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Abstract 

This paper discusses the problem of parametric identification of a historic masonry tower 

model. The tower tends to lean and its foundation stiffness is a concern to authorities. The 

authors identified a few modal characteristics of the tower, natural frequencies and mode 

shapes. Based on the first mode shape identified it is known that the structure behaves like a 

stiff solid on elastic foundation. Thus, a simple, five parameter plane model is taken into 

consideration. The unknown parameters are identified to be the solution to an optimisation 

problem, which involves using the sensitivity analysis and scatters of the modal identification. 

A hierarchical process is formulated, where two natural frequencies are assumed to be the 

input data. In this approach, the number of unknown parameters increases incrementally, and 

the process changes from even-posed to under-posed successively. Such approach allows one 

to control the final under-posed identification problem and leads to an increasingly better 

solution. 
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Introduction 

This paper discusses the problem of parameters identification of the Vistula Mounting 

tower model. A mathematical model can be a source of information about structural 

behaviour, in addition to observations and in situ measurements. However, the model 

must be well-posed. In mathematical modelling several problems must be considered 

and some decisions should be taken. First of all, the type of the model, its size and the 

governing equations must be specified in order to properly represent the structure. 

Secondly, some variables describing the structure’s behaviour must be quantifiable and 

measured. They will serve as the data for model validation. Finally, a method of model 

parameters identification must be chosen.  

 Nowadays, when measuring tools are highly developed, it is convenient to use 

modal characteristics of a structure as reference data for modelling. Those 

characteristics can describe both the global and the local behaviour of a structure. Thus 

a model can be validated on different levels. Experimental modal identification belongs 

to the class of inverse problems. The modal characteristics are determined through 

measured structural response to known (i.e. generated signals especially) or unknown 

(i.e. ambient) excitations. There are a lot of methods of experimental modal 

identification, many of which are described in the book [1]. A review of different 

experimental techniques for obtaining modal parameters of concrete structures is 

presented in [2]. In the book [3] a background for the peak picking method is given. A 

practical example of the modal model identification of a 200MW steam turbine 

foundation, working in a large power station is described in [4]. The model 

identification is based on measured response of the system to operating excitations. 

Another case is described in the paper [5], where application of different modal 
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identification techniques for collecting ambient response data  from dynamic tests of 

cable-stayed bridge is discussed.  

Parametric identification of a model is also an inverse problem. If  response of a model, 

i.e. the modal characteristics, displacements, time histories, etc., can be compared to the 

response measured in situ, then the model parameters can be identified. For instance, the 

paper [6] describes an example, where concrete gravity dams were identified to predict 

dynamic characteristics of an existing concrete gravity dam with an empty reservoir. An 

experimental examination of a hybrid method for identifying both structural parameters 

and ground motion of earthquake-excited multi-storey buildings is described in [7]. 

Another case, concerning bridge finite element model updating, is presented in [8]. 

In this article a problem of modelling and parametric identification of a historic 

masonry tower in the Vistula Mounting Fortress in Gdansk (Fig.1) is described. The 

tower, in its original form, dates back to the 15th century. It was erected as a lighthouse 

and a defensive building. It was damaged several times in military conflicts.  Nowadays 

it is 22.65 m high, and its external diameter is 7.7 m. The structure has seven floors. 

Concrete ceilings are reinforced. Its walls were built using masonry and were restored at 

different times. The average wall thickness is 1.25 m. The tower was founded on weak 

and layered subsoil. The foundations were made of boulders and lie just below the 

ground level. Conservation works in the Vistula Fortress have continued for the last 20 

years. In May 2011 the Fortress was opened for visitors.  

There are still, however, dilemmas concerning the tower. One of them concerns 

stiffness of the tower foundation because the building tends to lean. The author’s task is 

to propose a relatively simple model of the tower and estimate  foundation stiffness.  

