
Theoretical Computer Science 463 (2012) 96–113

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Approximate search strategies for weighted trees
Dariusz Dereniowski ∗
Department of Algorithms and System Modeling, Gdańsk University of Technology, Gdańsk, Poland

a r t i c l e i n f o

Keywords:
Connected searching
Edge searching
Graph searching
Node searching
Pathwidth

a b s t r a c t

The problems of (classical) searching and connected searching ofweighted trees are known
to be computationally hard. In this work we give a polynomial-time 3-approximation
algorithm that finds a connected search strategy of a given weighted tree. This in
particular yields constant factor approximation algorithms for the (non-connected)
classical searching problems and for the weighted pathwidth problem for this class of
graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following game (known as the edge searching problem) between a fugitive that is hidden in the graph and a
team of searchers that needs to capture the fugitive. The fugitive is considered captured if a searcher shares its location. The
fugitive is invisible which implies that the searchers can deduce its location only on the basis of the history of their moves.
In each move a single searcher can either be removed from its current vertex, placed on a vertex (if the searcher does not
occupy a vertex) or can slide along an edge from its current vertex to one of its neighbors. The fugitive is fast, which implies
that it can traverse, between two consecutive moves of the searchers, a path of arbitrary length that is free of searchers.
Finally, the fugitive has the complete knowledge about the graph and about the moves (including the ones to come) of the
searchers. The latter implies that it will avoid being captured as long as possible. Thus, since the searchers need to analyze
the worst case scenario, this is a one player game where the goal is to design a search strategy (a sequence of moves of the
searchers) that uses the given number of searchers and guarantees the capture of the fugitive, or to decide that no such
search strategy exists. It turns out that it is not beneficial to allow recontamination of an edge that has been previously
cleared (i.e. an edge that was guaranteed not to contain the fugitive), or in other words, we say that the edge searching
problem is monotone [26].

In this work we are interested in a modification of the above game called connected searching, where one has to ensure
that the subgraph induced by the clear edges is always connected. It turns out that the connected searching problem is
not monotone [33]. Our interest focuses on a generalization of this problem where the graph to be cleared is weighted.
In this setting the weight w(v) of a vertex v determines the number of searchers needed to guard it, i.e. if less than w(v)
searchers occupy v, then the fugitive is able to pass this vertex without being captured. Similarly, the weight w(e) of an
edge e determines the minimum number of searchers that have to simultaneously slide along e to clear it. In this work we
restrict our attention to weighted trees. It is known that the connected searching problem is monotone for such graphs [2].
The monotonicity allows us to simplify our description of the problem, namely all searchers are forced to be initially placed
on the same vertex, called the homebase, and the only allowedmoves are sliding along the edges. If each sliding move clears
an edge and, as a result of the move, no edge becomes recontaminated, then these assumptions guarantee that the search
strategy is connected. Note that the choice of the homebase may affect the minimum number of searchers that have to be
used to clear the graph.
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1.1. Related work

The edge searching problem is closely related to pathwidth, namely the difference between the pathwidth of a simple
graph and the minimum number of searchers needed to clear it is at most one [4,22–24,29]. The pathwidth problem can be
solved efficiently for k-starlike graphs [20], circular-arc graphs [32], graph of bounded treewidth [8], trees [15,27], unicyclic
graphs [14], permutation graphs [9], block graphs [11], or cographs [10]. On the other hand, the pathwidth and the graph
searching problems are NP-complete for chordal graphs [20] or bipartite distance hereditary graphs [25]. There exists a
O(log2 n)-approximation polynomial-time algorithm for finding path decompositions of general graphs [7], where n is the
number of vertices of a graph. The approximation algorithm presented in [16] that finds, for a given graph of treewidth k, a
tree decomposition of width O(k

√
log k) gives a O(

√
log k log n)-approximation algorithm for finding minimumwidth path

decompositions which improves the previously mentioned approximation ratio of O(log2 n). For approximate solutions for
special classes of graphs see e.g. [6,18]. For some connections between graph searching problems andwidth-like parameters
see also [5,7,19,21,31].

The ratio between the minimum number of searchers needed to clear the graph in a connected way (or connected
pathwidth) and the number of searchers needed to clear the graph in a classical way (or the pathwidth) is asymptotically 2
[13] (we refer here both to node searching and edge searching). Moreover, [13] gives an efficient algorithm that converts a
search strategy using k searchers into a connected search strategy that uses at most 2k + 3 searchers. Thus, the algorithm
described in [16] and the above correspondences between the pathwidth and the search number give an O(

√
log k log n)-

approximation algorithm for finding connected search strategies of any simple graph G, where k equals the treewidth of G.
See also [1,3,17,30] for results and discussions on the relation between the classical and connected searching numbers.

Much less is known when one considers the above problems for weighted graphs. The connected searching and the
pathwidth problems are NP-complete for weighted trees [12,28]. As observed in [28], the pathwidth of a weighted graph
G equals the pathwidth of the (unweighted) graph G′ obtained from G by replacing each vertex v of G with w(v) vertices
inducing a complete subgraph in G′, where w(v) is the weight of v in G, and two vertices in different cliques of G′ are
adjacent if and only if they belong to complete subgraphs that correspond to two adjacent vertices inG. Thus, the equivalence
between the pathwidth and the node searching problems carries over toweighted graphs. One of the advantages of the above
correspondences between the weighted pathwidth and the weighted searching problems is that a O(q)-approximation
algorithm for any of them yields a O(q)-approximation algorithm for the other.

