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ABSTRACT. A computational analysis of plane progressive wave propagation in plane stress 

body is presented. The initial-boundary value problem of linear elastodynamics of Cauchy 

continuum is approximated spatially by specially designed multi-node C0 displacement-based 

isoparametric quadrilateral spectral finite elements. To integrate element matrices the Gauss-

Lobatto-Legendre quadrature rule is employed. The temporal discretization is carried out by 

Newmark type algorithm reformulated to accommodate the structure of local element matrices. 

The developed multi-node spectral elements with Gauss-Lobatto-Legendre nodes are validated by 

running some statics and dynamics tests to investigate the presence of locking effect and of 

spurious zero-energy modes. Dynamic tests, dedicated to wave propagation in L-shaped structure, 

are concentrated on energy propagation through right-hand angle of the construction. 

Spectral finite elements, numerical simulations, wave propagation 

1. Introduction

Wave propagation modelling is a subject of intensive investigations over the years. One of 

efficient time domain method is the spectral element method (SEM) developed by Patera [1]. The 

main idea of the SEM is the use of one high-order interpolating polynomial instead of low-degree 

polynomials usually applied in traditional FEM - finite element method (of course the FEM is not 

limited to low-order polynomials). Some motivation as to the use of higher-order elements in the 

context of wave propagation can be found for instance in [2]. The spectral finite elements are but 

one way of analysing wave propagation phenomena. Other possibilities are offered for example by 

finite difference method or by fast boundary element method. More reading on these approaches 

may be found for instance in [3], [4], [5]. 

The spectral element method has the same view point as the p-version of the multi-node 

finite element method. In the SEM approach, the Lagrange-type interpolation polynomials are 

applied at the Gauss-Lobbatto-Legendre (GLL) nodes, see also for instance [6]. The spectral 

element method can be also based on the Chebyshev polynomials as the basis functions at the 
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Chebyshev–Gauss–Lobatto points, see for instance [7]. The spectral elements in time domain are 

available for elementary structural models. The wave propagation analysis of truss and frame 

structures can be found in [8] and [9]. The literature on the wave propagation using SEM in two-

dimensional models is limited mainly to the rectangular geometries. For example the analysis of 

rectangular plate structure can be found in [10] where references to other papers are given. Sridhar 

et al [11] developed the plane element with Chebyshev nodes to analysis of rectangular beam. 

Certain numerical aspects of Legendre and Chebyshev spectral elements for wave propagation in 

rods studied in paper [12]. 

The present paper is focused on the following aspects. The first one is the development of 

multi-node quadrilateral spectral element, its assessment and applicability to problems with some 

irregularities in the FEM mesh. In comparison with existing formulations, e.g. [6] where triangle 

elements are developed, here we present different viewpoint on the analysis of distorted elements 

that are necessary if irregular meshes are concerned. To modeling the complex shape elements, the 

quadrilateral elements undergoing mesh distortions are evaluated. In this study the particular 

interests is paid to the following issues associated with quadrilateral elements: 

• locking effect,

• presence of spurious zero-energy modes,

• influence of mesh distortion on dispersion.

The second topic of the paper is the temporal integration scheme which is worked-out to take 

advantage of the diagonal structure of element matrices. Here we concentrate on preservation of 

the total energy of the structure during simulation time. Thirdly, having the tested 2D element we 

undertake numerical study of the behavior of the front of plane progressive propagating waves 

while travelling through joint or irregularity of the geometry. Here we focus on the L-shaped 

structure, the geometry of which may be regarded as rough approximation of nodal connections of 

planar trusses. In addition the influence of the chamfering of the right-hand angle on wave 

propagation is investigated. In this respect we pay attention to: 

• comparing the total energy of the whole structure with the total density energies

computed at representative locations or cross-sections,

• the assessment of partition of the total energy carried by wave.

2. Formulation of initial-boundary value problem

Since foundations of classical continuum mechanics are well-known, in the present 

section we amplify only the ingredients necessary to formulate the balance of (mechanical) energy 

and the principle of virtual work. 

