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Artic{e history: Given a set of vertices S = {vq, v,, ..., vy} of a connected graph G, the metric represen-
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Accepted 10 March 2011 resolving set for G if for every pair of distinct vertices u, v of G, r(u|S) # r(v|S). The metric

dimension of G, dim(G), is the minimum cardinality of any resolving set for G. Let Gand H be
two graphs of order n and n,, respectively. The corona product GOH is defined as the graph
obtained from G and H by taking one copy of G and n; copies of H and joining by an edge
each vertex from the ith-copy of H with the ith-vertex of G. For any integer k > 2, we define
the graph G O H recursively from G ® H as GO¥H = (GO*'H) ® H. We give several
results on the metric dimension of G ®* H. For instance, we show that given two connected
graphs G and H of order n; > 2 and n, > 2, respectively, if the diameter of H is at most
two, then dim(G ©% H) = n;(n, + 1)*"! dim(H). Moreover, if n, > 7 and the diameter of H
is greater than five or H is a cycle graph, then dim(G ©* H) = n;(n, + D* ' dim(K; © H).
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1. Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [1], and
Slater [2], to define the same structure in a graph. After these papers were published, several authors developed diverse
theoretical works on this topic [3-10]. Slater described the usefulness of these ideas into long range aids to navigation [2].
Also, these concepts have some applications in chemistry for representing chemical compounds [11,12] or to problems
of pattern recognition and image processing, some of which involve the use of hierarchical data structures [13]. Other
applications of this concept to navigation of robots in networks and other areas appear in [6,8,14]. Some variations on
resolvability or location have been appearing in the literature, like those about conditional resolvability [9], locating
domination [15], resolving domination [ 16] and resolving partitions [5,17-19]. In this article we study the metric dimension
of corona product graphs.

We begin by giving some basic concepts and notations. Let G = (V,E) be a simple graph of order n = |V|. Let
u, v € V be two different vertices in G, the distance dg(u, v) between two vertices u and v of G is the length of a shortest
path between u and v. If there is no ambiguity, we will use the notation d(u, v) instead of dg(u, v). The diameter of G is
defined as D(G) = maxy ev{d(u, v)}. Given u,v € V,u ~ v means that u and v are adjacent vertices. Given a set of
vertices S = {vq, v2, ..., vy} of a connected graph G, the metric representation of a vertex v € V with respect to S is the
vector r(v|S) = (d(v, vy), d(v, v2), ..., d(v, vy)). We say that S is a resolving set for G if for every pair of distinct vertices
u,v € V, r(u|S) # r(v|S). The metric dimension of G is the minimum cardinality of any resolving set for G, and it is denoted
by dim(G).
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Let G and H be two graphs of order n; and n,, respectively. The corona product G ® H is defined as the graph obtained
from G and H by taking one copy of G and n; copies of H and joining by an edge each vertex from the ith-copy of H with the
ith-vertex of G. We will denote by V = {vq, v, .. ., vy, } the set of vertices of G and by H; = (V;, E;) the copy of H such that
v; ~ v for every v € V;. Notice that the corona graph K; © H is isomorphic to the join graph K; + H. For any integer k > 2,
we define E{he graph G O* H recursively from G © H as GO*H = (GO ' H) ® H. We also note that the order of G ©F H is
n1(n2 + 1) .

2. Metric dimension of corona product graphs
We begin by presenting the following useful facts.

Lemma 1. Let G = (V, E) be a connected graph of order n > 2 and let H be a graph of order at least two. Let H; = (V;, E;) be
the subgraph of G ® H corresponding to the ith-copy of H.

(i) If u, v € V,, then dgon (u, X) = dgon (v, X) for every vertex x of G © H not belonging to V.
(ii) If Sis a resolving set for G © H, then V; NS # @ foreveryi € {1, ..., n}.
(iii) If S is a resolving set for G © H of minimum cardinality, then V NS = (.
(iv) If H is a connected graph and S is a resolving set for G © H, then foreveryi € {1, ..., n}, S N V;is a resolving set for H;.

Proof. (i)Lety = v; € V.The result directly follows from the fact that dgop (u, X) = deony (U, ¥) +deon (v, X) = deon (v, y) +
doon (¥, X) = doon (v, X).

(ii) We suppose V; NS = @ for somei € {1, ..., n}. Letx, y € V;. By (i) we have d¢op (%, u) = dgon (¥, u) for every vertex
u € S, which is a contradiction.