1.2. Our results

This work is a self-contained continuation of [12]. We give a 3-approximation algorithm for connected searching of
weighted trees, which yields a constant factor approximation algorithm for pathwidth of weighted trees. The next section
recalls a formal definition of the searching problem, while Section 3 gives the background properties of connected search
strategies in weighted trees. In particular, Section 3.1 introduces the notion of a greedy search strategy, which is the main
tool in our analysis. The main difficulty in finding an optimal connected search strategy of a weighted tree lies in finding
an appropriate permutation of clearing the edges leading from each vertex to its neighbors, i.e. informally speaking, finding
this permutation is as difficult as finding an optimal connected search strategy itself [12]. Section 4 gives a description and
an analysis of a generic algorithm whose input consists of a weighted tree T and a permutation set Γ . The permutation set
provides for each vertex v a set of permutations of the edges leading from v to its children (with respect to all possible choices
of the root). The algorithm returns a connected search strategy that for each vertex v of T uses one of the permutations in
Γ provided for v. The generic algorithm is described in Section 4.1 and we prove in Section 4.2 that it finds the best, i.e.
using the minimum number of searchers, search strategy that follows the above restriction. Then, Section 4.3 deals with the
complexity of the algorithm and it is proven that its running time is polynomial in the size of the tree and in the size of Γ .
The above is a good point of departure for the analysis of approximate solutions, because in order to prove that there exists a
k-approximation polynomial-time algorithm it is enough to define a polynomially bounded permutation set Γ for the input
tree T and to prove that there exists a connected search strategy that respects the clearing order of the edges given by Γ and
the number of searchers it uses does not exceed k times theminimumnumber of searchers needed for T . Section 5 takes this
route by providing a simple permutation set Γ1 for which the generic algorithm is guaranteed to achieve the ratio of k = 3.
Informally speaking, Γ1 is constructed so that for each v ∈ V (T ), for each choice of the root for T and for each descendant u
of v there is exactly one permutation such that uv is ordered last among the edges between v and its descendants (the edges
leading to other descendants are ordered arbitrarily by this permutation).

2. Preliminaries

First we describe the edge searching problem for weighted graphs G = (V (G), E(G), w), where w : V (G) ∪ E(G)→ N+,
and let us start by describing the properties of the fugitive. The fugitive can occupy the vertices and the edges of G and it can
change the location at any moment (i.e. between two subsequent moves of the searchers) by traversing any path such that
each vertex v of the path is occupied by less than w(v) searchers. We say that an edge (a vertex) is clear if it cannot contain
the fugitive. Otherwise the edge or the vertex is said to be contaminated. (Note that if an edge is clear, then, by construction,
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both of its endpoints are also clear.) The clear subgraph in a particular point of time is the subgraph composed of the clear
edges and the clear vertices of G. The fugitive is captured when either:

• it is located on an edge e of G and at least w(e) searchers simultaneously slide along e, or
• it is located on a vertex v of G and at least w(v) searchers occupy v.

Also, the fugitive is invisible and has the complete knowledge about the graph, the locations of the searchers and their future
moves. The latter in particular means that he will avoid being captured as long as possible.

Given a weighted graph G = (V (G), E(G), w), a search strategy S for G is a sequence S[1], . . . , S[l] of three types of
moves:

(a) placing s searchers on a vertex, s ≥ 1,
(b) removing s searchers from a vertex v ∈ V (G), s ≥ 1, provided that at least s searchers are present at v at the end of the

preceding move,
(c) sliding s searchers from u to v, u, v ∈ V (G), uv ∈ E(G), s ≥ 1, provided that at least s searchers are present at u at the

end of the preceding move.

We say that S is a k-search strategy for G, where k is an integer, if S is a search strategy for G and uses at most k searchers.
A search strategy S is partial if a subset of the edges of G is clear at the end of S. (Thus, a partial search strategy may, but

does not have to clear all edges of G.) For brevity let |S| be the number of moves in S. We say that S clears a subgraph G′ of
G if all edges and all vertices of G′ are clear when S is finished, i.e. at the end of the move S[|S|]. Note that if v′ ∈ V (G′) has
a neighbor v ∈ V (G) \ V (G′) in G, then at least w(v′) searchers are present at v′ at the end of the move S[|S|] to protect
G′ from recontamination. Denote by |S[i]|, i ∈ {1, . . . , |S|}, the number of searchers used in step S[i]. Let CE(S) and CV (S)
be, respectively, the sets of edges and vertices cleared by S. Note that if S clears G, then CE(S) = E(G) and CV (S) = V (G).
Define S[≼ i], i ∈ {1, . . . , |S|}, to be the partial search strategy obtained by performing the first i moves of S. We say that
a vertex v is guarded at the end of a move S[i] if v is occupied by at least w(v) searchers at the end of S[i] and at least one
edge incident to v is contaminated at the end of S[i]. (Thus, if at least w(v) searchers occupy v and all edges incident to v
are clear at the end of S[i], then we do not classify v as guarded.) Let δ(S) be the set of vertices guarded at the end of S. If
S clears G, then clearly δ(S) = ∅. Using the above notation, δ(S[≼ i]), i ∈ {1, . . . , |S|}, is the set of the vertices guarded at
the end of S[i], i.e. at the end of the i-th move of S.

A graph is connected if there exists a path between any pair of its vertices. We say that a search strategy S is connected
if the subgraph cleared by S[≼ i] is connected for each i = 1, . . . , |S|. In the remaining part of this work we assume for
brevity that each search strategy that is partial is also connected. A partial search strategy S for G can be k-extended to a
partial search strategy S′ for G if |S′| ≥ |S|, S[i] = S′[i] for each i = 1, . . . , |S| and |S′[i]| ≤ k for each i = |S| + 1, . . . , |S′|.
In such case we also say that S′ is a k-extension, or an extension for short, of S.