We consider an elastic body B  with material points x  and identify the material point x  

with its position x  in a fixed Cartesian reference system. The boundary B  of  B  possesses two 

non-empty components 
d fB B B =    which are disjoint. Specifying for two dimensional case, 

let αu , αu , αu , 
αβε , 

α βσ , αb , 
αβγπC , in this order, denote the Cartesian components of the 

displacement vector u , the velocity vector u v , the acceleration vector  au , the 

(infinitesimal) strain tensor ε , the Cauchy stress tensor σ , the body force (density) b  and the 
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positive definite elasticity tensor (see for instance [13]) C . In indicial notation used throughout, 

Greek subscripts take on values of the integers (1, 2) and summation over repeated subscripts is 

implied; subscripts preceded by a comma indicate differentiation with respect to the corresponding 

Cartesian coordinate. The superposed dot denotes the time derivative. The complete set of field 

equations of the two dimensional initial-boundary value problem of the linear elastodynamics 

(homogenous and isotropic) takes the form (cf. for instance [13], [14], [15]) 

 1
, , ( , )2

( )αβ α β β α α βε u u u= +   (1) 

 
,αβ β α ασ b ρu+ = ,     

( , )αβ αβγπ γ πσ C u=  (2) 

 δ δ (δ δ δ δ )αβγπ αβ γπ αγ βπ απ βγC λ μ= + +  (3) 

Here 0ρ   is mass density, λ  and μ  are material constants. When expressed in terms of 

Young’s modulus E  and Poisson’s ratio v  they read 

 
21

Ev
λ

v
=

−
,     

2(1 )

E
μ

v
=

+
 (4) 

To equations (2)1 we adjoin the initial boundary conditions 0( ,0) ( )=u x u x , 0( ,0) ( )=u x v x , 

B x , 0t =  and boundary conditions =u u  on dB , =f f  on 
fB  where f  is the surface 

traction vector with components 
α βα βf = σ n  and n  denotes the outward unit normal field to dB . 

Possible damping effect, which is not taken into account in the present formulation, can be 

included as discussed in [13], see also [8]. 

 It can be shown, cf. for instance, [16], that in two dimensional case, the velocities of plane 

progressive elastic waves are given by 

 1 2

1

1

E
c

ρ v
=

−
,     2

μ
c

ρ
=  (5) 

for general discussion, cf. for example [14] or [17].  

Let us denote for latter reference the balance of energy 

 
21 1

( , ) ( , )2 2 0

( ) ( )
( )

[ ( )] d d
f

ext

t

α α β αβγπ γ π α α α α
B B B B

K t U t
G t

m u t dV u C u dV b u V f u S dτ


 + = +
        (6) 

where 
B

m ρdV=  , ( )K t  is the kinetic energy density, ( )U t  is the elastic internal energy density 

and ( )extG t  is work done by external forces at [0, ]t T . 

The use of the energy as the measure of the solution correctness in non-dissipative 

systems follows from the following facts. The total energy of the system is well defined scalar 

value. Once the parameters of: material, geometric and load are unambiguously defined, when the 

load dies out the energy should be preserved during the free motion. Thus the energy may be 

regarded as physical property of the system understood as the union of structure and loads. 

Therefore, energy is independent of time step, used temporal approximation scheme and spatial 

approximation (finite elements used, mesh density). Writing the energy equation (6) in the 

homogenous form i.e. 
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 ( ) ( ) ( ) 0extU t K t G t+ − =  (7) 

furnishes the criterion of correctness of temporal integration scheme. This fact is very important 

since the present temporal integration algorithm is not designed to preserve energy and/or 

momentum of the structure, cf. for instance [18], [19], [20], [21]. Hence, the conservation of 

energy is studied here in the examples. 

Following [22] by 1H  we designate the Sobolev space of functions that is 

 1 1

2 2( ) : ; ,xH H B w w L w L= =   ,  2

2 ( ) :
B

L B w w dx=   . The space of kinematically 

admissible displacements is denoted by  1: ; ( ) ;i dЅ u H B=  = u u x u x  and the space of 

kinematically admissible virtual displacements satisfying homogenous boundary conditions is 

given by  1: ; ( ) ;i dV w H B=  = 0w w x x . With these definitions the weak form may be 

stated as follows. Given b , f , u , 0u  and 0v , find ( ) tt Su , [0, ]t T , such that V w  

 ( , ) ( , )d d d d
f

α α αβγπ α β γ π α α α α
B B B B
ρw u V C w u V w b V w f S


+ = +     (8) 

3. Spectral finite element formulation 

3.1. Element matrices in plane stress 

Let us apply the finite element method methodology to Eq. (8). The domain B  of 

functional (8) is approximated as a sum ( )ee N eB B  where eN  is the number of finite elements. 

A typical finite element 
( )eB  is defined as a smooth image of the so-called standard element 

( )eπ . 

