
STUDIA INFORMATICA 2012

Volume 33 Number 2A (105)

Artur OPALIŃSKI

Politechnika Gdańska, Wydział Elektrotechniki i Automatyki

ADAPTING A GENERAL TOOL TO MONITORING MULTI-AGENT

SYSTEMS THROUGH VIRTUAL HOST LAYER EXTENSTION1

Summary. Nagios is a free software for IT infrastructure monitoring. Out-of-the-

box it is not suited for monitoring multi-agent systems, because agents may dynami-

cally join and leave the system or change roles. But Nagios’ flexible configuration

makes extensions possible. This paper presents and verifies Nagios configuration and

extensions for monitoring multi-agent systems.

Keywords: multi-agent systems, remote monitoring, virtual host layer

ROZSZERZENIE TYPOWEGO NARZĘDZIA

O WARSTWĘ HOSTA WIRTUALNEGO W CELU

MONITOROWANIA SYSTEMÓW AGENTOWYCH

Streszczenie. Nagios to bezpłatne oprogramowanie do monitorowania infrastruk-

tury IT. Nie jest ono dostosowane do monitorowania systemów agentowych, gdyż

agenty mogą swobodnie podejmować lub zarzucać realizację działań czy zmieniać

pełnioną rolę. Bogate możliwości konfigurowania Nagios pozwalają poszerzyć jego

możliwości. Artykuł przedstawia i weryfikuje konfigurację oraz rozszerzenie Nagios,

umożliwiające monitorowanie systemów agentowych.

Słowa kluczowe: system agentowy, zdalny monitoring, warstwa wirtualnego hosta

1. Introduction

Sets of autonomous entities are considered in research and use of multi-agent systems

(MAS). These sets are potentially large and dispersed. They may encompass simple, zero-

1
 This work was co-financed by the European Union within European Regional Development Fund, through

grant Operational Program Innovative Economy POIG.02.03.00-00-028/09-05.

100 A. Opaliński

intelligence, homogenous agents [1] or complex agents [2,3], possibly playing different roles

in problem solving. In general, at any instance of time, a given functionality may be provided

by any number of agents, and this functionality is hosted on-demand on occasional computing

nodes.

To achieve goals with MAS it may be important to have at disposal an appropriate

amount of agents or an appropriate mix of agent services for the task to converge to the solu-

tion [4]. Both monitoring and provisioning is therefore a requirement for any distributed mul-

ti-agent environment. Unfortunately multi-agent environments do not address these features

consistently. Some solutions like UMAP [5] or JADE [7] are based on FIPA standards [16]

which requires to run agents in controlled environment. This is interpreted as controlling each

agent individual management state changes, not as presenting summary data on agent popula-

tion(s). Other frameworks, like AgentBuilder [17] provide insight into agencies (agent sets)

and allow to manage the multi-agent project as a whole but use proprietary mechanisms

which are unsuitable for heterogeneous agent sets. Yet others like NetLogo [18] only offer

result visualization. In Swarm [19] the dedicated observer swarms can either draw the results

as graphs or direct the resulting data to files.

A more promising approach to heterogeneous agent sets monitoring comes from the realm

of computer system and network monitoring. IBM Tivoli line of products [20,21], BMC

Event Manager (former BMC PATROL) [22], HP OpenView[23] or open-source tools [24]

allow to monitor virtually any service by providing for software extensions called monitoring

agents or plugins, and a wealth of communication protocols. Unfortunately the monitoring is

aimed at every separate infrastructure item or service, or on the status of a group of them. No

simple provisions are available to monitor the count of services or the existence of a specific

percentage mix of services.

Nagios [6] (formerly NetSaint) is a free, multiplatform, open-source software, popular for

monitoring IT infrastructure. Nagios can monitor virtually any item, independent from the

underlying software, by using dedicated plugins. Nagios is not well suited out-of-the box for

monitoring MAS, though. Its fundamental assumptions include that every service monitored

is inseparable from underlying host and that hosts and their services are static, i.e. services are

performed by the same computing node over time. This is in contrast to MAS setups where

agents may join and leave the active set dynamically, and may take over various and some-

times multiple roles.

On the other hand, Nagios is very flexible in its configuration, making it a promising tar-

get for extending its application, even without need to change its source code.