Proposition 1. Given a weighted graph G and an integer k, if there exists a partial k-search strategy that clears the edges in
X ⊆ E(G), then there exists a partial k-search strategy S such that CE(S) = X, initially k searchers occupy the same vertex of G
and S[1], . . . , S[|S|] are sliding moves. �

Due to the above, we simplify the notation by assuming that initially all searchers are placed on a selected vertex v of the
given graph G and S[1], . . . , S[|S|] are sliding moves. The vertex v is called the homebase of S.

We use the symbol s(S) to denote the number of searchers used by S, s(S) = max{|S[i]| : i = 1, . . . , |S|}. Then, s(G)
is the search number of G and equals the minimum number k such that there exists a k-search strategy for G. The connected
search number of G, denoted by cs(G), is the minimum integer k such that there exists a connected k-search strategy for G.
A (connected) search strategy is optimal if it uses s(G) (respectively, cs(G)) searchers. We extend this notation for the case
when the homebase of a search strategy is given in advance. Thus, cs(G, r), r ∈ V (G), is the minimum number of searchers
k such that there exists a connected k-search strategy with homebase r . If X ⊆ V (G) ∪ E(G), then we write for brevity
w(X) =


x∈X w(x).

Suppose that we selectw(v) searchers that occupy each vertex v that needs to be guarded at the end of a particularmove
of a search strategy. Then, the remaining searchers, i.e. the ones that have not been selected, are called free. Note that any
subset of size w(v) of the searchers present at v can be selected to determine the free searchers, and to avoid ambiguity
one can assume that the searchers have unique identifies and the selection is performed by taking the searchers with the
smallest w(v) identifiers.

Now we recall some basic graph-theoretic notation. A tree T = (V (T ), E(T )) is an acyclic connected graph. Given a
(not necessarily connected) graph, each of its maximal connected subgraphs is called a connected component. Unless stated
otherwise, each tree is rooted at a vertex r . For v ∈ V (T ) we define Ev and Vv to be the set of edges between v and its
children and the set of the children of v, respectively. Given X ⊆ V (T ), we say that T ′ is a subgraph of T induced by X if
V (T ′) = X and E(T ′) = {uv ∈ E(T ) : u, v ∈ X}. Given a tree T rooted at r and a vertex v ∈ V (T ), Tv is the subtree of T
rooted at v and induced by v and all its descendants in T . For X ⊆ V (T ) or for X ⊆ E(T ) we write T − X to denote the
(not necessarily connected) subgraph of T obtained by removing all vertices in X or, respectively, all edges from T . Given a
tree T and v ∈ V (T ), NT (v) denotes the set of neighbors of v in T . Thus, if T is rooted, then NT (v) consists of the children of
v and, if v is not the root of T , the parent of v. In the following each partial search strategy for a rooted tree has the property
that the roof of the tree is the homebase of the search strategy.
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While solving the graph searching problem in a certain class of graphs, one has to address the question concerning the
monotonicity: is it beneficial to consider a search strategy that allows the fugitive to reach an edge or a vertex that has been
previously cleared? The answer gives the following.

Theorem 1 ([2]). For each weighted tree T , there exists a connected cs(T )-search strategy in which no recontamination is
possible. �

Due to the above, in the remainder of this paper each search strategy we consider does not allow for recontamination.
Now we give some comments on the structure of each connected search strategy S for a weighted tree T . Consider two

moves S[i] and S[j], i < j, that clear two edges e1, e2 of T , respectively, and all the intermediate moves S[i+1], . . . , S[j−1]
donot clear any edges of T (thus the searchers slide along the clear edges).Without loss of generality, the intermediatemoves
are needed to gather the sufficient number of searchers at an endpoint of e2 in order to clear the edge. Since the searchers
used for guarding at the end of S[i] cannot change their locations during the intermediate moves, the free searchers move
towards the endpoint of e2. Moreover, any subset (of the appropriate size) of the searchers can be used to clear e2. Thus, in
the following we list only the clearing moves of each search strategy we consider. The above, Proposition 1 and Theorem 1
imply in particular that |S| = |E(T )| for each connected search strategy S for T .

As observed in [12], we can make some further simplifying assumptions. Let T be a weighted tree rooted at r . First, note
that if for an edge uv, where u is the parent of v it holds w(v) ≥ w(uv), then changing the weight of uv to be 1 does not
affect cs(T , r), because in either case at least w(v) searchers need to slide along uv to clear it. Moreover, we can subdivide
each edge uv of T with w(uv) > w(v) (i.e. replace uv with a path consisting of two edges so that the endpoints of the path
are u and v in T ) and make the new internal vertex to have the weight w(uv) and the two new edges to have weights 1. It is
not difficult to prove that the problems of connected searching for trees before and after this transformation are equivalent,
as long as r is the homebase in both cases.

Note that the extension of a tree T by adding a child of weight 1 to each leaf of T does not change its connected search
number. However, the new tree T ′ has the property that the number of searchers used during an i-th move of a connected
search strategy S, i.e. while sliding some searchers along an edge, does not exceed the number of searchers used for guarding
at the beginning or at the end of the i-th move. Indeed, if the searchers that are sliding reach a vertex v that has some
descendants, then (due to the earlier simplifying assumptions) they all need to occupy the vertex they arrived at. On the
other hand, if the vertex has no descendants, then its weight is 1 and, due to the construction of T ′, it is the only child of its
parent u, which means that one searcher that was used for guarding at the end of (i− 1)-st move of S can move from u to v
to clear uv, and therefore, no additional searchers are needed while clearing uv. The following proposition summarizes the
above discussion.