(iii) We will show that S’ = S — V is a resolving set for G © H. Now let x, y be two different vertices of G ©® H. We have
the following cases.

Case 1: x, y € V;. By (i) we conclude that there exist v € V; NS’ such that dgop (X, v) # dgon (¥, v).

Case2:x € Viandy € V;, i #j.Letv € V;NS'. Then we have dgoy (%, v) <2 < 3 < dgey (¥, v).

Case3:x,y € V.Letx = v; and let v € V; N S’. Then we have dgoy (%, v) = 1 < 1+ dgou (¥, x) = deon (¥, V).

Case4:x € Viandy € V.Ifx ~ y, theny = vi.letv; € V, j # i,andlet v € V; NS Then we have
deon(x,v) = 1+ dgep(y,v) > deog(y,v). Forx #* y = v we take v € V; NS’ and we obtain dgoy(x, v) =
deon (X, y) + deon (¥, v) > deon (¥, v).

Therefore, S’ is a resolving set for G © H.

(iv) Let S; = SN V. Forx € S;ory € S; the result is straightforward. We suppose x, y € V; — S;. Since S is a resolving set
for G © H, we have r(x|S) # r(y|S). By (i), deon (x, u) = dgon (¥, u) for every vertex u of G © H not belonging to V;. So, there
exists v € §; such that dgop (X, v) # doon (¥, v). Thus, either (v ~ xand v 7 y)or (v 7 x and v ~ ). In the first case we
have dgon (%, v) = dy;(x, v) = 1and dgon (¥, v) = 2 < dy; (¥, v). The case v #* x and v ~ y is analogous. Therefore, S; is a
resolving set for H;. O

Theorem 2. Let G and H be two connected graphs of order ny > 2 and n, > 2, respectively. Then,

dim(G ©*H) > n;(n, + D* ' dim(H).

Proof. Let S be a resolving set of minimum cardinality in G ® H. From Lemma 1(iii) we have that S NV = . Moreover, by
Lemma 1(ii) we have that for everyi € {1, ..., n;} there exist a nonempty set S; C V; such that S = Uf:]] Si. Now, by using
Lemma 1(iv) we have that S; is a resolving set for H;. Hence, dim(G © H) = |S| = Y 11, |Si| > Y1, dim(H) = n,; dim(H).
As a result, the lower bound follows. O

Theorem 3. Let G be a connected graph of order ny > 2 and let H be a graph of order n, > 2. If D(H) < 2, then
dim(G % H) = n1(n, + D* 1 dim(H).

Proof. Let S; C V; be a resolving set for H; and let S = Uf:l] Si. We will show that S is a resolving set for G © H. Let us
consider two different vertices x, y of G © H. We have the following cases.

Case 1: x,y € V;.Since D(H;) < 2, we have that r(x|S;) # r(y|S;) leads to r(x|S) # r(y|S).

Case2:x € Viandy € V;, i # j. Let v € S;. Hence we have d(x, v) < 2 < 3 <d(y, v).

Case 3:x,y € V.Let x = v;. Then for every vertex v € S; we haved(x,v) =1 <d(y,x) + 1 =d(y, v).

Case4:x € Viandy € V.Ifx ~ y, then let v € §;, for some j # i. So we have d(x, v) = 1+ d(y, v) > d(y, v). Moreover,
ifx #y=vj,forv e S wehaved(x,v) =dx,y) +dy,v) > dy, v).

Thus, for every different vertices x, y of G ® H, we have r(x|S) # r(y|S), as a consequence, dim(G ® H) < n;dim(H).
Therefore, we have dim(G ®* H) < ny(ny + 1)¥~' dim(H). By Theorem 2 we conclude the proof. O

In order to show a consequence of the above theorem we present the following well-known result, where K; denotes a
complete graph of order ¢, K; ; denotes a complete bipartite graph of order s 4 t and N; denotes an empty graph of order .
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Lemma 4 ([6]). Let G be a connected graph of order n > 4. Then dim(G) = n — 2 ifand only if G = K¢, (5,t > 1),G =
Ki+Ne, s>1,t>2),or G=K,+ (K1 UK,), (s,t > 1).

Corollary 5. Let G be a connected graph of order n; > 2 and let H be a graph of order n, > 4 and diameter D(H) < 2. Then
dim(G O"H) = ny(n, + 1)* ' (n; — 2)
ifandonlyif H =K, (5,t > 1);H=K;+N;, (s> 1, t >2),or H=K + (K1 UK;), (5,t > 1).
We recall that the wheel graph of order n 4 1 is defined as W, , = K; ® G,, where K is the singleton graph and C, is the
cycle graph of order n. The metric dimension of the wheel W; , was obtained by Buczkowski et al. in [20].
Remark 6 ([20]). Let W1 , be a wheel graph. Then

3 forn = 3,6,
2 forn =4,5,

dim(W]’n) = LG + 2

J otherwise.

