtL

Shear rate

Shear stress

Fig. 1. In the vicinity of zero yield stress, σ0 and η are functions of time in thixotropic flows, and
constants in Bingham plastics.

3 Equations describing dynamics of sound

It is convenient to rearrange formulae in the dimensionless quantities

p∗ =
p′

c2
0 · ρ0

, ρ∗ =
ρ′

ρ0
, v∗ =

v

c0
, x∗ =

Ωx

c0
, t∗ = Ωt, σ∗0 =

σ0

E1ρ0c2
0

, η∗ =
Ωη

ρ0c2
0

. (7)

Starting from Eqs (8), the upper indexes (asterisks) denoting the dimensionless quantities will be
omitted everywhere in the text. In the dimensionless quantities, Eqs ( 1) accounting for Eq. (2), read:

∂ρ

∂t
+

∂v

∂x︸ ︷︷ ︸
linear

= −v
∂ρ

∂x
− ρ

∂v

∂x︸ ︷︷ ︸
O(M2)

,

∂v

∂t
+

∂p

∂x
− η

∂2v

∂x2︸ ︷︷ ︸
linear

= −v
∂v

∂x
+ ρ

∂p

∂x︸ ︷︷ ︸
O(M2)

, (8)

∂p

∂t
+ (1 + S)

∂v

∂x︸ ︷︷ ︸
linear

= −v
∂p

∂x
+ (D1p + D2ρ)

∂v

∂x︸ ︷︷ ︸
O(M2)

,

where

S =
{ −σ0, if

(
∂v
∂x

)
> 0,

σ0, if
(

∂v
∂x

)
< 0,

(9)

and

D1 =
1

E1

(
−1 + 2

1− E2

E1
E3 + E5

)
, D2 =

1
1− E2

(
1 + E2 + 2E4 +

1− E2

E1
E5

)
. (10)
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3.1 Sound of infinitely small magnitude

The set of equations (8) describes weakly nonlinear dynamics of all possible motions in a fluid, including
two acoustic modes, propagating in positive or negative direction of axis OX, and the thermal (non-
wave) mode. The linearized version of system (8), which describes motion of infinitely small magnitude,
yields in relations connecting dimensionless perturbations of density, pressure and velocity for any
mode. It is of importance to derive the dynamic equation governing one from two acoustic branches
individually. It would include the first partial derivative with respect to time in contrast with equation
describing both these branches, which includes the second partial derivative. If S and η were constants
independent on time, relationships for progressive in the positive direction of axis OX sound, would
look like

pa =
(

1 +
S

2

)
va +

η

2
∂

∂x
va, ρa =

(
1− S

2

)
va +

η

2
∂

∂x
va. (11)

These relations in fact may be obtained by requiring equivalence of all three linearized equations from
the set (8) in terms of va for the mode propagating in the positive direction of axis OX with the
approximately unit velocity. The important and unusual property of sound mode is that its definition
depends (by means of S) on the sign of velocity gradient. The linear equation describing the fluid
velocity in an acoustic wave propagating in the positive direction of axis OX, with account for (11),
takes the form which describes differently cases of positive and negative shear rates:

∂va

∂t
+

(
1− σ0

2

) ∂va

∂x
− η

2
∂2va

∂x2
= 0,

∂va

∂x
> 0, (12)

∂va

∂t
+

(
1 +

σ0

2

) ∂va

∂x
− η

2
∂2va

∂x2
= 0,

∂va

∂x
< 0.

We may readily derive demand on smallness of variations of S and η in time making Eqs (11), (12)
valid in the leading order,

∂S

∂t
= O(Mn+1),

∂η

∂t
= O(M2). (13)

To satisfy above conditions, S and η must vary slower approximately M−n and M−1 times than
perturbations in the sound wave itself, correspondingly. Eqs (12) in the limit η = 0 have exact
solutions

va = ϕ

(
x− t +

1
2

∫ t

0
σ0(τ)dτ

)
,

∂va

∂x
> 0, (14)

va = ϕ

(
x− t− 1

2

∫ t

0
σ0(τ)dτ

)
,

∂va

∂x
< 0,

satisfying the initial condition va(x, t = 0) = ϕ(x). Velocity of propagation of the waveform domains
where shear rates is positive, is smaller comparatively with that of the domains of negative shear rate
and does not depend on the absolute value of shear rate. That expands the part of positive particle
velocities. Fig.2 illustrates this property. The important peculiarity of the liquid flows with a yield
stress which differs them from Newtonian, is that the momentum of one-dimensional pulsed sound is
not constant in time. We may rearrange the second equation from Eqs (8) with account for Eqs (11)
into the following leading-order equation