In two-dimensional problem 
( ) [ 1, 1] [ 1, 1]eπ = − +  − +  is the element in the parent (natural) domain 

1 2( , )ξ ξ=ξ . It is assumed that the element has 1 2N m m=   nodes where 1m  denotes the number 

of nodes in 1ξ  direction whereas 2m  in 2ξ  direction. To interpolate the variables, we use Lagrange 

type interpolation polynomials, with well-known properties, cf. e.g. [13]. The matrix of 0C  

interpolation functions of the a -th node is 
(2 2)

(2 2)

( ) ( )a aL




=L Iξ ξ  whereas the matrix of the whole N -

node element ( )e  is  

 ( ) 1 2( ) [ ( )  ( )  ...   ( )]L L L L=e Nξ ξ ξ ξ  (9) 

Therefore the 0C  interpolation scheme for the typical vector variable of the problem is 

 
( ) ( )( , ) ( ) ( )e et t=ξ ξ uu L , ( ) 1 2( ) { ( ), ( ), , ( )}= T

e Nt t t tu u u u , 
1 2( ) { ( ), ( )}= T

a at u t u tu , 1,2,=a N (10) 

The time parameter in (10) is omitted when necessary for variables independent of time. Following 

usual methodology, the strain tensor (1) and its virtual counterpart are rewritten as vectors. In 

plane stress case this yields  
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11

22

122

ε

ε

ε

 
 

→ = = 
 
 

ε ε uD , 

11

22

122

δε

δ δ δε

δε

 
 

→ = = 
 
 

ε ε wD ,     

1

2

2 1

(.), 0

0 (.),

(.), (.),

 
 

=
 
  

D  (11) 

The interpolation schemes then become 

 
( ) ( ) ( ) ( )( , ) ( ) ( ) ( ) ( )e e e et t t= =ε L Bξ ξ u ξ uD ,    

( ) ( ) ( ) ( )( ) ( ) ( )e e e eδ = =ε L Bξ ξ w ξ wD  (12) 

where 
( ) ( )( ) ( )e e=B Lξ ξD . The constitutive equation (2) may be written as 

 

11 11

22 222

1
12 122

1 0

1 0
1

0 0 (1 ) 2

σ ε
E

σ ε

σ ε








    
    

=     −
    −    

,    =σ Εε  (13) 

Assuming that 0h  (the thickness of the panel) and ρ  are constant over the element and in the light 

of the arbitrariness of ( )w ξ  and with representation (10) of all the vector variables of the problem, 

from (8) we obtain at the element level classical formulae  

 
( , ) ( , )dαβγπ α β γ π

B
C w u V  →  

( ) 0 ( ) ( ) 1 2( ) ( )d dT

e e e
B

h x x=  ξ ξK B EB  (14) 

 dα α
B
ρw u V  →  

( ) 0 ( ) ( ) 1 2( ) ( )d dT

e e e
B

h x x=  ξ ξM L L  (15) 

 d d
f

α α α α
B B
w b V w f S


+   →  

ext

( ) 0 ( ) 1 2 ( )( ) d d ( ) d
f

T T

e e e
B B

h x x S


= + f L Lξ b ξ f  (16) 

The Jacobian determinant ( ) det( )j =  ξ x ξ  is  

 1 2 1 2

1 2 2 1
( )

x x x x
j

ξ ξ ξ ξ

   
= −
   

ξ  (17) 

and the transformation formula for area element is 1 2

0 1 2 0 ( )dV h dx dx h j dξ dξ= = ξ . The external 

load vector ext

( )ef  (16) is supplemented with the vector of forces applied at element nodes i.e. 

 ext nod

( ) ( ) ( )e e e= +f f f ,    

1

nod

( )e

N

 
 

=  
 
 

f

P

P

, 
1

2

x

a

x a

P

P

 
=  
 

P  (18) 

where 1xP , 2xP , analogously to ext

( )ef , are the components referred to global coordinate system.  

 The element matrices and load vectors (14)-(16) are integrated numerically. In general 

such integration is written as 

 ( )
1

( )d ( ) ( )
M

p p ppA
A w j

=
 g gx x ξ ξ  (19) 

where it is assumed that the integrand ( )g x  is smooth and integrable for the integrals (8) and (14)

-(16) to make sense. In (19) M  denotes the number of integration points 1,2, ,p M , 

1 2( , )p pξ ξ=ξ  are the coordinates of integration point and 1 2
p p

p ξ ξ
w w w=  designates the 

associated weight. In the spectral element method, numerical integration is performed by 

Gauss-Lobatto-Legendre quadrature rule instead of Gauss-Legendre quadrature typically used 
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in classical FEM. In the employed GLL quadrature (cf. for instance [23], [24]) the coordinates 

of integration points coincide with element nodes and they satisfy the equation 

 
1

2 ( )
(1 ) 0

MdP

d






−

− = ,     1 2,M m m  (20) 

whereas the weights follow from 

 
1 2

2

( 1)( ( ))M
w

M M P ξ−
=

−
,     1 2,M m m  (21) 

where MP  denotes the M–th order Legendre polynomial defined as 

 21
( ) [( 1) ]

2 !