The goal of this paper is to present a solution to MAS monitoring based on concepts

found in Nagios. The purpose of this monitoring is to ensure enough agents in any roles are at

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Adapting a general tool to monitoring multi-agent systems through virtual host… 101

play for the MAS to find a solution. The responsibility of the monitoring system is to inform

in an automated way that some assumptions or prerequisites pertaining to the presence or

quantity of agents are not met, not to decide what numbers of agents or agent roles are needed

to perform the task.

2. Primary Nagios usage

2.1. Simple monitoring scenario

Basic Nagios elements in a simple monitoring scenario are presented in Fig. 1, on the left

side, with Service A. Nagios Core caches the configuration information in memory. This basic

configuration includes a service (`Service A`) linked with hosts `Host`. A host may also be spec-

ified for monitoring without any service associated with it. Service and host probes are called

with parameters which may be specified respectively in the service or host definition. The ser-

vice and the host definitions usually point to different probes. The probes do the actual checks

to verify the service or host health in the monitored environment and return information, which

is intercepted and reflected in Nagios Core as service or host status, respectively.

The relation between services and hosts is many-to-one. Any service needs to remain in

a parent-child relationship with a single host, i.e. services must be defined with exactly one

underlying host. The relationship is used to improve the notification schema, i.e. to avoid

notifications for services that are brought down from an outage on their host, to ease the fail-

ure root cause analysis.

2.2. General configuration remarks

Both host and service checks can be individually disabled by means of the ac-

tive_checks_enabled field – this means that it is possible to only actively monitor the state of

the host, or only actively monitor the state of the service, despite their relationship. This fea-

ture is used below to simplify the examples – only hosts are actively monitored. The probe

commands for services and hosts follow the same API rules. The only difference is that for

service checks the return codes allow to distinguish more states. Besides this, there is no in-

herent difference indeed between monitoring a host or a service in regard to the solution pre-

sented.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

102 A. Opaliński

Fig. 1. Monitoring scenarios with Nagios. Service A on Host is monitored in a typical way. Service

B on VirtualHost is monitored using virtual host layer

Rys. 1. Monitorowanie z użyciem Nagios. Usługa A na hoście Host jest monitorowana

w podstawowy sposób. Usługa B na hoście VirtualHost jest monitorowana za pośrednictwem

hosta wirtualnego

2.3. Shortcomings for MAS monitoring

Parent-child relationship is right for monitoring essential services in a relatively static en-

vironment, where each service instance is known in advance and where the service is per-

formed by a specific host. Nagios then issues the service and host checks at scheduled times,

and the appropriate check commands are run with the corresponding host address as parame-

ter, so a specific host, or a service running on this host, is checked.

This schema does not fit well in monitoring MAS, where system configuration and func-

tionality is dynamic. In MAS, in course of solving a problem, agent code may migrate be-

tween various nodes. Agents may also assume various roles and thus provide various func-

tionality.

In Nagios vocabulary, functionality provided by agent is a service. To employ Nagios to

correctly monitor such dynamic services, the parent-child relationship should be disabled.

Nagios should allow a service to disappear from its current node and perhaps appear on any

other node or nodes. Monitoring process should recognize such migrations and the resulting

changes in service instant numbers as natural fluctuations in MAS state, as long as the num-

ber of each service instances at any time is greater than a threshold set for this service.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Adapting a general tool to monitoring multi-agent systems through virtual host… 103

3. Solution

Monitored services and nodes, check commands and other configuration objects are sepa-

rately defined in ASCII text files. Nagios configuration files use proprietary, publicly docu-

mented syntax [8]. Despite that, modifying Nagios configuration files on-demand to track the

changes in MAS is out of question, as Nagios only reads these files once, during start-up, it

immediately verifies them for correctness, and then it caches the data in its internal database.

This database has no general public interface, but its contents can be influenced indirectly to

a limited extent.

The following architectural elements of Nagios are applicable to extending its capabilities

to MAS monitoring: plugins, object definitions extensions with custom object variables, ex-

ternal commands, performance data collection. Their role in the solution is described later

3.1. Static virtualization of host layer information

To remove the limitations resulting from the static addressing and static parent-child rela-

tionship between host and service, virtual host concept is introduced.