Proposition 2. For each weighted tree T = (V (T ), E(T ), w) rooted at r there exists a weighted tree T ′ = (V (T ′), E(T ′), w′)
rooted at r ′ that satisfies the following conditions:

• w′(e) = 1 for each e ∈ E(T ′),
• |V (T ′)| ≤ 2|V (T )| and |E(T ′)| ≤ 2|E(T )|,
• if S′ is a connected search strategy for T ′, then s(S′) = max{k,max{w(δ(S′[≼ i])) : i = 1, . . . , |S′|}}, where k is the number

of searchers initially placed by S′ on r ′, and
• cs(T , r) = cs(T ′, r ′).

Moreover, the tree T ′ can be computed in time O(|V (T )|) and for a given connected search strategy S′ for T ′ with homebase r ′, a
connected s(S′)-search strategy for T with homebase r can be computed in time O(|V (T )|). �

The above allows us to assume in the remaining parts of this paper that T is a node-weighted tree and for any partial
search strategy S for T it holds

s(S) = max{k,max{w(δ(S[≼ i])) : i = 1, . . . , |S|}}, (1)

where k is the number of searchers initially placed on the homebase of S.
We use the symbol ε⟨T , k⟩ to denote a search strategy that places k searchers on the root of T , but does not clear any

edges. Moreover, ε⟨T ⟩ denotes the set of all search strategies of this type. In the following ⟨u, v⟩, uv ∈ E(T ), denotes a move
in which exactly w(v) searchers slide from u to v in T .

3. Connected searching of weighted trees — basic properties

This section introduces the basic facts used in the algorithm described in Section 4. Some of the ideas that are present
in an optimal algorithm for connected searching of bounded degree weighted trees [12] proved to be useful for finding
approximate solution for the general case presented in this work. However, the concept of minimal search strategies used
in [12] has been replaced by the idea of greedy search strategies, described in Section 3.1. The advantages are a simpler
analysis and reduced running time of the algorithm.
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Fig. 1. A 35-search strategy ⟨r, u1⟩ ⊕ S(Tu1 )⊕ S(Tu2 )⊕ ⟨r, u3⟩ ⊕ S(Tu3 )⊕ ⟨r, u4⟩ ⊕ S(Tu4 )⊕ · · · ⊕ S(Tu12 ).

Now we define a binary operator ⊕, which can be seen as a ‘concatenation’ of two search strategies. Let S1 be a partial
connected search strategy for T with homebase r and letS2 be a partial connected search strategy for a connected component
T ′ in T − CE(S1) with homebase v ∈ δ(S1). Then, S1 ⊕ S2 is a search strategy with homebase r defined as:

(i) (S1 ⊕ S2)[i] = S1[i] and δ((S1 ⊕ S2)[≼ i]) = δ(S1[≼ i]) for each i = 1, . . . , |S1|, and
(ii) the move (S1 ⊕ S2)[|S1| + i] clears the same edge as S2[i] and the set of guarded vertices at the end of this move is

δ((S1 ⊕ S2)[|S| + i]) = (δ(S1) \ {v}) ∪ δ(S2[≼ i]) for each i = 1, . . . , |S2|.

Note that by the definition, δ(S2[≼ i]) ⊆ V (T ′) for each i = 1, . . . , |S2| and if all edges of T ′ incident to v have been cleared
by S2[≼ i], then v /∈ δ(S2[≼ i]).

Now we give a remark about computing the number of searchers that S1 ⊕ S2 uses. Clearly, s(S1) searchers are needed
to perform the first |S1|moves of S1⊕S2. Then, the edges in CE(S2) are cleared by S2, which requires s(S2) searchers, while
the vertices in δ(S1) \ {v} need to be guarded. The vertex v is guarded at the end of S1 and this may change during the
execution of the moves of S2 in S1 ⊕ S2. Hence we obtain the following.

Lemma 1. Let T be a weighted rooted tree. If S1 is a partial connected search strategy for T and S2 is a partial connected search
strategy for a connected component in T − CE(S) with homebase v, where v ∈ δ(S1), then s(S1⊕S2) = max{s(S1), w(δ(S1) \
{v})+ s(S2)}. �

Fig. 1 gives an example of a partial search strategy. To simplify the presentation, this tree T does not have leaves of
weights 1 attached as justified at the end of Section 2. Each subtree T ′ ⊆ Tu, u ∈ V (T ), distinguished with a ‘dotted’ curve
is cleared by the corresponding connected search strategy denoted by S(Tu). The search strategy is described by giving the
order of clearing the edges of T ′ and the number of searchers used in a particular move. The edges of T ′ have labels of the
form [i] : x+ y, which we interpret as follows: the i-th move of the corresponding search strategy S(Tu) for T ′, i.e. the move
S(Tu)[i], uses x searchers for guarding and y searchers slide along the particular edge (due to the choice of the homebase r ,
sliding always occurs towards the leaves of T ).

Fig. 1 presents the following partial 35-search strategy with homebase r:

S = ⟨r, u1⟩ ⊕ S(Tu1)⊕ S(Tu2)⊕ ⟨r, u3⟩ ⊕ S(Tu3)⊕ ⟨r, u4⟩ ⊕ S(Tu4)⊕ · · · ⊕ S(Tu12).