M
M M

M M

d
P ξ ξ

M dξ
= − , 1 2,ξ ξ   (22) 

Although the number of integration points is the same as the number of element nodes, the GLL 

integration rule used here cannot be termed ‘full integration’ since it can easily be checked that the 

mass matrix is underintegrated. In the literature, to the best our knowledge, the notions of full (FI) 

or reduced integrations (RI) for Lobatto rule are not so clear as they are for Gauss integration rule. 

For instance Pozrikidis in his book [25] introduced the notions of exact and inexact integration. He 

stated that the inexact integration by the Gauss-Lobatto-Legendre quadrature effectively 

diagonalizes the mass matrix by implementing mass lumping for any polynomial order. 

As a consequence of properties of the shape functions and provided that the integration 

points 1 2( , )p pξ ξ=ξ  coincide with element nodes 1 2( , )a aξ ξ=ξ  the element mass matrix 
( )eM  

in spectral element formulation is diagonal. The element stiffness 
( )eK  matrix, which is of full 

structure in general case, is not used directly in the present dynamic analysis. Instead, the dynamic 

equilibrium equations are written in terms of the vectors of inertia forces and internal forces 

defined respectively as 

 
( ) ( ) ( )e e e=b M u ,    

( ) 0 ( ) ( ) 1 2( ) ( )d dT

e e e
B

h x x=  ξ ξr B σ  (23) 

Global equations of motion are obtained in the course of standard aggregation procedure i.e.  

 ( )
1

eN

e
e

A
=

=M M , (24) 

 ( )
1

eN

e
e

A
=

=p f ,    ( )
1

eN

e
e

A
=

=b b ,    ( )
1

eN

e
e

A
=

=r r  (25) 

and the semi-discrete matrix counterpart of (8) becomes 

 ( )= −Mq p r q  (26) 

Here q , q  are vectors of displacements and accelerations, respectively. The temporal 

approximation of dynamic equilibrium equations (26) takes the advantage of the diagonal structure 

of matrices. This will be discussed in the next section. 

3.2. Temporal approximation 

Following standard argumentation, cf. of instance [13], the solution of linear equation of 

motion (26) is approximated ( )n ntq q  in finite number of time points 1 2, ,..., ,....nt t t , where 
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1i it t + . Assuming that nq  and nq  are known from the previous step, the solution at the next 

point 1 + = +n nt t t  is predicted as 

 1 1 1( )n n n+ + += −Mq p r q  (27) 

where t  is the time step. The presence of 1n+q  on rhs of (27) makes it an implicit scheme that 

requires iteration. Assuming Newmark’s approximations [26] in iterative notation 

 ( 1) ( )

1 1

i i

n n δ+

+ += +q q q  (28) 

 

( )
1

( 1) ( ) ( )

1 1 1[(1 ) ]

i
n

i i i

n n n n nΔt γ γ Δtγδ Δtγδ

+

+

+ + += + − + + = +

q

q q q q q q q  (29) 

 

( )
1

( 1) 2 ( ) 2 ( ) 21
1 1 12

( ) [(1 2 ) 2 ] ( ) ( )

i
n

i i i

n n n n n nΔt Δt β β Δt βδ Δt βδ

+

+

+ + += + + − + + = +

q

q q q q q q q q  (30) 

and substituting the above equations into (27), constitutes an implicit equation wrt iteration 

correction δq   

 ( ) ( ) 2

1 1 1( ( ) )i i

n n nδ Δt βδ+ + += − − +M q p b r q q  (31) 

Equation (31) is solved using simple iteration method leading to 

 ( )1 ( ) ( )

1 1 1( )i i

n n nδ −

+ + += − −q M p b r q  (32) 

In view of the fact that M  is diagonal, significant efficiency of time integration scheme is attained. 

Solution of (32) is then used to update the acceleration, velocity and displacement vectors through 

relations (28)-(30). The stability of the temporal integration scheme is determined by an 

appropriate choice of time step and parameters β  and γ . Here 1/4β =  and 1/2γ=  which 

constitutes the average acceleration method.  

The presented time integration scheme belongs to the GN22 group of algorithms (GNpj 

generalized Newmark [26] with degree 2p=  and order 2j= , see [27]). The algorithm inherits all 

the convergence properties of this group. The scheme described above is the closest to α − method 

predictor-corrector-iteration with the numerical damping coefficient (see [28]), here 0α = , since 

we are interested in propagation of fast wave phenomena. In comparison with the latter reference, 

in our case the effective mass matrix Δtγ+M C  is diagonal because it does not include 

participation of the stiffness matrix, and the residual value ( 1)

1

i

n

+

+j  comprises the vector ( 1)

1( )i

n

+

+r q  

treated as an implicit element. Therefore, we do not have to compute and store the element 

stiffness matrix, which even for a single multi-node element is very large and its computation and 

further processing are time consuming, see [9]. 