The fan graph Fy, 5, is defined as the graph join N,, + P;,, where N, is the empty graph of order n; and Py, is the path
graph of order n,. The case n; = 1 corresponds to the usual fan graphs. Notice that, for the metric dimension of fan graphs,
it is possible to find an equivalent result to Remark 6 which was obtained by Caceres et al. in [4].

Remark 7 ([4]). Let F; , be a fan graph. Then

1 forn =1,
2 forn=2,3,
dim(F; ) = 3 forn = 6,
2n+2 )
otherwise.

As a particular case of Theorem 3 we obtain the following results.

Corollary 8. Let G be a connected graph of order ny > 2. If H is a wheel graph or a fan graph of order n, > 8, then

2
dim(G OFH) = ny(ny + 1) LZZJ .

Theorem 9. Let G be a connected graph of order n; > 2 and let H be a graph of order n, > 2. Let « be the number of connected
components of H of order greater than one and let B be the number of isolated vertices of H. Then

nn,+ D"y —a—1) fora>1landp > 1,
dim(GOFH) < ni(ny + D '(n, — @) fora>1and g =0,
ni(np + D¥ 'y — 1) for oo = 0.

Proof. We suppose @ > 1and 8 > 1. Let A; be the set of vertices of G © H formed by all but one of the vertices per each
of the o connected components of H;. If 8 > 2 we define B; to be the set of vertices of G ©® H formed by all but one of the
isolated vertices of H;. If = 1, we assume B; = (. Let us show that S = U]'.q:l] (Aj U B)) is a resolving set for G © H. Let x, y
be two different vertices of G © H. We suppose x, y € S. We have the following cases.

Case 1:x =v; € Vand y € V;. For every vertexu € V; N S, j # i, we obtain d(y, u) = d(y, x) + d(x, u) > d(x, u).

case2:x =v; € Vandy ¢ V;.Forevery v € SN V; we have d(x, v) = 1 < d(y, v).

Case3:x e Viandy € Vj, j#i.Foreveryu € VNS we haved(x,u) <2 <3 <d(y,u).

Case 4: x, y € V;. We consider, without loss of generality, that x is not an isolated vertex in H;. Then there exists v € V;NS
such thatv ~ x,s0d(x,v) =1 <2 =d(y, v).

Thus, for every two different vertices x, y of G © H, we obtain r(x|S) # r(y|S) and, as a consequence, dim(G ® H) <
Tll(le — o — 1)

As above, if 8 = 0 then we take S = U}il A;j and we obtain dim(G © H) < ni(n; — «) and if @ = 0, then we take
S = U;':]l B; and we obtain dim(G ® H) < ny(n, — 1). Note that if @ = 0, then it is not necessary to consider Case 4. Thus,
the result follows. O

Corollary 10. Let G be a connected graph of order ny > 2 and let H be an unconnected graph of order n, > 2. Then
dim( GO H) = iy + D1y — 1)
ifand only if H = N,.
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Proof. In [21] the authors showed that dim(G ® N,,) = ni(ny — 1). Hence, dim(GO* Np,) = ny(ny + D¥'(ny — 1).
Moreover, by the above theorem, if H is unconnected and H Z N,,, then dim(G OfH) < ni(ny + D¥'(ny —2). O

Theorem 11. Let G and H be two connected graphs of order ny > 2 and n, > 3, respectively. Then
dim(GO"H) = ny(ny + ¥ '(n; — 1)
ifand only if H = Ky,. Moreover, if H Z K, then

dim(GO*H) < ni(np + D' (ny — 2).

Proof. Since dim(K;,) = n, — 1, by Theorem 3 we conclude dim(G ok Kp) = ni(ny + 1)*~1(n, — 1). On the contrary, we
suppose H Z K,,. Given a set X of vertices of H and a vertex v of H, Nx (v) denotes the set of neighbors that v has in X:
Nx(v) = {u € X : u ~ v}. Given two vertices a, b of H, let X, ;, be the set formed by all vertices of H different from a and b.
Since H is a connected graph and H # Ky, , there exist at least two vertices a, b of H such that Ny, , (@) # Nx,, (D). Leta;, b; be
the vertices corresponding to a, b, respectively, in the ith-copy H; = (V;, E;) of H. Let S = UZ] (V; — {a;, b;}). We will show
that S is a resolving set for G © H. Let x, y be two different vertices of G © H such that x, y ¢ S. We have the following cases.