There is and address field in every host definition. The value of this field gets expanded

as the host address macro $HOSTADDRESS$ and passed as a parameter to the probe com-

mand. The host address field is defined loosely in the documentation. While it it mentioned

that the primary use of this field is to store the IP address, it also stated that no assumptions

are made by Nagios on the content of this field – it is just passed to the probe command and it

is left to the probe to interpret this value [8]. Documentation goes as far as to state that the

address field is generic – it can contain anything from an IP address to human-readable driv-

ing directions – whatever is appropriate for the user's setup [9].

By pursuing this openness, instead of a single address, the address field may be used to

store a list of host IP addresses, or a list of host identifiers in general. This allows to change

a real host definition into a virtual host definition. It will allow to monitor a service without

tying its definition to a specific IP address, i.e. it will allow to monitor a functionality in

a system consisting of many hosts, which are seen as a whole. There is nothing to prevent

many services to be based on the same virtual host and therefore to monitor different func-

tionality aspects in the whole system. The change in monitoring with virtual host layer is de-

picted in Fig. 1 for Service B.

The host identifier list is called host_ID_list. A new command needs to be provided and

defined as the check command. This command, called parallel_check, interprets the list of

host identifiers passed to it as parameter, splits it into individual host identifiers and calls

multiple instances of the probe commands, in parallel, each with a single host identifier.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

104 A. Opaliński

Therefore no modifications are required for the original probe commands. The parallel_check

is required to obey the Nagios requirements for plugins, and should accept the results of probe

commands according to the plugin API [10, 11]. The parallel_check should accept at least the

following information, which needs to be passed as call parameters according to Nagios

standards:

 The value of the macro $HOSTADDRESS$, i.e. the list of host identifiers.

 The full form of the original probe command, including its execution path and parame-

ters. A placeholder string (called HOSTADDRESS, in the examples below) marks the pa-

rameter to be filled in by parallel_check with the correct host id value for each probe

when calling it.

 The threshold defining how many positive probe responses are regarded as overall posi-

tive result for the virtual object checked. This number can be a percentage or an absolute

number, or any other value interpreted by parallel_check. The threshold in the examples

below is expressed in the form of absolute number of positive results expected, with the

value zero meaning that all responses are expected to be positive.

Except for a generic parallel_check command as described above, the following configu-

ration introduces the name of the host (VirtualHost), and the address field containing a list of

host identifiers:

define host{

 host_name VirtualHost

 alias host for service A

 address 192.168.10.2,192.168.10.3 ; extended to list

 check_command parallel_check!0!check_ping -H HOSTADDRESS

 . . . ; rest of configuration omitted

 }

define command{

 command_name parallel_check ; definition of the new check com-

mand

 command_line /usr/local/bin/parallel_check $HOSTADDRESS$ $ARG1$ $ARG2$

 }

3.2. Dynamic updates to virtual host layer

The former static method of host layer virtualization requires that host identifiers of all

potential hosts are listed up front, what results in all hosts being actively checked for the ex-

pected functionality. While entirely sufficient in many cases, this may be inconvenient, if it is

expected that only a fraction of the total number of hosts listed holds active agent code during

some periods of work. Checks may be spared and their resource consumption may be low-

ered, if it could be known in advance that a functionality can not be available on some hosts

because the prerequisites are not met, for example a host is not reachable, or no agent regis-

tered on this host.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Adapting a general tool to monitoring multi-agent systems through virtual host… 105

To tune the solution further, the virtual host layer information should be updated dynami-

cally, to only include host identifiers of the hosts which are likely to provide a given function-

ality. This allows to avoid unnecessary checks for functionality when prerequisites are not

met, but it shifts the problem to checking prerequisites instead. This requires to define another

object (Host B in Fig. 2) witch its own check method to check for prerequisites for

VirtualHost A. So dynamic virtual host layer updates are only meaningful if checking for pre-

requisites is lighter than checking for the functionality aspects of interest.

Nagios accepts external commands which may influence its state [12, 13]. In Nagios da-

tabase, the address field of the host definition is static, as is most part of the configuration.

