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1. INTRODUCTION

Let G = (V,E) be a connected undirected graph of order n. The neigh-
bourhood of a vertex v € V in G is the set Ng(v) of all vertices adjacent
to v in G. For a set X C V, the open neighbourhood Ng(X) is defined to
be Uyex Na(v) and the closed neighbourhood Ng[X] = Ng(X) U X. The
degree degq(v) of a vertex v in G is the number of edges incident to v,
degq(v) = |[Ng(v)|. The minimum and maximum degree of a vertex in G we
denote 6(G) and A(G), respectively. If dege(v) = n — 1, then v is called an
universal vertex of G. A set D C V is a dominating set of G if Ng[D] =V.
The domination number of G, denoted v(G), is the minimum cardinality of
a dominating set in G.

Given a graph G and a set S C V, the private neighbourhood of v € S
relative to S is defined as PN v, S] = Ng[v] — Ng[S —{v}], that is, PN|[v, S|
denotes the set of all vertices of the closed neighbourhood of v, which are
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not dominated by any other vertex of S. The vertices of PN v, S| are called
private neighbours of v relative to S.

The distance dg(u,v) between two vertices w and v in a connected graph
G is the length of the shortest (v — v) path in G. A (u — v) path of length
dg(u,v) is called (u — v)-geodesic. A set X C V is weakly convex in G if
for every two vertices a,b € X there exists an (a — b)- geodesic in which all
vertices belong to X. A set X C V is a weakly convexr dominating set if X is
both weakly convex and dominating. The weakly convexr domination number
Yweon(G) of a graph G equals the minimum cardinality of a weakly convex
dominating set. Weakly convex domination number was first introduced by
Jerzy Topp, Gdansk University of Technology, 2002.

The classical paper of Nordhaus and Gaddum [4] established the fol-
lowing inequalities for the chromatic numbers x and x of a graph G and its
complement G, where n = |V|:

2vn<x+x<n+1,

(n+1)2.

< xx <
n>XX> A

There are a large number of results in the graph theory literature of the
form o + a < n £ €, where ¢ € @, for a domination parameter «. Results
of this form have previously been obtained for example for the domination
number v [3] and the connected domination number . [2].

Theorem 1. For any graph G such that G and G are connected,

L 4@ +7@ <n+1,

2. 7(G) +7:(G) <n+1.

We are concerned with analogous inequalities involving weakly convex dom-
ination number. For unexplained terms and symbols see [1].

2. RESuULTS

Since G' and G must be connected, we consider graphs G with n(G) > 4.
We begin with the following result of Nordhaus-Gaddum type for weakly
convex domination number.

Theorem 2. For any graph G such that G and G are connected, 4 <

Yweon (G) + Yweon (G) < n+ 2.
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Proof. If there is an universal vertex in GG, then G is not connected. Thus
there is no universal vertex in G and no universal vertex in G' and hence

Yweon (G) > 2 and ywcon(G)_Z 2. Thus Yuwcon(G) + Yweon (G) > 4. Notice that
equality Yuwcon(G) + Yweon(G) = 4 holds if G = Py.
Of course Yyeon(G) < n and Yyeon(G) < n. We consider some cases,

depending on the diameter of G.

Case 1. If diam(G) = 1, then there is an universal vertex in G and G
are not connected.

Case 2. If diam(G) > 3, then let =,y be two vertices of V' such that
da(x,y) = diam(G). Then {z,y} is a weakly convex dominating set of G

and Yeon (G) + Yeon (G) < n + 2.

Case 3. Let diam(G) = 2. If diam(G) > 3, then we can exchange G
and G and we have Case 2. Thus diam(G) = 2 and diam(G) = 2. Let
be any vertex of G. Since diam(G) = 2, for every v € V is dg(v,z) < 2.
Let Y = {y € V 1 dg(z,y) = 1} and Z = {z € V : dg(z,2) = 2},
Y| =k,|Z| =1, where k,l > 1 (if { = 0, then there is an universal vertex in
G and G are not connected). Then n = k + 1+ 1 and it is easy to observe
that D = {2} UY is a connected dominating set of G. For every two vertices
u, v belonging to D, the distance between u and v is not greater than two
and if dg(u,v) = 2, then = belonging to D is on (u,v)-geodesic. Thus D is
a weakly convex dominating set of G and Yyeon(G) < |D| =k + 1.

Since G is connected and diam(G) = 2, every vertex from Y has a
neighbour in {z}UZ in G and hence D' = {x}UZ is a connected dominating
set of G. For every two vertices u, v belonging to D', the distance between
u and v is not greater than two and if dg(u,v) = 2, then = belonging to D'
is on (u,v)-geodesic. Thus D’ is a weakly convex dominating set of G and
'chon(G) < ’D/’ =1+1.