Case 1: x = a; and y = b;. Since Ny, , (a) # Nx, ,(b) we have r(x|S) # r(y[S).

Case2:x =v; € Vandy € V.. Forevery v € V; — {a;, b;}, j # i, we have d(y, v) = d(y,x) +d(x, v) > d(x, v).Ifx € V;
andy €V}, j # i, then for every v € V; — {a;, b;} we have d(x, v) <2 <3 < d(y, v).

Case 3: x,y € V.Say x = v;. Then for every v € V; — {a;, b;} we have d(x, v) = 1 < d(y, v).

Hence, for every two different vertices x, y of GO H, we obtain r (x|S) # r(y|S). Thus,dim(GOH) < n;(n, —2). Therefore,
the result follows. O

As we have shown in Corollary 5, the above bound is tight.

Theorem 12. Let G be a connected graph of order ny > 2 and let H be a graph of order n, > 2. Then
dim(G " H) < ni(ny + D* ' dim(K; © H).

Proof. We denote by K; ® H; the subgraph of G ® H, obtained by joining the vertex v; € V with all vertices of H;. For every
v; € V, let B; be a resolving set of minimum cardinality of K; ® H; and let B = Ulel B;. By Lemma 1(iii) we have that v; does
not belong to any resolving set of minimum cardinality for K; ® H;. So, B does not contain any vertex from G. We will show
that B is a resolving set for G © H. Let x, y be two different vertices in G ® H. We consider the following cases.

Case 1: x, y € V;. There exists u € B; such that d, on, (X, u) # di,on, (¥, 1), which leads to deon (x, u) # deon (v, U).

Case2:x e Viandy € V;, i #j.Letv € B;. We have dgon (%, v) < 2 < 3 < dgou(y, v).

Case 3: x,y € V. Suppose now that x is adjacent to the vertices of H;. Hence, for every vertex v € B; we have
deon (X, v) =1 < deon (¥, X) + 1 = deon (¥, v).

Case4:x € Viandy € V.Ifx ~ y, then for every vertex v € Bj, withj # i, we have dgon(x, v) = 1+ deon(y, v) >
dcon (¥, v). Now, let us assume that x 7* y. Hence, there exists v € B; adjacent to y, with j # i. So, we have dgon (X, v) =
deon(®,y) + 1 =deon (X, y) + deon ¥, v) > deon ¥, v).

Thus, for every two different vertices x, y of G © H, we have r(x|S) # r(¥|S) and, as a consequence, dim(G ® H) <
ny dim(K; ® H). Therefore, the result follows. O

Theorem 13. Let G be a connected graph of order ny > 2 and let H be a graph of order n, > 7.If D(H) > 6 or H is a cycle
graph, then

dim(G ©* H) = ny(ny + D¥ 1 dim(K; © H).

Proof. Let S be a resolving set of minimum cardinality in G ® H. By Lemma 1(iii) we have S NV = @, as a consequence,
S = U?:ll Si, where S; C V;. Notice that, by Lemma 1(ii), S; # @ foreveryi € {1, ..., ny}. Now we differentiate two cases in
order to show that r(x|S;) # (1,..., 1) foreveryx € V; — S;.

Case 1: Hisacycle graph of ordern, > 7.1fr(a|S;) = (1, 1) forsomea € V;—S;, then, since n, > 7, there exist two vertices
x,y € V; — S;such that dy;(x, v) > 1and dy,(y, v) > 1, for every v € S;. Hence, dgon (X, v) = dgon(y, v) = 2 for every
v € §;, which is a contradiction because, by Lemma 1(i), dgon (X, v) = dgon (¥, v) for every vertex u of S not belonging to S;.