 

4. Tests of spectral elements  

In all simulations in this paper the odd number of nodes per element side has been chosen. 

Thereby, there always exists one node in the middle of the element side. In addition, the element 
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nodes are always placed in accordance with Gauss-Lobatto-Legendre distribution as specified by 

(22) i.e. the moving of nodes is not allowed.  

In addition, bearing in mind the focus of the paper, total energy density is computed 

pointwise. This formally requires projection of variables from integration points to nodes. Here, 

since the integration points coincide with element nodes, the nodal energy density is evaluated 

straightforwardly.  

4.1. Cook’s membrane problem 

 Before proceeding with dynamic analysis, we run three examples concerned with statics, 

to make sure that the formulated element is free of the locking effect, does not possess spurious 

zero-energy modes and is not sensitive to mesh distortion in the considered range of distortion in 

this study.  

As the first example we run the well-known example of Cook’s membrane problem (Fig .1), see 

e.g. [29], [33], [34]. We present our results of linear convergence analysis for displacement of 

point (a). Additionally, we report the Jacobian matrix and its determinant computed at points P1, 

P2, P3, P4 of the mesh. From the Table 1 it is seen that even though the elements are distorted, the 

obtained results of displacement are correct. In connection with h-convergence analysis for 11x11-

node elements, the values exhibit typical growth with the refinement of mesh. 

4.2. Simply supported beam 

 Considering however that in the Cook’s membrane problem we deal with clamped edge, 

we run another example of simply supported beam, see Fig. 2. Thereby we are able to detect any 

spurious forms. The parameters are: L = 1 m, b = 5 cm, h = 12.5 cm, E = 200 GPa,  = 0, 

 = 7850 kg/m3, P=100 kN. We have carried out p-convergence analysis of vertical displacement 

δA, as well as first three eigenfrequencies. The mesh density is 4 elements along beam’s height and 

32 along its length. The results are reported below in tables: for 4-node elements in Table 2, for 9-

node elements in Table 3, for 25-node elements with GLL nodes in Table 4. 

 The above results show that with the growth of the order of polynomials the locking 

effect visible for 2x2 node elements disappear. In addition, we did not observe the spurious forms 

in deformations (Fig. 3). Moreover, even though the quadrature rule does not satisfy the necessary 

conditions required to fully integrate element matrices, the zero-energy modes did not appear in 

eigenfrequencies (we did not detect zero values). It is seen that the presented GLL integration rule 

is not exact (not to be mistaken with full integration). In the same time the scheme cannot be 

termed ‘reduced integration’ in the sense known from Gauss quadrature rule. 

4.3. Cantilever beam, mesh distortion  test, statics 

Consider a mesh as shown in Fig. 4. In this test a beam undergoes bending with two plane 

stress elements in the mesh. The mesh distortion is controlled by scalar parameter Δ . The material 

parameters are 1500E = , 0.25v = . The units are [N] and [m]. The example is quite popular in the 

context of verification of low-order elements, see for instance [33], [34] [35], [36].  

In the present example the following elements are taken into account: 3×3, 7×7 and 

11×11 with GLL nodes. In comparison with original supporting conditions (shown in Fig. 4), here 

the vertical support has been placed at node C. Thereby it is possible to assess whether the 
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asymmetry of the beam response in horizontal direction is maintained. For the present elements 

two values of vertical displacements vA and vB (see Fig. 4) are reported in Table 5. The obtained 

results are compared with reference solutions in Table 5 where: Q1 denotes the standard bilinear 

quadrilateral element with Gauss integration, Q1/E4 is the enhanced assumed strain element [35], 

and PS is the hybrid stress element of Pian and Sumihara [33]. The exact solution is found using 

Bernoulli beam theory. From Table 5 it is seen that the present elements are almost insensitive to 

assumed mesh distortion. The higher order elements capture the local deformation at nodes of load 

placement, see Fig. 5. The deformation in this Figure is scaled by a factor 0.05 . 

4.4. Cantilever beam, mesh distortion  test, dynamics 

In this section we investigate the dispersion phenomenon induced by mesh distortion. In 

is known, see for instance [30] that in the analysis of the wave propagation, the effective length of 

the finite element, and the corresponding time step must be able to represent accurately the 

travelling wave. This requirement is known as the CFL condition, see for instance [5], [30], [31]. 