Thus Yuweon(G) + Yweon(G) <k +1+1+1<n+1<n+2. n

The next theorem concerns of the graphs G for which weakly convex dom-
ination number is equal to the number of vertices. Let ¢g(G) denotes the
girth of the graph G.

Theorem 3. If G is a connected graph with §(G) > 2 and g(G) > 7, then
Vwcon(G) =n.
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Proof. Let G be a connected graph with §(G) > 2 and g(G) > 7. Suppose
that Yyeon(G) < n. Let D be a minimum weakly convex dominating set of
G. Since Yyeon(G) < n, there exists a vertex x in G such that ¢ D. Denote
Ng(z) = {z1,...,x,}, where p > 2 (because 6(G) > 2). It is easy to observe
that since g(G) > 7, for every z;,z; is x;z; ¢ E(G) for 1 <i,j < p.

Notice that for every x;,z;, where x; # x; and 1 < 4,j < p we have
dg(xi,zj) = 2 and every shortest path between z; and x; contains x.

Suppose there are vertices x1,x9 € Ng(z) such that x1,x9 € D. Then,
since D is weakly convex, there is a vertex v € D such that v € Ng(z1) N
N¢(z2). But then we can find a cycle C = (z1,z,z2,v,x1) which length is
less than seven, what gives a contradiction.

Thus |[Ng(z) N D| < 1. Since z has to be dominated, we have [Ng(z) N
D] = 1. Without loss of generality assume that x1 € Ng(z) N D. Thus,
since 0(G) > 2, there exists at least one vertex belonging to Ng(z) say
x2, such that zo ¢ D. Since 6(G) > 2 and x is dominated, there exists a
vertex y € Ng(x2) such that y # x and y € D. Since g(G) > 7, we have
Ne(y) N Ng(z) = 0 and Ng(y) N Ng(z;) = 0, where 1 <1 < p.

Since D is a weakly convex set, dg(y,z1) = 3 and there is a (1 — y)-
geodesic P; such that all vertices of P; belong to D. Thus we have at least
two (1 — y)-geodesics: P; and Py = (z1,x,z2,y) what produces a cycle of
length less than seven. That gives contradiction with g(G) > 7 and hence
we have Yyeon(G) = n. [

n can be a graph

The simplest example of a graph G such that Yyeon(G) =
= 2 and Yyeon(G) +

G = C, with n > 7. For C, we have Yucon(Ch)

Vwcon(G) =n+2.

Corollary 4. If G and G are connected, 6(G) > 2 and g(G) > 7, then

IVWCOH(G) + ’Vwcon(G) =n+2.

Theorem 5. For any graph G such that G and G are  connected,

if and only if G or G is isomorphic to Cs.

Proof. Again we consider three cases, depending on the diameter of G.
If diam(G) = 1, then Yyeon(G) = 1 and G is not connected.
If diam(G) > 3, then similarly like in the proof of Theorem 2, Yyeon(G)
= 2 and since n > 4, Ywcon (G)Yweon (G) < 2n < ([2] + 1)%
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Let diam(G) = 2. Similarly like in the proof of the previous theorem, let
x be any vertex of G, let Y = {y € V : dg(z,y) =1} and Z = {z € V :
dg(x,z) =2}, |Y| = k,|Z| =1, where k,l > 1.

If kK =1, then 7yyeon(G) = 1, there is an universal vertex in G and G is
not connected.

If k = 2, then, since {x} UY is a weakly convex dominating set of G,
Yweon(G) < 3. Let Y = {u,v}. Notice that {x} dominates itself and Z in
G and to dominate Y in G, it is enough to take two vertices a,b from Z
such that au € E(G) and bv € E(G) (such vertices a, b must exist since G is
connected and diam(G) = 2). Since a,b € Z, ax € E(G) and bz € E(G) and
thus {z,a,b} is a weakly convex dominating set of G. Hence Yyeon(G) < 3.

Since G' and G are connected and diam(G) = 2, we have |Z| > 2 and
n > 5. It is easy to observe that ’chon(G)’chon(a) < ({%J + 1)2.

If Yawcon (G) = 3, Yweon(G) = 3 and n = 5 we have equality
Yweon(G)Yweon (G) = (|2] + 1)? and Cs realizes this equality. In the other
cases we have Yucon(G)Yuweon (G) < (| 2] 4+ 1)2.