The overall behaviour of the tower can suggest a type of a suitable mathematical model. 
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In order to determine it, dynamic measurements were taken and some modal 

characteristics have been identified. Signals measured at several structural points during 

ambient excitation have been utilized. It should be emphasised that only weak ambient 

excitations caused by the river and wind are possible to use in the modal identification 

process because of bad tower condition. 

The type of a tower model was selected based on the form of the first mode shape. 

Since a considerable rotation - in comparison to the tower structural deformation - about 

the tower base is observable, a rigid solid body resting upon elastic foundation is 

considered to be a good approximation of the structure. Natural frequencies of the first 

and the second coplanar mode shapes, and two coordinates of the first mode shape are 

used as the data in the model parametric identification. In order to solve the problem of 

model identification, a least square error function was formulated as the objective 

function. To minimize it, an iterative procedure with implication of the sensitivity 

analysis was employed.. 

In this engineering case the authors wish to propose a hierarchical approach to solve 

the under-posed problem. Important elements of this task are scatters of the structure’s 

measured modal characteristics. They are used to accurately define the optimisation 

problem.  

 

2. Identification problem 

2.1. Experimental modal identification 

The difficulty of dynamic identification of masonry buildings is caused by low-energy 

vibrations of such structures (see [9]). The Peak Picking method (see [3]) was used for 

modal identification of the tower. The method is suitable for any signal, also for low-
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energy ones. It was used with success for other masonry tower examinations, for 

example for the historic masonry bell-tower, adjacent to the Cathedral of Monza in Italy 

[10]. The biggest advantage of the method, however, is the possibility of determining 

statistical errors of identified modal characteristics. This feature of the method was 

useful for this investigation. 

The mode shapes errors arise from the fact that only estimates of the auto-spectra, 

which are basic functions in the peak picking method, can be calculated. Real values of 

the functions could be obtained for signals infinite in time and that is practically 

impossible. The estimates are affected by statistical errors, bias b  and random r , which 

give a final error b r    . They are presented in [3] and [11]. The formulae are: 

 
 2 ( ) ''

ˆ ( ) ,
24 ( )

pp

b pp

pp

G ff
G f

G f




 
   
 

  

 (1) 

 
1ˆ ( ) ,r pp

d

G f
n

   
 

 (2) 

where ˆ ( )ppG f  is the estimate of auto-spectrum calculated for signal measured in a 

structural point p,  f  denotes the frequency resolution of the analyzed spectra, 

 ( ) ''ppG f  is the second derivative of the ( )ppG f  function and dn  is a number of ( )p t  

signals analyzed. 

Coordinates of a mode shape associated with the resonant frequency mf  are 

calculated according to the formula (3) (see [3]): 

  
ˆ ( )

( )
ˆ ( )

pp m

p m

rr m

G f
f

G f
  , (3) 
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where ( )p mf  denotes the estimated mode shape coordinate at discretization point p and 

ˆ ( )rr mG f  is the auto-spectrum value for mf , calculated for a signal ( )r t , measured at the 

structural reference point r. Thus, according to the rules of error transfer the following 

statistical error of the mode shape coordinates is identified: 

  1 ˆ ˆ
2

p pp rrG G              
 (4) 

The error of the measured natural frequencies has two components: the digitalisation error 

equal to the half of the spectrum resolution, and the random error calculated using 

dispersion of the measured resonant frequencies. 

 Acceleration of points selected across the tower were measured during ambient 

vibrations. Wind and water waves from the nearby situated river (Fig. 1) caused major 

environmental excitation. The measuring points were arranged along two opposite walls 

at the tower height on nine levels (Fig. 2). Accelerations in two horizontal directions, 

East-West (parallel to the wall surfaces) and North-South (perpendicular to the wall 

surfaces) were recorded at each point. Thus, 36 measuring points were set. A twelve-

channel PULSE 3650C measuring system was used. Four series of measurements were 

carried out, in which four sensors were constantly in the same positions, in the reference 

points, situated at the level 11.05m above the ground level. The signals collected in the 

reference points were used for scaling measurements made in different series to the same 

order. Each measurement took 1024 seconds, 256 samples were collected per second, so 

each signal consisted of 262144 samples.  