Therefore dynamic updates must be based on other storage. Fortunately Nagios allows custom

object variables in object definitions and its external command set allows for dynamic up-

dates by providing a command to change the values of the custom object variables:

CHANGE_CUSTOM_HOST_VAR;<servername>;<custom_object_variable_identifier>;<new_cus

tom_object_variable_value>

To provide the external command with the complete host identifiers list, it is sufficient

that the probes called by parallel_check of Host B output the host identifiers when check re-

sults are positive. Then parallel_check can intercept this output, build a complete, current list

of valid host identifiers, and return it to Nagios Core. In Nagios Core a performance data col-

lection command can be defined, which parses check commands output, by the following

lines in the main configuration file [14]:

host_perfdata_command=/usr/local/bin/PerfData ; perf. data collection command

process_performance_data=1 ; enable performance data processing

The performance data collection command may then issue the

CHANGE_CUSTOM_HOST_VAR external command with the current list of valid host

identifiers. Nagios can be instructed to processes the external commands as often as possible

by setting in its main configuration file [14]:

check_external_commands=1 ; enable external commands

command_check_interval=-1 ; check as often as possible

This ensures that list of host identifiers gets updated after every check and performance

data collection command run. To allow for quicker update of host identifier list, the external

command could also be issued from parallel_check (not depicted in Fig. 2).

The object configuration for dynamic updates to virtual host layer should be as follows:

define host{

 host_name VirtualHostA

 address anything ; field unused

 _ID_LIST anything ; custom obj. var., populated automatically

 check_command parallel_check!0!/bin/check_print HOSTADDRESS

 active_checks_enabled 1 ; checks are enabled

 process_perf_data 0 ; performance data processing disabled

 . . . ; rest of configuration omitted

 }

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

106 A. Opaliński

define host{

 host_name VirtualHostB

 address anything ; field unused

 _ID_LIST 192.168.10.2,192.168.10.3,192.168.10.5 ; all hosts re-

garded

 check_command parallel_check!0!/bin/check_ping -H HOSTADDRESS

 active_checks_enabled 1 ; checks are enabled

 process_perf_data 1 ; performance data processing enabled

 . . . ; rest of configuration omitted

 }

Fig. 2. Monitoring Service A on dynamic VirtualHost .Virtual host layer information updated based

on prerequisites checked through static VirtualHost B

Rys. 2. Monitorowanie funkcji Service A na dynamicznym hoście VirtualHost. Informacja

w wartswie hosta wirtualnego jest aktualizowana na podstawie kontroli prerekwizytów przez

statyczny wirtualny host VirtualHost B

It is of course entirely possible to also construct VirtualHostB on the base of another

VirtualHostC and another prerequisites, to create a chain of virtual hosts. Each virtual host in

a chain encompasses a subset of host identifiers of its preceding virtual host.

4. Verification

3 PCs with Linux were used as computational nodes for agents and one more computer as

the central Nagios monitoring console. The agents checked were SNMP agents. If the host

was reachable, the agent was considered providing its services if SNMP returned the infor-

mation requested (system uptime was examined). The configuration was like in Fig.2. Static

VirtualHostB has been defined as consisting of 3 PCs, using check_ping as the probe com-

mand to check reachability, with the threshold set to 2. The host unreachability was simulated

by plugging out their network interface cable. The dynamic VirtualHostA was constructed on

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Adapting a general tool to monitoring multi-agent systems through virtual host… 107

the prerequisite that a host is reachable; a check_print command was used to monitor it,

which always returns success, and outputs to a file current time and the host identifier ob-

tained as parameter. Verification results are presented in Table 1. Number of host identifiers

used by VirtualHostA probes reflects the number and identifiers of hosts reachable, what

demonstrates that the dynamic updates to the virtual host layer work. Also the status of the

static VirtualHostB correctly reflects the number of nodes meeting the prerequisite.

Table 1

Verification results

No Number of PCs

reachable

VirtualHostB

status

Number of distinct host identifiers

used by VirtualHostA probes

1 3 OK 3

2 2 OK 2

3 1 Not OK 1

4 0 Not OK 0

The Nagios configuration scripts, the parallel_check command, and the check_print

commands used during verification are available under [15].

It was transparent during monitoring of the agent functionality, which agents responded –

only the total number of responses counted. Therefore any agent migrations during testing,

even coss-platform migrations, would yield the same results in stable conditions. No migra-

tions were tested due to homogenity of the verification environment.

5. Conclusions

A MAS monitoring extension and configuration to freeware Nagios has been worked out.

Agents' joining and leaving the system, or changing roles between adjacent checks are accept-

ed as legitimate fluctuations in MAS state, as long as the number of each service instances at

any time is greater than a threshold set for this service. Monitoring comprises of discrete

checks scheduled for every functionality, with a freely configurable frequency.