For example, S(Tu1), shown in Fig. 1, consists of five clearing moves S(Tu1)[1], . . . , S(Tu1)[5], where S(Tu1)[1] slides 4
searchers from u1 to its left child while 31 searchers are used for guarding (during this move r and u1 need to be guarded,
w(r) + w(u1) = 31); in S(Tu1)[2] we have that 3 searchers reach u10 (while r and u1 are guarded); in S(Tu1)[3] we have
that 15 searchers slide from u1 to its right child (during this move r and u10 need to be guarded); in S(Tu1)[4]we have that 5
searchers reach u2 and 30 searchers are used to guard r , u10 and the right child of u1; finally S(Tu1)[5] slides 9 searchers that
reach u6 and simultaneously guards r, u2 and u10. Note that S can be extended to a 35-search strategy for T (the remaining
edges in E(T )\CE(S) need to be cleared in an unique order). We point out two facts that are illustrated in this example. First,
if the partial search strategy ⟨r, u1⟩⊕S(Tu1)⊕S(Tu2) is extendedwith clearing any edge of Tu1 , then this new search strategy
cannot be extended to a partial 35-search strategy that clears an edge of Tu3 or of Tu4 and hence it cannot be extended to a
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35-search strategy for T . Second, the number of searchers used for guarding in a particular move of S(Tui), i = 1, . . . , 12, is
context dependent. For example S(Tu1)[1] in a search strategy ⟨r, u1⟩⊕⟨r, u3⟩⊕S(Tu1)would use 36 searchers for guarding,
because w(r)+ w(u1)+ w(u3) = 36.

Note that the number of searchers distinguished for eachmove denotes the minimum number of searchers, e.g. the label
that represents S[1] that clears ru1 equals 12+ 19, even if S uses 35 searchers in total. The remaining 4 searchers, although
occupying r , are not needed to perform S[1]. In the remaining parts of this paper, similarly as in this example, we without
loss of generality refer with |S[i]|, where S is a search strategy, to the minimum number of searchers that is sufficient to
perform S[i]. This in particular implies that the value of k in Eq. (1) can be replaced withw(h), where h is the homebase of S.

3.1. Greedy search strategies

In this section we introduce the main tool in our analysis, i.e. the concept of a greedy search strategy, and then we list
two facts that give the basic properties of greedy search strategies.

Definition 1. Let T be a weighted rooted tree. We say that a partial connected search strategy S for T is greedy if

(i) S /∈ ε⟨T ⟩, and
(ii) w(u) ≥ w(δ(S) ∩ V (Tu)) for each u ∈ CV (S), and
(iii) Eu ∩ CE(S) = ∅ or Eu ⊆ CE(S) for each u ∈ CV (S).

Note that we in particular have that for a greedy search strategy S it holds w(δ(S)) ≤ w(r), where r is the root of T . It also
follows from the definition that a greedy search strategy is partial (and hence connected) and its homebase is the root of T .
Moreover, each search strategy that clears all edges of T is greedy, because its border is empty. However, there may exist a
greedy search strategy that does not clear all edges of T , but uses fewer searchers than each connected search strategy for T .

Note that the search strategy given in Fig. 1 satisfies conditions (i) and (iii), but it is not greedy, because w(r) < w(δ(S))
(note that u = r is the only vertex in CV (S) for which condition (ii) fails). However, S(Tui) is greedy for Tui for each
i = 1, . . . , 12.

Lemma 2. Let T be a weighted rooted tree and let k be an integer. If S is a partial connected search strategy for T that can be
k-extended to a greedy search strategy S′ for T , and Sv is a greedy search strategy for a connected component T ′v in T − CE(S)

rooted at v, where v ∈ δ(S), then S ⊕ Sv can be k-extended to a greedy search strategy S for T such that

(i) CE(S) = CE(S
′) ∪ CE(Sv), and

(ii) S clears the edges in CE(S) \ CE(Sv) in the same order as S′.

Proof. Define S so that S[≼ |S⊕ Sv|] = S⊕ Sv and the remaining moves of S clear the edges in CE(S
′) \ CE(S⊕ Sv) in the

same order as they are cleared by S′. Clearly, S is an extension of S ⊕ Sv that satisfies (i) and (ii). Now we argue that S is a
k-extension of S⊕Sv . Suppose that S′[j′] and S[j] clear the same edge, wherej > |S⊕Sv|. Note that j′ > |S|. Let us analyze
the sets δ(S′[≼ j′]) \ δ(S[≼j]) and δ(S[≼j]) \ δ(S′[≼ j′]). Since S[≼j] is ‘mirroring’ the moves of S′[≼ j′] on the edges not
in CE(Sv), we obtain that

δ(S[≼j]) \ δ(S′[≼ j′]) ⊆ δ(Sv),

and

δ(S′[≼ j′]) \ δ(S[≼j]) ⊆ CV (Sv) \ δ(Sv).

Moreover, each vertex in δ(S[≼ j]) \ δ(S′[≼ j′]) has an ancestor u′ ∈ δ(S′[≼ j′]) \ δ(S[≼ j]). Let U ′ be the set of all
descendants of u′ ∈ δ(S′[≼ j′]) \ δ(S[≼j]) such that U ′ ⊆ δ(S[≼j]) \ δ(S′[≼ j′]). Since Sv is greedy, w(U ′) ≤ w(u′). This
proves that w(δ(S[≼j])) ≤ w(δ(S′[≼ j′])) ≤ k. Consequently, by (1), s(S) ≤ k.