 According to rules of the peak picking modal identification method, the auto- and 

cross-spectra of the time series, the coherence functions for various pairs of signals and 

the phase shifts between them were calculated. On that background only one resonant 
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frequency of the tower was identified using signals measured across the North-South 

plane, whereas three were determined using time series measured in the East-West 

direction. An example cross-spectrum of signals measured at the tower top at two 

structural points situated on opposite walls is presented in Fig. 3. Nature of related mode 

shapes was also specified using the analysis of phase shifts between signals measured at 

different structural points. Additionally, coordinates of two first mode shapes in two 

perpendicular planes were determined. Hence, it is evident that 1 1.416 HzN Sf    and 

1 1.446 HzE Wf    refer to the first two lateral mode shapes in two perpendicular 

directions: North-South and East-West, respectively. The associated mode shapes are 

presented in Fig.4. The coordinates of the mode shapes are calculated from the auto-

spectra ratio, see formula (3), so relative values are obtained. The unitary value is found 

for a section, where the reference signals are recorded.  

The subsequent frequencies identified in the East-West direction are 4.485 Hztf  , 

which relates to the torsional mode, and 2 6.570 HzE Wf   , connected with the second 

lateral mode shape in this plane. Unfortunately, the shapes of these modes cannot be 

determined because of absence of peaks for this frequency in most of auto-spectra. 

According to the formula (3), values of such peaks are used for a mode shape coordinates 

calculation. The frequencies 1

E Wf  , tf  and 2

E Wf   are marked in the cross-spectrum 

presented in Fig. 3.  

In order to estimate the signal spectra, time histories were divided into 32 sections 

( 32dn  ). Thus, the error for all the modes is the same and amounts 

to     0.177r     , because  b   is negligibly small as it is of the 0.001 order (see 

also [12]). The following values of the errors were obtained for the tower’s natural 
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frequencies 1 0.00322N Sf     , 1 0.00337E Wf     ,   0.00689tf  and

2 0.00871E Wf     .  

 

2.2. Optimisation scheme 

Many different methodologies are used in identification of structural systems, many of 

which are described in [13]. In this task of parametric identification of the mathematical 

model, an optimisation problem was formulated. The square error function is assumed to 

be the objective function: 

  
2

1

ˆ( ) ( )
i S

i i i

i

F s s




 b b , (5) 

where b denotes a vector of the design variables (the sought-after parameters of the 

model), ( )is b  stands for the state variables of the mathematical model, îs  represents 

measured state variables of the tower and i  is a weight coefficient determined for each 

state variable. In order to find the minimum of the objective function (5) an iterative 

procedure is proposed. The unknown state variables in the iteration of k can be formulated 

as: 

      ,k k k k k k k k

i i is s s    b b b b b , (6) 

where  ,k k k

is b b  is the first variation of the state variable with respect to the design 

variable vector. 

Finally, the optimization problem is reformulated as minimisation of the objective 

function in relation to the design variables vector variations: 

  
2

1

ˆmin ( ) min ( ) ( , )
i S

k k k k k k

i i i i

i

F s s s
 

   




  
b b

b b b b . (7) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8 

 

Variations kb , calculated at each stage k are used for updating the b vector: 

1k k k  b b b . Calculations continue until the relative variations kb  are smaller than 

the assumed accuracies. The mathematically complicated relation ( , )is b b  is 

substituted by approximation  
T

i sbs  w b  determined by means of sensitivity 

analysis. The vector sbw  consists of first variations of the state variables with respect to 

variations of the design variables.  