Solution is based on Nagios public interfaces, what ensures maintainability and does not

disable any of its existing functionality. Probe commands are the only part of the monitoring

solution which may need to be tailored to a given multi-agent setup, to check the agent func-

tionality actually required. This is in line with Nagios architecture where the probe commands

are considered external plugins.

It is wort to stress, that while the verification has been conducted using IP addresses as

host identifiers, the solution will work as well for other identifiers: agent code may be hosted

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

108 A. Opaliński

in local processes or in Java virtual machines, etc. The initial list of host identifiers can be

either predefined statically, or can be imported from some promising sources, like the logs of

DHCP server or the cache of the network switch serving the agent network.

It would be advantageous to address also agent provisioning. Provisioning is the process

of configuring the infrastructure to provide (new) services, which may be very useful when

many agents are at play and numerous scenarios are to be tested. Nagios does not address

provisioning in its out-of-the box configuration – but its event handlers mechanisms may be

further investigated to achieve this.

BIBLIOGRAPHY

1. Miller P.: The Smart Swarm: How understanding flocks, schools, and colonies can

make us better at communicating, decision making, and getting things done. Avery,

New York 2010.

2. Benslimane D., Schahram D., Amit S.: Services Mashups: The New Generation of Web

Applications. IEEE Internet Computing, Vol. 12, No. 5, 2008, p. 13÷15.

3. Amiri M., Shirgahi H.: Designing buyer and seller intelligent agents in an electronic

market based on emergency decision making. International Journal of the Physical Sci-

ences, Vol. 6(6), 2011, p. 1244÷1248.

4. Parunak H., Brueckner S. A., Sauter J. A., Matthews R.: Global convergence of local

agent behaviors. Proc. Fourth International Joint Conference on Autonomous Agents

and Multiagent Systems, 2005.

5. Waligóra I., Małysiak-Mrozek B., Mrozek D.: Uniwersalna platforma wieloagentowa

UMAP. Studia Informatica, Vol. 32, No. 2B(97), Gliwice 2011.

6. Nagios home page, http://www.nagios.org/ (DOA: 2.01.2012).

7. JADE (DOA: 15.01.2012).

8. Nagios Core Object Definitions Documentation, http://nagios.sourceforge.net/docs/

nagioscore/3/en/objectdefinitions.html (DOA: 2.01.2012).

9. Nagios Core Custom Object Variables, http://nagios.sourceforge.net/docs/3_0/

customobjectvars.html (DOA: 2.01.2012).

10. Nagios Plugin API, http://nagios.sourceforge.net/docs/3_0/pluginapi.html (DOA:

2.01.2012)

11. Nagios Plugin Development Guidelines, http://nagiosplug.sourceforge.net/develo-per-

guidelines.html (DOA: 2.01.2012).

12. Nagios Core External Commands Documentation, http://nagios.sourceforge.net/docs/

nagioscore/3/en/extcommands.html (DOA: 2.01.2012).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Adapting a general tool to monitoring multi-agent systems through virtual host… 109

13. Nagios Core External Commands Register, http://old.nagios.org/developerinfo/

externalcommands/commandlist.php (DOA: 2.01.2012).

14. Nagios Core Main Configuration File Options Documentation, http://nagios.

sourceforge.net/docs/nagioscore/3/en/configmain.html (DOA: 2.01.2012).

15. Nagios configuration files and parallel_check command, provided for solution verifica-

tion, https://sites.google.com/site/flecabinet/downloads/ BDAS12a.zip?attredirects=0&

d=1 (DOA: 2.01.2012).

16. Standard FIPA Specifications, http://www.fipa.org/repository/standardspecs.html

(DOA: 15.01.2012).

17. AgentBuilder Reference Manual Version 1.4 Rev. 0, by Acronymics, Inc., http://www.

agentbuilder.com/Documentation/ReferenceManual-v1.4.pdf (DOA: 15.01.2012).

18. NetLogo Interface Guide, http://ccl.northwestern.edu/netlogo/docs/ (DOA: 15.01.2012).

19. Documentation Set for Swarm 2.2, http://www.swarm.org/swarmdocs-2.2/set/swarm.

overview.mag3.observer-swarm.sect1.html (DOA: 15.01.2012).

20. IBM Tivoli Monitoring: Administrator's Guide, http://publib.boulder.ibm.com/info-

center/tivihelp/v42r1/index.jsp?topic=%2Fcom.ibm.omegamon.share.doc%2Fzconfig-

com-mon08.htm (DOA: 15.01.2012).