∂v

∂t
=

∂

∂x

(
−p + η

∂v

∂x
− v2

2
+

p2

2

)
≈ ∂

∂x

(
−p + η

∂v

∂x

)
. (15)

In regard to the bipolar initially impulse sound (the curve marked by t1 = 0 in Fig.2), integrating
Eq.(15) over the space coordinate x, and taking into account that for a pulsed sound ∂v/∂x(x =
±∞) = 0, yields

∂

∂t

(∫ ∞

−∞
vdx

)
= −

(
1− σ0

2

)
v

∣∣vmax
vmin

+
(
1 +

σ0

2

)
v

∣∣vmax
vmin

= σ0(vmax − vmin), (16)
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where vmin and vmax denote minimum and maximum value of the particle velocity in a pulse, corre-
spondingly. Thus the area of the particle velocity profile, which is known to be proportional to the
momentum of acoustic pulse [7], is not conserved during its propagation. That concerns both linear
and weakly nonlinear regimes of viscous flow. In standard viscous flow, momentum does not vary
[7, 8]. At the first stage, when a pulse of zero initial momentum holds bipolar, its width remains
constant but its positive parts broadens wile negative become smaller. The amplitude of the negative
part reduces (it depends on time), but of the positive part remains constant. A bipolar acoustic pulse
of nonzero initial momentum in its propagation, first, transforms into a unipolar pulse of the same
duration, and only after that broadening of the pulse starts.

t1=0

t2>t1 t3>t2

x

vmax

vminHtL

Fig. 2. Schematic dynamics of initially bipolar acoustic pulse in the limit η = 0.

The momentum of the bipolar pulse slowly increases with time. Starting from time t for which∫ t
0 σ0(τ)dτ ≈ π, its momentum increases as Mn+2t, and it begins to broaden. Its energy dissipates

due to viscosity which is not considered by this simple example. Account for viscosity would lead to
the preferential absorption of high-frequency components in the initial spectrum of a pulse, and as a
result, to the expansion of a pulse proportionally to

√
t and decrease in its energy as 1/

√
t at enough

large times [7]. If due to nonlinear distortions the shock wave forms, that leads to the additional
absorption of sound energy on its front.

3.2 Weakly nonlinear dynamics of sound

Once linear relationships of perturbation in the sound are established (Eqs(11)), they may be com-
plemented by the second-order nonlinear terms making all three equations from the set (8) equivalent
within the accepted accuracy, i.e. including nonlinear terms of order not higher than M2. They take
the form

pa =
(

1 +
S

2

)
va +

η

2
∂

∂x
va +

1−D1 −D2

4
v2
a, ρa =

(
1− S

2

)
va +

η

2
∂

∂x
va +

3 + D1 + D2

4
v2
a, (17)

and result in the weakly nonlinear dynamic equations

∂va

∂t
+

(
1− σ0

2

) ∂va

∂x
− η

2
∂2va

∂x2
+ εva

∂va

∂x
= 0,

∂va

∂x
> 0, (18)

∂va

∂t
+

(
1 +

σ0

2

) ∂va

∂x
− η

2
∂2va

∂x2
+ εva

∂va

∂x
= 0,

∂va

∂x
< 0,

with ε = 1−D1−D2
2 being the parameter of nonlinearity in a fluid. Since the equation of state in a

thixotropic fluid, and hence D1 and D2, may depend on time, the conditions of validity of Eqs (18)
include, along with Eqs (13), requirement of slow variation of D1 and D2 in time. In view of they
stand by the nonlinear term of order M2, this demand sounds

∂D1

∂t
= O(M),

∂D2

∂t
= O(M). (19)
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The most simple example, which does not require numerical calculations, considers the nonlinear
dynamics of stationary sound without account of viscosity, described by Eqs (18). Fortunately, the
family of stationary solutions in the form progressive in the positive direction of axis OX,

va = −C1√
ε

tanh
(

C1
√

ε

η
(x− t− 1

2

∫ t

0
σ0(τ)dτ) + C2

)
(20)

possesses negative ∂v/∂x for any x. They are exact solutions for the second equation from the set
(18) for constant η and approximate ones if η slowly depends on time. C1 and C2 are constants
originating from double integration. The width of the wave front equals approximately 2η/(|C1|

√
ε).

The velocity of this stationary waveform is greater than dimensionless sound velocity 1 in a medium
without threshold stress and depends on time. Analytical solution of Eqs (18) when η = 0, progressive
in the positive direction of axis OX, is represented by formulas

va = ϕ

(
x− t (1 + εva) +

1
2

∫ t

0
σ0(τ)dτ

)
,

∂va

∂x
> 0, (21)

va = ϕ

(
x− t (1 + εva)− 1

2

∫ t

0
σ0(τ)dτ

)
,

∂va

∂x
< 0.