In this approach the radial natural frequencies squared i  and the coordinates of the 

first mode shape 1n  are the state variables. Thus, the objective function is formulated as 

follows: 

 
2 2

2 2
T

1 1

1 1 1

ˆ ˆ( ) ( )
min ( ) min ,

( ) ( )

k k k ki n
k k k k ki i n n

j b nk k k k
i ni n

b
F 

 

   
    

 

 

 

     
               

 
b b

b b
b w b W b

b b 

  (8) 

where the vector bw  and the matrix bW  consist of the relative first variations of the 

radial natural frequency squared   and of the mode shape   relative to the variations of 

the design variables, respectively. The coefficients are derived from the equation of 

motion for a discrete system. They are calculated according to the following formulae: 

 
Tj ji

bj i i i

j i j j i

b b
w

b b b





 

    
          

K M
  , (9) 

  1b b bj bB... ...W w w w    , (10) 

 

Τ

1

1

i ni DOFij j j

bj

j i j ni j DOFi

b b b
, ..., ,...,

b b b

  

  

    
  

    

w , (11) 
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 

T
Τ

1 T

1

1

2

m i i
m DOF j ji ni DOFi

bj m i i i
m ,m i

j j j i m j

b b
, ..., ,...,

b b b b


  

 



 


   
  

                              
 
 

K M

M
w

 

    , 

 (12) 

where ,i i   denote the ith radial natural frequency squared and the ith mode shape, ni  is 

nth coordinate of the mode i  1,...,n DOF , jb  represents the jth model parameter 

 1,...,j B , K and M stand for the stiffness matrix and the mass matrix, respectively. 

 

2.3. The model and the identification setup 

In order to make the calculations the governing equations of the mathematical model 

must be assumed. In case of the Vistula Mounting Fortress tower the type of model is 

determined based on two first mode shapes measured. The mode shapes (Fig. 4) confirm 

the hypothesis of a relatively weak foundation of the tower. They show that the tower 

leans almost like a stiff solid therefore a model of a rigid solid body resting on an elastic 

foundations can be a reasonable mathematical approximation of the building’s behaviour. 

A small number of parameters is the advantage of this model. It is convenient because 

only a few modal characteristics of the tower are to be used as state variables in the model 

parametric identification. The benefit of models with smaller number of degrees of 

freedom is described for example in the paper [14], where a structural health monitoring 

procedure for the Guangzhou New TV Tower in China is presented. 

A schematic diagram of the model is presented in Fig. 5. The plane model is the 

subject of interest. Therefore there are two dynamic degrees of freedom, namely: the 

displacement across the x axis and rotation , relative to the y axis. The foothold of the 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 

 

Cartesian coordinate system xyz is placed in the centre of gravity of the structure. The 

following equation of motion is valid: 

2

0 -

0 -

x x c

y x c x c

m k k zx x

J k z k k z 

      
       

     
0 ,      (13) 

with the following five parameters: m mass of the tower, yJ  the tower mass moment of 

inertia, cz  the tower’s centre of gravity, and , xk k  foundation stiffness coefficients. 

Those five parameters are to be determined based on measured state variables, the tower 

modal characteristics. 

 Initially only two state variables were used, namely the natural frequencies of the first 

and the second lateral mode shape measured across the East-West plane (the natural 

frequencies 1

E Wf   and 2

E Wf  ). The natural frequencies can be quite easily measured 

compared to mode shapes, so in that respect they are convenient state variables. In order 

to solve this identification problem the authors applied a hierarchical approach. 

In the hierarchical approach the task changes form the even-post to under-posed. At 

the first stage only two parameters, namely , xk k , are identified. Hence, we have an  

even-posed problem then. Three other parameters: m, yJ , cz  can be approximated based 

on known geometry of the structure and building materials, and they are assumed to be 

constant at this stage of calculations. At the second stage three parameters are identified - 

two are assumed as constant. At the third stage of calculations four parameters are sought-

after and finally all five are identified at the fourth stage. The order of assigning assumed 

constants to unknown parameter groups determines the sensitivity analysis in the 

following manner. The higher the relative sensitivity coefficient of a given state variable 

to a given parameter variation the bigger the influence of that parameter on objective 

function minimisation. The parameter, which influences the objective function the most, 
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is  assigned to the unknowns set first, while the one of the smallest influence is the last 

one to be identified.  