21. IBM Tivoli Netcool/OMNIbus Administrator's Guide (former Micromuse Netco-

ol/OMNIbus), http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.

netcool_OMNIbus.doc_7.3.0/web_pdf_adm_master_73.pdf (DOA: 15.01.2012).

22. BMC Event Manager documentation, https://communities.bmc.com/communities/BEM

(DOA: 15.01.2012).

23. HP OpenView documentation portal, http://www.openview.hp.com (DOA:

15.01.2012).

24. Network Monitoring VPS with Nagios, OpenNMS, Zenoss and More. Blog entry by

Chinonye, July 5, 2011, http://myhosting.com/blog/2011/07/network-monitoring-vps-

nagios-opennms-zenoss-more/ (DOA: 15.01.2012).

Wpłynęło do Redakcji 14 stycznia 2012 r.

Omówienie

Artykuł przedstawia przystosowanie bezpłatnego oprogramowania Nagios do monitoro-

wania systemów agentowych. Nagios przeznaczone jest do monitorowania kluczowych usług

i elementów infrastruktury w środowiskach IT. Ich cechą jest znacząca statyczność: te same

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

110 A. Opaliński

usługi świadczone są na tych samych elementach infrastruktury przez cały czas. Dodatkowo

Nagios wymaga powiązania każdej definiowanej usługi z konkretnym hostem, na którym jest

świadczona (Service A oraz Host na rys. 1).

Tymczasem w systemach agentowych liczba agentów jest płynna, ich kod może być wy-

konywany na różnych węzłach obliczeniowych, poszczególne agenty zaś mogą realizować

zmienne role w trakcie rozwiązania problemu. Nagios oferuje jednak bogate możliwości kon-

figuracji oraz wyraźnie oddziela część zasadniczą (Nagios Core) od prostych zewnętrznych

programów (wtyczek), które można rozwijać oddzielne i wykorzystywać na potrzeby Nagios

dzięki stosowaniu publicznych interfejsów. Monitorowanie polega na cyklicznym wywoły-

waniu zewnętrznego programu i interpretowaniu zwracanych przez niego wartości jako statu-

su monitorowanego elementu. Każdy element jest definiowany oddzielnie, potencjalnie

z podaniem własnych sposobów monitorowania.

Przyjęte rozwiązanie polega na rozszerzeniu Nagios w części dotyczącej jego wtyczek

o jedną komendę (parallel_check), która pozwoli wielokrotnie – zamiast jednokrotnie – wy-

konać zdefiniowany dla elementu program testujący. Dodatkowo wykorzystuje się przy tym

fakt, że pole address w definicji hosta nie jest interpretowane, a jedynie przechowywane

i udostępniane przez Nagios. Wymienione elementy pozwalają na skonstruowanie warstwy

hosta wirtualnego, która pozwala uwolnić monitorowane elementy od powiązania z konkret-

nymi węzłami obliczeniowymi.

Wykorzystując dodatkowe, standardowe elementy Nagios Core (komendy zewnętrzne

i ewentualnie dodatkowo komendy do analizy wyników programów testujących) oraz przeno-

sząc listę identyfikatorów hostów do zmiennej użytkownika, można uzyskać możliwość dy-

namicznej aktualizacji informacji o hoście wirtualnym (rys. 2). Ponieważ informacje o nim

można aktualizować na podstawie wyniku monitorowania innego hosta wirtualnego, możliwe

jest tworzenie ciągów takich hostów, z których każdy kolejny obejmuje podzbiór identyfika-

torów poprzedniego. Rozwiązanie pozwala jako identyfikatory hostów stosować nie tylko

adresy IP, ale również jakiekolwiek identyfikatory, na przykład instancje wirtualnej maszyny

Java czy numery procesów w systemie operacyjnym.

Address

Artur Opaliński: Politechnika Gdańska, Wydział Elektrotechniki i Automatyki, ul. Gabriela

Narutowicza 11/12, 80-233 Gdańsk, Polska, Artur.Opalinski@pg.gda.pl.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	1. Introduction
	2. Primary Nagios usage
	2.1. Simple monitoring scenario
	2.2. General configuration remarks
	2.3. Shortcomings for MAS monitoring

	3. Solution
	3.1. Static virtualization of host layer information
	3.2. Dynamic updates to virtual host layer

	4. Verification
	5. Conclusions