The values of CFL are also investigated here. The detailed consideration of the required node-to-

node distances with respect to the wavelength is discussed in [32]. 

Consider a plane stress structure as shown in Fig 6 (dimensions are given in meters), 

made of steel for which we assume the values of: modulus of elasticity 205E =  GPa, mass 

density 7850ρ =  kg/m3 and Poisson ratio 0.25v = . The structure is treated as free from boundary 

conditions and is acted upon by a single time dependent point force, placed at point (a) of assumed 

time variation in form of four-cycle sinusoidal wave of frequency 120 kHz modulated by the 

Hanning window (Fig. 7).  

As in the previous example mesh distortion in controlled by the scalar parameter Δ . The 

CFL condition is written as 

 1

min

dt c
CFL

h


=  (33) 

where 85·10dt −= is the time step used for the calculation, 1 5277.84c =  m/s is the velocity given 

by (5)1 and minh  is the smallest distance between nodes.  

Following [37] by varying the values of Δ  we evaluate the dispersion denoted as 1/hc c  

where hc  is the numerically computed value of velocity 1c , recorded at point (b) in Fig. 6. The 

obtained values of CFL and the dispersion curve are plotted against Δ  in Fig. 8. Judging from the 

graph of 1/hc c  it is seen that the error is of order of 1%. As far as CFL is concerned its values 

grow with Δ  however they are far below to the stability limit 1.0, see for example [38].  

 

5. Applications 

5.1. L-shaped panel with sharp corner 

In the forthcoming computations we use spectral elements with 11×11 GLL nodes. 

Consider L-shaped panel in plane stress as shown in Fig. 9. The following material constants are 
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assumed in the analysis: modulus of elasticity 205E =  GPa, mass density 7850ρ =  kg/m3 and 

Poisson ratio 0.25v = . The thickness of the structure is 5 mm. The structure is acted upon by the 

uniformly distributed reference load, applied at every FE node between points 1 and 2 in 

horizontal direction (Fig. 9). Time variation of load is given in Fig.7. The nodal values of 

reference load are computed according to (16). The structure is analysed as free. The time step 

used is 85·10dt −=  s. 

Bearing in mind future applications of the discussed formulation, the structure is 

discretized using elements with only two edges parallel (mesh A), though, in the analysis of the 

structure like this, a mesh composed of rectangular (square) elements seems an obvious choice 

(mesh B). The overall response of the structure with mesh A, expressed by energy history is 

plotted in Fig. 10. Since the differences between the results obtained with mesh A and B are very 

small we plot in Fig. 11 the relative error of potential (Fig. 11a) and kinetic (Fig. 11b) energy 

computed as  

 
result in mesh A result in mesh B

result in mesh A
error

−
=  (34) 

Judging from these graphs, there is no qualitative difference between the responses of the 

structure. It may be also observed from Fig. 10 that during the simulation time span, the time 

integration scheme preserves the total energy of the system. The quantitative differences can be 

inspected in Table 6, where energies of the structure are given for 31·10t −=  s. As it may be noted 

the computed value of load energy and value of summed internal and kinetic energy are equal and 

do not depend on the choice of the mesh. This fact provides strong evidence that the proposed time 

integration scheme is correct. In addition, Table 7 reports vector variable, that is horizontal and 

vertical accelerations of point (a) at 31·10t −= s. 

In further analysis, we study the values of energy density at three selected points (see Fig. 

9). By this it is meant that the total energy computed at selected point at given time instance is 

divided by the value of the total energy of the structure (Table 6, at 31·10t −= s.), divided by the 

volume of the panel. Thereby, it is possible to evaluate the amount of energy of waves that travel 

perpendicularly i.e. in the vertical arm of the structure. Fig. 12a depicts the comparison of results 

obtained for point (a), Fig. 12b for point (b) and Fig. 12c for point (c). The respective graphs show 

no difference between values obtained in different meshes. It is seen that point (a) receives about 

40 % of the total energy carried by the propagating waves and overall motion of the whole 

structure while points (b) and (c) only about 20 %. 

5.2. L-shaped panel with a stiffener 

Consider an L-shaped panel with a triangle stiffener located at the right-hand angle, see 

Fig. 13. The material properties and time integration step are the same as in the previous example. 

The load is the same as in the previous case. Fig 14 depicts the energy conservation for the system. 

As in previous case the total energy of the structure is preserved. 

In the analysis to follow we concentrate on comparison between results obtained in mesh 

A and in mesh C. Again energy plots are used, this time however due to the different volumes of 
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structure A and C, we compare total energy density at selected point without normalization. Fig. 