One should note that especially when dealing with under-posed problems, selecting 

the starting point for calculations is crucial to obtaining a reliable result. The starting point 

can be quite easily specified in case of such hierarchical approach. As for the even-posed 

problem, three parameters are roughly calculated based on the tower geometry and 

building materials used. Then the initial values of the other two unknowns can be 

calculated using the governing equations for the model assumed. In that way, when 

dealing with under-posed tasks, the starting point can be always verified drawing on 

solutions to a case with smaller number of parameters.  

Having concluded the stage with two state variables, results obtained are tested for 

dependence on the number of state variables by considering four state variables. Two 

coordinates of the first lateral mode shape (related to 1

E Wf  ) in the East-West plane will be 

used as the additional data. Namely, 1

E W

t


- displacement of the tower top and 1

E W

b


- 

displacement at 5.1 m above the ground level.  

The accuracy of results obtained in each case is verified by comparing the theoretical 

and the measured first mode shape.  

 

2.4. The data 

The following values of state variables were used in the 

optimisation:    
2 2

1 1
ˆ 2 81.99 rad/ sE Wf    ,    

2 2

2 2
ˆ 2 1703.34 rad/ sE Wf    ,

1 1
ˆ 1.806[ ]E W

t t     , 1 1
ˆ 0.453[ ]E W

b b     . Errors in measured state variables play a 

major role in the process. They are used to specify weighted coefficients of state variables 
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and to calculate the final criterion formulation. The error values are given at p. 2.1. 

Statistical errors of the measured natural frequencies are of the same order. Thus, in 

the first, hierarchical approach with two state variables, the weight coefficients are the 

same both for 1̂  and 2̂  at 1. In the second approach, with four state variables, due to 

major differences between statistical errors of the measured natural frequencies and the 

mode shapes, the weight coefficients for the four state variables are diverse. They are 

defined proportionally to the statistical errors of the modal identification (see p. 2.1), 

hence their sum is equal to 1. They are:  1
ˆ 0.869   ,  2

ˆ 0.119    and 

   1 1
ˆ ˆ 0.00588t b     . 

  The final criterion for identification is defined by a relative difference between the 

measured and the calculated state variables. For each variable this difference must be 

smaller than its error obtained from the modal identification. The calculations continue as 

long as the difference for each state variable used decreases down to the assumed level. 

Therefore, the final criterion in case of two state variables 

is   410 1 2i i
i

i

ˆ
, i ,

ˆ

 
 




   , while in case of four state variables there are defined as 

the following conditions:   1 1

1

1

ˆ
0.177; ,

ˆ
n n

n

n

n b t
 

 



   , 

  1 1
1

1

ˆ
0.00337

ˆ

 
 




   and   2 2

2

2

ˆ
0.00871

ˆ

 
 




  . 

In the hierarchical approach the number of parameters increases incrementally. The 

order of adding constants to the sought-after parameters group determines the sensitivity 

analysis, as described in p. 2.3. The sensitivity coefficient obtained by correlating the two 

natural frequencies with given parameter variations is presented in Table 1. Then, the 
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following vectors of design variables were studied in successive steps of the hierarchical 

approach:  

 
T

xk , kb1 ,  
T

x ck , k , zb2 ,  
T

x c yk , k , z , Jb3 ,  
T

x c yk , k , z , J , mb4 . 

At each stage of iterative calculations an optimization problem was solved. The internal 

penalty function scheme is employed.  

Convergence of the optimization process is not sufficient to take the obtained result 

as a reliable one. Especially when dealing with under-posed tasks the results strongly 

depend on the starting point of optimization - outputs vary for different starting values. 

Therefore there should be an additional condition to verify the results. In this investigation 

they are assessed by calculating the Normalized Modal Difference (NMD) [1] between 

the first mode shape calculated for the model and the measured mode shape of the tower. 