The nonlinear distortions of the sound wave themselves are well-studied [7, 9]. In view of that pa-
rameter of nonlinearity ε in fluids is positive, the nonlinearity makes the parts with larger particle
velocities to propagate faster. The conditions of the shock wave forming are identical with those in
the flows without yield stress, namely the time required for that equals (εM)−1. Energy of the shock

pulse wave decreases in time as
(√

1
2 + εMt

)−1

due to nonlinear dissipation [7], slower than that of
the periodic sound.

4 Yield stress and apparent viscosity in some thixotropic

fluids

The idea of considering a weakly nonlinear dynamics of sound, and to use the series of stress tensor
σ(t, γ̇) in the vicinity of zero shear rates, γ̇ = 0, may be employed to a wide variety of thixotropic
fluids. In order to solve (analytically or numerically) equations of the previous section, one does not
require knowledge about complex behavior of a flow at mediate and high shear stresses, only data
relating to the low shear stresses, and only two first coefficients in the Taylor series, Eq.(6) which are
in fact the threshold stress and apparent viscosity depending exclusively on time. Some analytical
formulae based on the kinetic theory are useless, because they do not describe the domain of small
shear stresses within satisfactory accuracy. For example, the experimentally measured values of shear
stress in stirred yogurt at shear rates less than 100s−1 would be underestimated by 20 − 50% [10].
The error increased with enlargement of shear rate and was particulary evident at shear rates between
5 and 15s−1, namely in the domain of interest in weakly nonlinear acoustics. Most experimental
investigations of thixotropic fluids consider small shear rates, but do not concern the very area of zero
shear rates. We may assume continuity of the dependence of shear stress on shear rate and to evaluate
the required quantities σ0 and η by interpolation of deformation rate towards zero at any instant.

The logarithmic time model proposed by Weltmann and previously used to describe the stress
decay behavior of time-dependent foods [5, 11], where in dimensional quantities

σ = A + B ln(t/Tm), (22)

and Tm is the characteristic parameter to describe structure rebuilding. This model was found to
give good correlations when applied to the data. For stirred yogurt, the following power law and
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logarithmic models were found to best describe the behavior of A and B, respectively, over the full
range of shear rates used, i.e., 5− 700s−1 [12]:

A = A1γ̇
A2 , B = −B1 · ln(γ̇)−B2, (23)

A1 = 37.18, A2 = 0.19, B1 = 2.01, B2 = 0.549, Tm = 5s, where σ is measured in Pa, and shear
rate in s−1. Other thixotropic fluid foods (for example, mayonnaise, ketchup, sauces or honey) fit
similar equation within enough high accuracy, with obviously somewhat different constants. As for
small shear rates, formula (22) are trustable for small, but finite values of shear stress, because it gives
infinitely large value of shear stress in zero shear rate in any time. Relatively to yogurt, the lower
limit in dimensional quantity is Γ̇m = 5s−1.

We propose to extrapolate dimensionless curves by the linear function σ = σ0 + ηγ̇ in the area
0 ≤ γ̇ ≤ Γ̇m/Ω. In Γ̇m, both experimental and linear functions must have equal value and first
partial derivative with respect to shear stress. The Fig.3 below demonstrates the extrapolation of
experimental data for stirred yogurt at some values of time.

Experimental data

T1

T2

T3

.

E
x
tr

ap
o
la

te
d

d
at

a

Gm

0 5 10 15 20 25 30
Shear rate Hs-1L

20

40

60

80

100
Shear stress HPaL

Fig. 3. Extrapolated (for shear rates less or equal than Γ̇m = 5s−1) and experimental data for
stirred yogurt accordingly to Eqs (22),(23) for T1 = 1s, T2 = 10s and T3 = 100s.

Above conditions determine non-dimensional η and σ0:

σ0 = C1 + C2 ln(t/(ΩTm)), η = C3 + C4 ln(t/(ΩTm)). (24)

Relatively to yogurt, dimensionless coefficients C1, C2, C3, C4 take the form

C1 = −A1(A2 − 1)
E1ρ0c2

0

(Γ̇m)A2 , C2 =
1

E1ρ0c2
0

(B1 −B1 ln(Γ̇m)−B2), (25)

C3 =
A1A2Ω
ρ0c2

0

(Γ̇m)A2−1, C4 = − B1Ω
ρ0c2

0Γ̇m

.