15a shows the results for point (a), Fig. 15b for point (b) and Fig. 15c for point (c). While the 

results obtained in point (a) have comparable peak values, the analysis of solutions computed in 

point (b) reveals highest peak values in mesh C. The largest differences between results are 

pronounced in point (c).  

To throw some light on this issue we have selected 11 points between nodes (c) and (d) at 

equal distance of 0.2 m. In each selected point we have plotted the total energy variation over 

simulation time. Fig. 16a shows the results in the mesh A, and Fig 16b for the mesh C. In both 

plots the vertical axis denotes the height of the horizontal arm of the L-structure. It may be 

observed that in point (d) ( 0)h =  the graphs are the almost the same. With the growth of y  

coordinate the computed energy plots attain their maximal values for / 2 0.1y h =  m and results 

are comparable between mesh A and mesh C. Finally, on the upper edge of the panel for y h=  in 

point (c) we note the largest discrepancies between the results obtained in mesh A and mesh C. 

This is due to the fact that this point is located in the place where the width of the panel changes. 

The analysis of Fig. 16 shows that the greatest part of the energy is carried by the motion of the 

middle part / 2y h  of the panel. 

6. Conclusions 

 In this paper, properties of spectral elements in statics and dynamics test were 

investigated. The present paper is concentrated on numerical tests. However, the developed code 

can be used for wave propagation simulations in a reference state of a structure. Such numerical 

model can be intended as a part of the structural health monitoring system utilizing non-destructive 

guided wave propagation technique. 

The presented formulation and the numerical results support the following conclusions 

1) The elements’ matrices are integrated numerically with GLL quadrature rule, in which 

number of integration point equals the number of element nodes. Locking effect and 

spurious zero-energy forms have not been observed. These undesired effects may appear 

in low order elements available in commercial codes with explicit time integration 

scheme. 

2) The formulated higher order spectral finite elements perform well in distorted meshes. 

3) Since the elaborated temporal integration scheme is not designed to conserve the energy 

of the structure, it is proposed to verify the selection of time step by controlling the total 

energy of the system. Within the studied simulation times the algorithm worked out here 

preserves the total energy. 

4) Studying the energy values shows that the relatively small portion of energy propagates 

through right-hand angle joint. This should serve as the guidance in the aspect of potential 

damage detection by using waveguides. This problem will be the subject of the future 

studies. 
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Tables 

Table 1. Results for Cook’s membrane: displacements, Jacobian matrix and determinant of 

Jacobian matrix 

Mesh u(a)  v(a) Jacobian, determinant DET 

10×10 (2×2)node el. 

 

1.00399E+01 2.26940E+01 

P1: 
2.4 2.17041

0 0.829585
J

− 
=  
 

, det 1.9910052J =  

P2: 
2.4 0.829585

0 0.829585
J

− 
=  
 

, det 1.9910052J =  

P3: 
2.4 2.17041

0 2.17041
J

− 
=  
 

, det 5.2089948J =  

P4: 
2.4 0.829585

0 2.17041
J

− 
=  
 

, det 5.2089948J =  

1 (11×11)node el. 

 

1.06826E+01 2.39414E+01 

P1: 
24 22

0 8
J

− 
=  
 

, det 192J =  

P2: 
24 8

0 8
J

− 
=  
 

, det 192J =  

P3: 
24 22

0 22
J

− 
=  
 

, det 528J =   

P4: 
24 8

0 22
J

− 
=  
 

, det 528J =  

2×2 (11×11)node el. 

 

1.06893E+01 2.39554E+01 

P1: 
12 11

0 4
J

− 
=  
 

, det 48J =  

P2: 
12 4

0 4
J

− 
=  
 

, det 48J =  

P3: 
12 11

0 11
J

− 
=  
 

, det 132J =  

P4: 
12 4

0 11
J

− 
=  
 

, det 132J =  

3×3 (11×11)node el. 

 

1.06910E+01 2.39581E+01 

P1: 
8 7.3(3)

0 2.6(6)
J

− 
=  
 

, det 21.3(3)J =  

P2: 
8 2.6(6)

0 2.6(6)
J

− 
=  
 

, det 21.3(3)J =  

P3: 
8 7.3(3)

0 7.3(3)
J

− 
=  
 

, det 58.6(6)J =  

P4: 
8 2.6(6)

0 7.3(3)
J

− 
=  
 

, det 58.6(6)J =   
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Table 2. Results for simply supported beam (4-node elements): bending modes and displacements 