  
  

2
T

T T

ˆ
1 ˆ100% , ,

ˆ ˆ

MAC
NMD MAC

MAC


  

 
 

   
. (19) 

MAC stands for the Modal Assurance Criterion. The smaller the NMD value the better the 

mode shape is matched.  

 

2.5. Results 

The identification results, along with the starting values and boundary conditions are 

presented in Table 2. A low, 4÷6%, NMD was obtained for each approach. That means 

the assumed model along with determined parameters is a good approximation of the real 

structure’s behaviour. The NMD values calculated in each case can be assumed to be 

indicators of how effective an optimization is. Should the number of unknowns increase 

from two to four in the hierarchical approach the NMD values decrease. Consecutive 

values were 4.680, 4.539, 4.271% (see Tab.2). That means the results obtained were 
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increasingly better. However, when the number of parameters increases to five, the NMD 

value increases to 6.326%. That case proves that there is an efficiency limit of the under-posed 

problems solving, depending on the number of unknowns. The case with five parameters was 

reattempted to be solved, based on four state variables and again a lower NMD value was 

reached of 4.666%. This test proves that the increment of state variables improves 

effectiveness of identification. The case with four state variables required more iteration 

steps (ten) than the task with two data (three) to reach the final criterion, because the 

criterion must be satisfied for more state variables at once.  

Important elements of any optimization are the starting points and boundary 

conditions. If correctly selected the identification process should be stable. Starting points 

are determined based on preliminary calculations, as described in p. 2.3. Boundary 

conditions circumscribe results to physically possible ones. The starting values of zc, Jy 

and m were similar in each case. On the other hand, the values of k and kx had to be 

changed in cases with four and five unknowns. In order to obtain a reliable result they had 

to be more comparable to expected final values. For example in a case with three 

unknowns the initial value of k  was 10
9
 and the result obtained was 1.411∙10

10
, while in 

a case with four parameters the starting value had to be 10
10

 in order to obtain the 

resulting 1.391∙10
10

. Figure 6 shows convergence of the parameters k and kx for the case 

with four state variables.  

In each case the calculated natural frequencies were almost the same as the measured 

quantities, according to small relative errors assumed acceptable as shown in Fig.7, where 

convergence of the state variables’ relative errors is presented. A greater permitted error 

was assumed for mode shapes coordinates, however, the modes calculated were also 

similar to the measured ones (see Fig.4). 
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3. Concluding remarks 

This study has discussed the modelling and parametric identification of the historical 

tower in the Vistula Mounting Fortress. An iterative procedure has been proposed of 

parametric identification using the minimum square error function as an objective 

function for an optimisation problem. The procedure involves minimization of the 

objective function through employing the sensitivity analysis to approximate complex 

relations between parameter variations and the state variables variations .  

An inverse under-posed problem has been reviewed. Five parameters of the tower 

model were identified based on two measured modal characteristics (natural frequencies). 

The result was verified with calculations based on four measured modal characters. A 

hierarchical process of the tower identification, depending on incrementally increasing 

number of parameters converges to increasingly better model of the structure. The 

presented example proved there is a limit in relation unknowns-data for the under-posed 

problems as far as the identification efficiency is considered. In the example, the 

identification efficacy measured as the difference between measured and analytical first 

mode shape, started to decrease in case of five unknown parameters and two state 

variables (the data). Using four state variables improved the obtained result. The 

numerical example shows an efficacy and a good convergence of the iterative procedure 

proposed. 

Worthy of attention is the relationship between the modal identification of a structure 

and identification of its model. The measured resonant frequencies of a structure are 

convenient state variables, as they can be quite easily measured. The mode shapes, on the 

other hand, can suggest the type of model for a given structure, which would represent it 
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correctly. Forms of the first two lateral mode shapes suggest that a model of a rigid solid 

body resting on elastic foundations is adequate.  