Case 2: D(H) > 6.Letx,y € V; — S;. Since S is a resolving set for G © H, we have r(x|S) # r(y|S). As we have noted
before, by Lemma 1(i) we have that d¢op (%, u) = doon (¥, u) for every vertex u of G © H not belonging to V. So, there exists
v € §; such that dgop (%, v) # deon (¥, v) and, as a consequence, either (v ~ xand v # y)or (v # xand v ~ y). Now we
suppose that there exists a vertex a € V; — S; such that r(alS;) = (1, 1, ..., 1). If there exists a vertex b € V; — §; such that
dy, (b, u) > 1, for every u € §;, then for every w € V; — (5; U {a, b}), there exists v € §; such that w ~ v. Then D(H;) < 5.
Moreover, if for every b € V; — S; there exists v, € S; such that v, ~ b, then D(H) < 4. Therefore, if D(H) > 6, then
r(alS;) # (1,1,...,1) foreverya € V; — S;.
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Now, we denote by K; ©® H; the subgraph of G © H, obtained by joining the vertex v; € V with all vertices of the ith-copy
of H. In both the above cases we have r(v;|S;)) = (1, 1,...,1) # r(x|S;) for every x € V; — S;, so S; is a resolving set for
K1 ©® H;. Hence, dim(K; © H;) < |S;|, foreveryi € {1, ..., ny}. Thus, dim(G ® H) > n; dim(K; ® H;) and, as a consequence,
dim(G O*H) > ny(ny; + D*1dim(K; ® H). We conclude the proof by Theorem 12. O

Corollary 14. Let G be a connected graph of order ny > 2.
(i) If ny > 7, then dim(G ©* Cy,) = ny (ny + D! {%J
(ii) If ny > 7, then dim(G O Py,) = ny(ny + 1% L%J

All our previous results concern to G ® H for H of order at least two. Now we consider the case H = K;. We obtain a
general bound for dim(G ©F K;) and, when G is a tree, we give the exact value for this parameter.

Claim 15. Let G be a simple graph. If v is a vertex of degree greater than one in G, then for every vertex u adjacent to v there
exists a vertex x # u, v of G, such that d(v, x) # d(u, x) + 1.

The following lemma obtained in [20] is useful to obtain the next result.

Lemma 16 ([20]). If G; is a graph obtained by adding a pendant edge to a nontrivial connected graph G, then dim(G) <
dim(G;) < dim(G) + 1.

Theorem 17. For every connected graph G of order n > 2,
dim(G ¥ Ky) <2 'Tn— 1.

Proof. If G = K5, then dim(K; ® K;) = dim(P4) = 1. So, let us suppose G Z K;. Let us suppose, without loss of generality,
that v, is a vertex of degree greater than one in G and let S = V — {v,}. Foreveryi € {1,..., n}, let u; be the pendant
vertex of v; in G ® K;. We will show that S is a resolving set for G ® Kj. Let x, y be two different vertices of G © Kj. If
x =u;andy = u;, i # j, then we have eitheri # norj # n. Let us suppose for instance i # n. So, we obtain that
d(x,v;) = 1 # d(y, vj). On the other hand, if x = v, and y = u;, then let us suppose d(x, v;) = 1. Since v, is a vertex
of degree greater than one in G, by Claim 15, there exists a vertex v; € S such that d(x, v;) # d(v;, vj)) + 1. So, we have
d(x, vj) # d(vi, vj) + 1 =d(v;, vj) + d(u;, v;) = d(y, v;) + d(v;, vj) = d(y, vj). Therefore, for every different vertices x, y of
G ® K; we have r(x|S) # r(y|S) and, as a consequence, dim(G © K;) < n — 1. Therefore, dim(GO¥K;) <2¥'n—1. O

By Lemma 16 we have dim(K, ® K;) > dim(K,) = n — 1. Thus, for k = 1 the above bound is achieved for the graph
G =K.

To present the next result, we need additional definitions. A vertex of degree at least 3 in a graph G will be called a major
vertex of G. Any vertex u of degree one is said to be a terminal vertex of a major vertex v if d(u, v) < d(u, w) for every other
major vertex w of G. The terminal degree of a major vertex v is the number of terminal vertices of v. A major vertex v is an
exterior major vertex if it has positive terminal degree. Given a graph G, n{(G) denotes the number of vertices of degree one
and ex(G) denotes the number of exterior major vertices of G.

Lemma 18 ([6,1,2]). If T is a tree that is not a path, then dim(T) = n{(T) — ex(T).

Theorem 19. For any tree T of order n > 3,

. X _ (M) fork =1,
dim(T ©" K1) = {Zk_zn for k > 2.
Proof. If T is a path of order n > 3, then we have dim(T ©® K;) = 2 = n{(T). Now, if T is not a path, then by using Lemma 18,
sinceT © K; isatree, ni(T ® K;) = nand ex(T ® K;) = n — n{(T), we obtain the result for k = 1. Since for every tree T of
order n we have n{(T ® K;) = n, we obtain theresult fork > 2. O
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