Finally we argue that S is greedy. Let u ∈ CV (S). If u /∈ CV (Sv), then, due to the fact that S′ and Sv are greedy,
w(u) ≥ w(δ(S′) ∩ V (Tu)) ≥ w(δ(S) ∩ V (Tu)). If u ∈ CV (Sv), then w(u) ≥ w(δ(Sv) ∩ V (Tu)) ≥ w(δ(S) ∩ V (Tu)), also
because S′ and Sv are greedy. �

Theorem 2. Let T be a weighted rooted tree and let k be an integer. If S is a partial search strategy for T that can be k-extended
to a greedy search strategy S′ for T , S ≠ S′, then

(i) there exists a greedy (k−w(δ(S) \ {v}))-search strategy Sv for Tv for some v ∈ δ(S) with CE(S)∩ Ev = ∅ such that S⊕ Sv

can be k-extended to a greedy search strategy S for T , or
(ii) a search strategy S ⊕ ⟨v, u⟩, where v ∈ δ(S), CE(S) ∩ Ev ≠ ∅ and uv ∈ Ev \ CE(S), can be k-extended to a greedy search

strategy S for T , where

both in (i) and in (ii) for the search strategy S it holds that CE(S) = CE(S
′), and the order of clearing the edges in Eu is the same

both in S and in S′ for each u ∈ CV (S′) \ δ(S′).
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Proof. Find theminimum integer i ∈ {|S|+1, . . . , |S′|} such that there exists v ∈ δ(S) that satisfies (CE(S
′
[≼ i])\CE(S))∩

Ev ≠ ∅ and

|Eu ∩ CE(S
′
[≼ i])| ∈ {0, |Eu|} and w(u) ≥ w(δ(S′[≼ i]) ∩ V (T ′)) for each u ∈ CV (S′[≼ i]) ∩ V (T ′), (2)

where T ′ is the connected component of T − CE(S) that contains the vertex v. Such an integer i exists, because S′ is greedy
and S ≠ S′. Construct Sv by performing the clearing moves of the edges in (CE(S

′
[≼ i]) \ CE(S)) ∩ E(T ′) in the same order

as in S′. By the choice of v and i, Sv /∈ ε⟨T ′⟩.
First we prove that |(S ⊕ Sv)[j]| ≤ k for each j = |S| + 1, . . . , |S| + |Sv|. Let j ∈ {|S| + 1, . . . , |S| + |Sv|} be selected

arbitrarily. Let j′ be selected in such a way that S′[j′] clears the same edge as (S ⊕ Sv)[j]. Due to (1), it is enough to argue
that w(δ((S ⊕ Sv)[≼ j])) ≤ w(δ(S′[≼ j′])). Clearly, δ(S′[≼ j′]) ∩ V (T ′) = δ((S ⊕ Sv)[≼ j]) ∩ V (T ′). On the other hand,

w(δ(S′[≼ j′]) \ V (T ′)) ≥ w(δ((S ⊕ Sv)[≼ j]) \ V (T ′))

due to the choice of i. Hence, |(S⊕ Sv)[j]| ≤ k, and therefore by Lemma 1, Sv is a (k−w(δ(S) \ {v}))-search strategy for T ′.
By (2) and by the fact that Sv /∈ ε⟨T ′⟩, Sv is greedy for T ′, which gives by Lemma 2 that if CE(S) ∩ Ev = ∅, then (i) holds,

and otherwise (ii) is satisfied. �

Informally speaking, if one wants to extend a partial search strategy S to a greedy one, then one of the two following
extensions should be considered. The first extension is by clearing a contaminated edge e ∈ Ev , where Ev is selected so
that some edges in Ev are already clear. The other extension is by finding a vertex v ∈ δ(S) such that none of the edges in
Ev has been cleared (and thus no edge in Tv is clear) and by performing the moves of some greedy search strategy Sv for Tv .
Note that Theorem 2 does not say how to find the edge e or the search strategy Sv .

4. A generic algorithm for finding search strategies

Let T be a weighted rooted tree. Let π : {1, . . . , |Vv|} → Vv be a permutation of the vertices in Vv for some v ∈ V (T ) such
that Vv ≠ ∅. We say that a search strategy S for T clears the edges in Ev according to π if Ev ⊆ CE(S) and vπ(i) is cleared
prior to vπ(i+ 1) by S for each i = 1, . . . , |Vv| − 1. Let LT denote the set of vertices of degree 1 in T .

In this section we describe an algorithm that finds a connected search strategy for a given weighted tree. The search
strategy is, in general, not optimal, because for each vertex we are given a set of permutations of the edges leading from the
vertex to its children, and the final search strategy needs to respect this order, i.e. the edges have to be cleared according to
one of the given permutations.

The algorithm is described in Section 4.1. Then, we argue in Section 4.2 that this generic algorithm finds a valid connected
search strategy that uses the minimum number of searchers among all connected search strategies that follow the above
restriction on the order of clearing the edges. Section 4.3 deals with the complexity, i.e. it is proven that the running time
of the algorithm is polynomial in the size of the tree and in the size of the permutation set. Note that it follows in particular
that the algorithm finds an optimal solution whenever all possible permutations are provided for each vertex, but then the
running time is in general not polynomial in the size of the tree.