Since σ0 and η should be small in accordance to Eqs (5), it is sufficient to demand smallness of
σ0(t = 0) and η(t = 0),

C1 − ln(ΩTm) = O(Mn), C3 − ln(ΩTm) = O(M). (26)

Both σ0 and η in the form of (24),(25) are slowly varying functions on time satisfying the requirement
(13) if

t >
max(|C2|, |C4|)
min(M2,Mn+1)

. (27)

C2 and C4 for a common thixotropic fluid are negative. Eqs (24) determine the local sound velocity of
domains with positive shear rate as 1−(C1−C2 +C2 ln(t/ΩTm))/2, and that of domains with negative
shear rate as 1 + (C1 −C2 + C2 ln(t/ΩTm))/2 independently on the absolute value of shear rate, only
on its sign. So that, the difference in propagation velocities depends on time, but for enough large
times the waveform changes its shape only slowly.
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5 Conclusions

Eqs (12), along with (18) and relations of perturbations in the sound wave, Eqs (11) and (17), are the
main result of this study. They are valid approximately in Bingham plastics and in some thixotropic
fluids. The objective of this study is also to point out unusual properties of sound in these fluids.
The equations governing dynamics of sound over them depend on a sign of shear rate. That requires
individual evaluation of dynamics of every waveform. The example shows that the yield stress makes
parts of different velocity gradients to propagate with different speeds, in general slowly depending
on time. That makes a bipolar pulse monopolar with time and leads to additional broadening of it
comparatively with that caused by viscosity. The knowledge about variations in the shape of sound
wave, and variation of velocity of propagation of stationary waveforms may be useful in evaluations
the yield stress itself, where the direct measurements are impossible. Distortion of the waveform
differs from that due to nonlinearity in the equations and may be recognized readily. The conclusions,
though approximate, follow from analytical formulae. They are valid only for the mobile liquid, at
shear stresses small (in sense that are proportional to M) but enough large for experimental data
to confirm non-elastic behavior of a medium. The lowest value is usually determined by accuracy
of a viscometer, about 10−1s−1, or even smaller, 10−2s−1 [4]. If the liquid behavior is confirmed at
γ̇ ≥ 10−1s−1, that gives for M = 10−3 value of Ω ≥ 102s−1 which supports enough large gradients of
velocity in the sound wave. We should assume sound to be a wave process, weakly attenuating at the
wavelength, so that η(t)Ω

ρ0c20
<< 1. For preliminary evaluation for yogurt, replacing η with its maximum

value, η(0), and ρ0, c0 by the values in water, one obtains Ω << 106s−1. So, the conclusions are valid
for sound with enough high frequency to support shear rates belonging to the area where experiments
confirm liquid behavior of a medium, and with enough small frequency for sound not to attenuate
strongly over the sound period and to be hence a wave process. At practically zero shear rates, where
a medium behaves as solid, the shear stress depends on strain, or, that is very likely in rheological
media, both on strain and shear rate. The solution may be thought therefore as consisting of parts
with non-zero shear rates stapled continuously with parts of zero shear rates, as it is shown by Fig.2.

The results are based on the idea of treating a thixotropic fluid as a Bingham plastic with pa-
rameters depending on time. This way does not distinguish between thinning or thickening flows
because takes into account only two first main terms in the Taylor series, Eq.(6). Along with Bingham
plastics, the non-Newtonian fluids include shear thinning and shear thickening fluids, whose apparent
viscosity decreases or increasing with enlarging shear rate, respectively. The main reason for the sound
not to be investigated in time-independent shear thinning or shear thickening fluids, is mathematical
difficulty and probably lack of interest to these fluids as the media of sound propagation. As the first
approximation, the apparent viscosity may be treated as constant for some narrow domain of shear
stresses and hence to the sound frequencies. The experimental data may provide the required param-
eters describing thixotropic fluid like these for yogurt, which flow characteristics are described by Eqs
(24). Eq.(22) which describes time-dependent foods, requires experimental data to establish A, B and
Tm. The validity of conclusions is however restricted by important conditions. There are smallness
of viscosity for sound to be a wave process, smallness of threshold stress for the waveform speed not
to distort considerably from constant, and smallness of temporal variations in structure during the
propagation of sound pulse over a medium. That concerns determination of σ0, η, c0 and parameter
of nonlinearity of sound, ε, in the weakly nonlinear flows. The account for strong dependence of these
quantities on time makes the mathematical content of the problem very difficult. The velocity and
perturbations of pressure and density in sound are also small. This last condition is usual in linear
and weakly nonlinear acoustics. The example at Fig.2 considers only distortions of the wave form
originated from the yield stress in view of mathematical difficulties of account for the variable appar-
ent viscosity. Initially bipolar pulse transforms into positive, monopolar one. The similar behavior
of acoustic pulses has been observed experimentally and explained theoretically in continuum solid
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media with hysteresis [14], though the origin of a pulse distortion there is different and associates with
hysteretic nonlinearity. The theory developed by Gusev, and that of the present study both predict
that a bipolar pulse of nonzero momentum transforms in its propagation into a unipolar pulse. This
study concerns homogeneous fluids and flows far from boundaries.
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