Now let k£ > 3. Since {z} UY is a weakly convex dominating set of G,

we have Yyeon(G) < k + 1. We consider three cases:

Case 1. If I > k, then k < |§]. Observe that x dominates itself
and Z in G. Since G is connected and diam(G) = 2, every vertex from
Y has a neighbour in Z. Let Y = {y1,...,yx} and let {z1,..., 2} be the
set of vertices from Z such that y121 € E(G),...,yrzx € E(G). Thus
{2} U{z,..., 2} is a weakly convex dominating set of G' and Yyeon(G) <
k + 1. Hence Yucon(G)Yweon(G) < (k + 1)% and since k < [%], we have

Yweon(G)Yweon (G) < (L%J + 1)2'

Case 2. If | = k, then k < |§] and | < |5]. Since {z} U Z is

a weakly convex dominating set of G, we have Yyeon(G) < I+ 1. Thus
Yweon(G)Yweon(G) < (k+1)(1+1) < (2] + 1)

Case 3. If | < k, then [ < |%]. Similarly like in Case 2 we have
Yweon(G) < I+ 1. Notice that {x} dominates itself and Y in G and to dom-
inate Z in G it is enough to take [ vertices from Y. Thus vycon(G) < 1+ 1
and Yucon(G)Yweon(G) < (1+1)* < (L5]+ 1)%.

We have already shown that for Cs equality Yeon (G)Yeon(G) = (| 3] +1)?
holds. Conversely, let G be a graph for which we have equality. Then (from

the earlier part of the proof) we have diam(G) =2 and | = k.
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If £ =2, then [ = 2 and n = 5. Since diam(G) = 2, there is no end vertex
in Z. Let Z = {z1,22},Y = {y1,y2}. If both z1,29 have two neighbours
in Y, then G is not connected. If one vertex of Z, without loss of gener-
ality if z; has two neighbours in Y, then vYyeon(G) = 2 = Yueon(G) and
Yweon(G)Yweon (G) < (5] + 1)2. Thus every of vertices z; and 29 has only
one neighbour in Y. If 21, 29 have a common neighbour in Y, say yi, then
y1 is an end vertex in G and diam(G) > 2. Thus every vertex from Z has
exactly one neighbour in Y and every vertex from Y has exactly one neigh-
bour in Z, without loss of generality let z1y1 € E(G) and z9y2 € E(G).
Since there is no end vertex in G, we have z120 € E(G). If y1y2 € E(G),
then we have an end vertex in G and diam(G) > 2; hence y1y2 ¢ E(G)
and G = (5.
Now let I = k, k > 3. We distinguish two cases.

1. There exists a vertex y € Y such that PN[y,Y] = 0. Then ({z}UY)—{y}
is a weakly convex dominating set of G and Yeon(G) < k. Since {z} U Z
is a weakly convex dominating set of G, we have Yyeon(G) < [+ 1 and
since k < [2] and I < [2], we have Yuwcon(G)Yweon (G) < k(I + 1) <
BJ(12) 1) < (2] + 17

2. For every y € Y we have PNy, Y] # 0. Let us denote Y = {y1,...,yx},
Z =A{z,...,2zk} and PN[y1,Y] = {z1},...,PN[yg, Y] = {z}. Then
{2, 21,2} is a weakly convex dominating set of G and Yyeon(G) < 3.

Thus we have Yuwcon(G)Yweon (G) < 3(k+1) < (15 + 1)2].
Hence if Yoeon(G)Yweon(G) = (5] + 1)2, then G = Cs. [ |

Corollary 6. If G and G are connected, diam(G) < 2 and G # Cs, then
'Vwcon(G)'chon(G) < {%J(L%J + 1)

Theorem 7. If G and G are connected, G # C7 and G # Cs, then

Proof. Let G be a graph such that G and G are connected and G # Cs
and G # Cq. From Corollary 6, if diam(G) < 2, then Yuweon(G)Yweon(G) <
[2](|2]+1); so let diam(G) > 3. Then Yueon(G) = 2 and Yucon (G)Yweon(G)
<2n < [5]([5]+1) forn>8.

Since diam(G) > 3 and G, G are connected, we have n > 4.

If n =4, then G = G = Py and Yueon(G)Yweon(G) < [5]([5] + 1).

If n=>5, thgn Yweon (G) < 3 and since Yyeon(G) = 2 we have
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If n = 6, then Yyeon(G) < 4 and since Yueon(G) = 2 15 Yweon (G)Yweon (G)

< 13)(13)+D. "
If n =7, then, since G # C7,ye have Yycon(G) < 5 and since Yyeon (G) =

2, again we have Yuycon (G)Yweon (G) < [5](15] +1). [

Figure 1. Graph G;.

The example of the extremal graph of Theorem 7 can be the graph G from
Figure 1.
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