The scatters of the measured modal characteristics are other valuable data. They help 

to formulate the optimisation problem accurately. In presented example they were a basis 

for weight coefficients of the state variables specification and for determining the criterion 

for concluded calculations. The numerical example for the tower of Vistula Mounting 

Fortress proves the proposed modelling and identification of the structure to be practically 

viable. It should be emphasised that only weak ambient excitations caused by the river  

and wind were used in the modal identification process. 

 

 

Figure Captions 

Fig. 1. Vistula Mounting Fortress with the tower in the centre 

Fig. 2. Plan of the tower with positions and orientation of the accelerometers  

Fig. 3. A cross-spectrum of signals measured across the East-West plane at the tower top 

at two structural points situated on opposite walls; three resonant frequencies identified in 

this plane are marked  

Fig. 4. Two first lateral mode shapes of the tower, measured and theoretical: (a) the first 

one in the West-East plane, (b) the first one in the North-South plane; planes of vibrations 

are presented in the cross-section of the tower 

Fig. 5. Rigid solid body model resting on elastic foundation 

Fig.6. Convergence of the parameters k and kx for the case with four state variables 

Fig. 7. Convergence of the state variables’ relative errors   1 2k

i , i ,    and 

 1

k

n , n b,t     
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Table 1. Relative sensitivity coefficients ( bw ) of natural frequencies squared (and  to a 

given parameter (b) variations 

b 
bw   bw  

zC -1.272 1.274 

Jy -0.791 -0.209 

m -0.209 -0.791 

 

Table 1



Table 2. Results of the model parameters identification  

 

 

  Two state variables approach 

Four state 

variables 

approach 

 

             Identified 

            parameters 

                  

 

The  

parameter name 

k ,  kx k ,  kx ,  zc 
k ,  kx ,  zc 

Jy 

k ,  kx ,  zc 

Jy , m 

k ,  kx ,  zc 

Jy , m 

S
ta

rt
in

g
 

v
al

u
es

 

k  [Nm] 1.00∙10
9 

1.00∙10
9 

1.00∙10
10

 1.00∙10
10

 1.00∙10
10

 

kx  [N/m] 1.00∙10
9
 1.00∙10

9
 4.00∙10

8
 4.00∙10

8
 4.00∙10

8
 

zc [m] 10.760 10.00 10.00 10.00 10.00 

Jy [kg∙m
2
] 4.340∙10

7
 4.340∙10

7
 5.00∙10

7
 4.30∙10

7
 4.30∙10

7
 

m [kg] 9.202∙10
5
 9.202∙10

5
 9.202∙10

5
 9.200∙10

5
 9.000∙10

5
 

B
o
u
n
d
ar

y
 

co
n
d
it

io
n
s 

k  [Nm] 100 - ∞ 100 - ∞ 100 - ∞ 100 - ∞ 100 - ∞ 

kx  [N/m] 100 - ∞ 100 - ∞ 100 - ∞ 100 - ∞ 100 - ∞ 

zc [m] 

- 

0 – 15.00 0 – 15.00 0 – 15.00 0 – 15.00 

Jy [kg∙m
2
] 

- 
10

6
- ∞ 10

6
- ∞ 10

6
- ∞ 

m [kg] - (9-10) ∙10
5
 (9-10) ∙10

5
 

Id
en

ti
fi

ca
ti

o
n
 

re
su

lt
 

k  [Nm] 1.439∙10
10

 1.411∙10
10

 1.391∙10
10

 1.399∙10
10

 1.239∙10
10

 

kx  [N/m] 3.877∙10
8
 3.948∙10

8
 4.279∙10

8
 4.114∙10

8
 4.264∙10

8
 

zc [m] 

starting 

value 

10.647 10.898 10.441 9.921 

Jy [kg∙m
2
] 

starting 

value 

4.980∙10
7
 4.357∙10

7
 4.115∙10

7
 

m [kg] 
starting 

value 
9.418∙10

5
 9.202∙10

5
 

Number of iteration steps 3 4 4 3 10 

NMD [%] 4.680 4.539 4.271 6.326 4.666 

Table 2
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