4.1. The generic algorithm

Before giving a formal description of the generic algorithm we will sketch its main ideas. The computation is performed
by themain procedure called GWTAS (GenericWeighted Tree Approximate Searching) that finds a connected search strategy for
the given tree T and for each possible homebase. Also, the input includes a function Γ that to each possible set Vv , v ∈ V (T ),
assigns a set of permutations of the vertices in Vv . (Note that the set Vv depends on the choice of the root of T and Γ gives
the permutation set for each v and for each choice of the root of T .) For a fixed homebase, the tree (rooted at the homebase)
is processed by GWTAS in a bottom up manner. In particular, for each subtree Tv with Ev ≠ ∅ the algorithm finds a partial
search strategy denoted by S(Tv) by several invocations of a subroutine GSS (Generic Subtree Searching). When GSS is called
for a subtree Tv , then it is guaranteed that S(Tu) has already been computed for each u ∈ V (Tv) \ ({v} ∪ LT ). We prove later
that S(Tv) is a greedy search strategy for Tv such that there exists no greedy k-search strategy for k < s(S(Tv)) that clears
the edges in each set Eu according to some permutation in Γ . Once S(Tv) is computed for each v ∈ V (T ) the algorithm finds
a connected search strategy S for T (with the homebase being the root of T ) by iteratively performing the following step. If
S is the current partial search strategy, then some vertex v ∈ δ(S) is selected and the new current search strategy carried
to the next iteration is S ⊕ S(Tv). The final search strategy is connected, the root of T is its homebase and the edges in Ev

are cleared according to some permutation provided by Γ for each non-empty Vv .
First we describe the subroutine GSS (Generic Subtree Searching) used by themain procedure. The input is a tree T rooted

at a vertex v, a permutation π of Vv and a set A that contains a partial search strategy S(Tu) for each u ∈ V (Tv) \ ({v} ∪ LT ).
(The search strategies inAhave been computed byprevious calls toGSS.) The procedureGSS returns a partial search strategy
Sπ for T with homebase v that clears the edges in Ev according to the permutation π . Moreover, each subtree Tu, u ∈ Vv ,
is cleared by a concatenation of some search strategies in A. As we prove later, S(Tv) is greedy and there exists no greedy
search strategy for Tv that uses fewer than s(S(Tv)) searchers and satisfies the above conditions.

Before giving the pseudo-code of GSS we sketch its main steps, referring to the lines of the pseudo-code given below.
Each iteration of the main loop of GSS tries to compute a partial search strategy Sπ for Tv . The integer kπ is the number
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of searchers available for Sπ . Initially all kπ searchers are placed at v (line 4) and the computation of Sπ starts. The ‘for’
loop, that executes within themain loop, is responsible for computing Sπ . In the i-th iteration of this loopw(π(i)) searchers
slide from v to π(i) which results in clearing uπ(i) and π(i) becomes guarded (line 7). If the latter is not possible, then the
procedure decides that kπ searchers are not sufficient (line 6), kπ increases appropriately (line 13) and the new iteration of
the main loop begins. Otherwise, the procedure repeatedly checks (in the ‘while’ loop in lines 8–10) whether there exists
a search strategy S(Tu) ∈ A for some u ∈ δ(Sπ ) \ ({v} ∪ LT ) such that Sπ ⊕ S(Tu) does not use more then kπ searchers.
The latter is equivalent to s(S(Tu)) ≤ kπ − w(δ(Sπ ) \ {u}). If S(Tu) has been found, then Sπ ⊕ S(Tu) becomes the new
partial search strategy Sπ (line 9). If Sπ succeeds in clearing all edges in Ev , then the computation of Sπ stops. Then, it is
checked (line 14) whether w(δ(Sπ )) ≤ w(v) and whether Sπ clears all edges in Ev which (as we prove later) is equivalent
to checking whether Sπ is greedy. If the answer is affirmative, then the computation stops. Otherwise, kπ increases, and the
computation of a new search strategy Sπ begins for a larger value of kπ .

Note that Sπ = ε⟨Tv, kπ ⟩ satisfies w(δ(Sπ )) ≤ w(v). Moreover, if Sπ does not clear all edges in Ev , but has the property
that if vu has been cleared, u ∈ Ev , then Tu is completely cleared by Sπ , then such an Sπ also satisfies the latter inequality.
However, in both cases Sπ is not greedy and hence such search strategies are not accepted by GSS.

Procedure GSS(T , π, A) (Generic Subtree Searching)
Input: a weighted tree T = (V (T ), E(T ), w) rooted at v, where |E(T )| > 0, a permutation π : {1, . . . , |Vv|} → Vv

and a set A that contains S(Tu) for each u ∈ V (Tv) \ ({v} ∪ LT ).
Output: a partial search strategy for Tv .

begin
1: kπ ← w(v).
2: repeat
3: Set sj ←+∞ for each j = 1, . . . , |Ev|.
4: Sπ ← ε⟨Tv, kπ ⟩.
5: for j← 1 to |Ev| do
6: If s(Sπ ⊕ ⟨v, π(j)⟩) > kπ , then let sj ← s(Sπ ⊕ ⟨v, π(j)⟩), xj ← v, and goto line 11.
7: Sπ ← Sπ ⊕ ⟨v, π(j)⟩.
8: while ∃u ∈ δ(Sπ ) \ {v} such that s(S(Tu)) ≤ kπ − w(δ(Sπ ) \ {u}) do
9: Sπ ← Sπ ⊕ S(Tu).
10: end while
11: If δ(Sπ ) \ {v} ≠ ∅, then find u ∈ δ(Sπ ) \ {v} with the minimum k′ = w(δ(Sπ ) \ {u}) + s(S(Tu)) and set

sj ← k′, xj ← u.
12: end for
13: If δ(Sπ ) ≠ ∅, then find i ∈ {1, . . . , |Ev|} such that xi ∈ δ(Sπ ) and si ≤ sj for each j = 1, . . . , |Ev| such that

xj ∈ δ(Sπ ), and set kπ ← si.
14: until w(δ(Sπ )) ≤ w(v) and Sπ /∈ ε⟨Tv⟩.
15: return Sπ .

end procedure GSS.

Let T be a weighted tree. Define

Vv = {NT (v) \ {u} : |NT (v)| > 1 and u ∈ NT (v)} ∪ {NT (v)}

and letV =


v∈V (T ) Vv . Informally speaking,V is constructed so that for each choice of the roof for T and for each v ∈ V (T )
with non-empty Vv it holds that Vv ∈ V . We say that Γ is an ordering for T if Γ assigns to each set X ∈ V a non-empty set
Γ (X) of permutations of X .