 Analytical: Euler-Bernoulli beam FEM: Gauss FI SEM: Gauss- Lobatto-Legendre 

δA [mm] 1.28 1.29113 1.09678 

mode 1 [Hz] 286.1 284.36 308.17 

mode 2 [Hz] 1144.4 1074.0 1154.9 

mode 3 [Hz] 2574.9 2232.5 2377.6 

Table 3. Results for simply supported beam (4-node elements): bending modes and displacements 

 Analytical: Euler-Bernoulli beam FEM: Gauss FI SEM: Gauss- Lobatto-Legendre 

δA [mm] 1.28 1.33912 1.33747 

mode 1 [Hz] 286.1 279.10 279.26 

mode 2 [Hz] 1144.4 1045.1 1047.2 

mode 3 [Hz] 2574.9 2147.5 2155.9 

Table 4. Results for simply supported beam (25-node elements with GLL nodes): bending modes 

and displacements 

 Analytical: Euler-Bernoulli beam FEM: Gauss FI SEM: Gauss- Lobatto-Legendre 

δA [mm] 1.28 1.34558 1.34462 

mode 1 [Hz] 286.1 278.48 278.57 

mode 2 [Hz] 1144.4 1036.9 1038.1 

mode 3 [Hz] 2574.9 2113.6 2118.6 

Table 5. Results of mesh distortion test for cantilever beam, results in [m] 

Distortion  

Element 

0.0 0.5 1.0 2.0 3.0 4.0 4.9 

Exact solution 100 100 100 100 100 100 100 

Q1 (FI) 28.037 21.047 14.129 9.707 8.305 7.204 6.243 

Q1/E4 100.0 80.935 62.711 54.439 53.635 51.240 46.801 

PS 100.0 81.0 62.9 55.0 54.7 53.1 49.8 

3×3 

GL/GLL 

NODES 

vA 

vB 

100.250 

100.000 

100.250 

100.000 

100.250 

100.000 

100.250 

100.000 

100.250 

100.000 

100.250 

100.000 

100.250 

100.000 

7×7 

GLL 

NODES 

vA 

vB 

101.496 

100.016 

101.440 

100.017 

101.386 

100.020 

101.283 

100.033 

101.190 

100.056 

101.104 

100.081 

101.043 

100.112 

11×11 

GLL 

NODES 

vA 

vB 

102.432 

100.001 

102.361 

100.001 

102.294 

100.000 

102.173 

99.9983 

102.064 

99.9985 

101.967 

100.002 

101.883 

99.9863 

Table 6. Energies of L-shaped panel, t=1·10-3 s. 

 U [J] K [J] Gext [J] U+K [J] 

Mesh A 2.96157E–12 3.07037E–12 6.03193 E–12 6.03193E–12 

Mesh B 2.96291E–12 3.06902E–12 6.03193 E–12 6.03193E–12 

 

Table 7. Accelerations of point 5, t=1·10-3 s. 

 Horizontal [m/s2] Vertical [m/s2] 

Mesh A –2.61456E–01 6.23417E–01 

Mesh B –2.05386E–01 6.22643E–01 
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Figure captions 

 

Fig. 1. Cook’s membrane, geometry and load 

 

 

Fig. 2. Simply supported beam, geometry and load 

 

 

Fig. 3. Deflection of simply supported beam for mesh density 4 × 32 elements: a) 4-node elements; 

b) 25-node elements with GLL nodes 
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Fig. 4. Cantilever beam, geometry and load, statics 

 

 

Fig. 5. Cantilever beam, statics, distortion ∆=4.9, 11×11 node element, 

 

Fig. 6. Plane stress structure in dynamic analysis, dimensions in [m] 

 

 

Fig. 7. An excitation signal in the time and frequency domains 
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Fig. 8. Dispersion curve and CFL variation on mesh distortion parameter for plane stress structure 

in dynamic analysis, dimensions in [m] 

 

 

 

Fig. 9. L-shaped panel, geometry, load and applied meshes 
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Fig. 10. Energy history of the L-shaped panel for mesh A 

 

 

Fig. 11. Potential and kinetic energy error between mesh A and mesh B 
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Fig 12. Energy ratio for the L-shaped panel for mesh A and mesh B in selected points: 

a) point (a); b) point (b); c) point (c) 
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Fig. 13. L-shaped panel with stiffener, mesh C, geometry and load  

 

 

 

 

Fig. 14. Energy history for the L-shaped panel with stiffener for mesh C 
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Fig 15. Energy for the L-shaped panel for mesh A and mesh C in selected points: 

a) point (a); b) point (b); c) point (c) 
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Fig. 16. Energy plots in L-shaped panel for points located between nodes (c) and (d): 

a) mesh A; b) mesh C P
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