The input to the procedure GWTAS is an unrooted tree T and an ordering Γ for T . (If a permutation π ∈ Γ (Vv) has been
selected while computing a search strategy, then the edges in Ev are cleared according to π by the search strategy.) The set
X′, initially set to be empty (line 1), is extended during the execution of GWTAS with the best connected search strategy
found for each choice of the root (line 21).

Procedure GWTAS(T , Γ ) (Generic Weighted Tree Approximate Searching)
Input: a weighted tree T and an ordering Γ for T .
Output: a connected search strategy for T .

begin
1: X′ ← ∅.
2: for each r ∈ V (T ) do
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3: Consider T to be rooted at r .
4: Let (v1, . . . , vn) be any post-ordering (each child precedes its parent) of the vertices of T .
5: A← ∅.
6: for i← 1 to n do
7: if Vvi ≠ ∅ then
8: X← ∅.
9: for each π ∈ Γ (Vvi) do
10: Add to X the search strategy returned by GSS(Tvi , π, A).
11: end for
12: S(Tvi)← S, where S ∈ X and s(S) = min{s(S′) : S′ ∈ X}.
13: A← A ∪ {S(Tvi)}.
14: end if
15: end for
16: Let Sr ← S(Tr).
17: while CE(Sr) ≠ E(T ) do
18: Find v ∈ δ(Sr) with the minimum w(δ(Sr) \ {v})+ s(S(Tv)).
19: Sr ← Sr ⊕ S(Tv).
20: end while
21: X′ ← X′ ∪ {Sr}.
22: end for
23: return S such that S ∈ X′ and s(S) = min{s(S′) : S′ ∈ X′}.

end procedure GWTAS.

In order to simplify the presentation, we skipped some possible optimizations in the pseudo-codes of GSS and GWTAS.
Those details are included in the proofs of Lemmas 7 and 8, where we analyze the complexities of both procedures.

4.2. The correctness of the generic algorithm

Let Γ be an ordering for a weighted tree T . If Sv is a partial search strategy for Tv that clears the edges in Eu according a
permutation in Γ (Vu) for each u ∈ CV (Sv) \ δ(Sv), then we say that Sv is a Γ -strategy. We say that a set A is Γ -complete
for Tv if for each u ∈ V (Tv) \ ({v} ∪ LT ) the two following conditions hold:

• a greedy search Γ -strategy S(Tu) belongs to A, and
• if Su is any greedy search Γ -strategy for Tu, then s(S(Tu)) ≤ s(Su).

In other words, if A is Γ -complete for T , then it contains a greedy search Γ -strategy for each subtree Tu, u /∈ LT , where u is
a descendant of v in Tv , and there exists no greedy search Γ -strategy for Tu that uses fewer searchers. If we in the following
say that Γ is an ordering for a rooted tree, then we point out that Γ (Vv) refers to the set Vv with respect to the given choice
of the root.

We start with a lemma that gives a necessary and sufficient condition for any search strategy constructed as in the
procedure GSS to be greedy. The condition requires to compare the weight of the root of the subtree with the weight of the
border of the search strategy. In other words, it is enough to check condition (ii) in Definition 1 only for u being the root of T .

Lemma 3. Let T be a tree rooted at v and let S = S1 ⊕ · · · ⊕ Sp, p > 0, be a search strategy for T such that Ev ⊆ CE(S),
S1 = ⟨v, u⟩ for some u ∈ Vv and for each i = 2, . . . , p we have that Si = ⟨v, u⟩ for some u ∈ Vv or Si is a greedy search strategy
for Tu for some u ∈ δ(S1 ⊕ · · · ⊕ Si−1) \ {v}. Then, S is greedy if and only if w(v) ≥ w(δ(S)).

Proof. Note that the ‘only if’ part is trivial, so we prove the ‘if part’.
Since p > 0, it holds S /∈ ε⟨Tv⟩. By the construction of S, it also satisfies (iii) in Definition 1. Let u ∈ CV (S) be selected

arbitrarily. We have to prove that w(u) ≥ w(δ(S)∩ V (Tu). This inequality trivially follows for each u ∈ LTv \ {v}. Moreover,
it follows for u = v by assumption. Thus, let u /∈ {v}∪LTv . Let Sπ,u be the search strategy S restricted to the subtree Tu. Since
u /∈ LTv , Sπ,u clears a non-empty subtree of Tu and we without loss of generality have that Sπ,u = Sp1 ⊕ · · · ⊕ Spl , where Spi
is a greedy search strategy for Tui , ui ∈ V (Tu).

We prove by induction on i = 1, . . . , l that Sp1 ⊕ · · · ⊕ Spi is greedy. By assumption, Sp1 is greedy, so let us assume that
the induction hypothesis holds for some i, 1 ≤ i < l, and we prove the claim for i + 1. Let x ∈ CV (Sp1 ⊕ · · · ⊕ Spi+1) be
selected arbitrarily. We consider two following cases.

Case 1: V (Tx) ∩ δ(Spi+1) = ∅. Then, by the fact that Sp1 ⊕ · · · ⊕ Spi is greedy we obtain

w(x) ≥ w(δ(Sp1 ⊕ · · · ⊕ Si) ∩ V (Tx)) = w(δ(Sp1 ⊕ · · · ⊕ Spi+1) ∩ V (Tx)).
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Case 2: V (Tx)∩δ(Spi+1) ≠ ∅. If x ∈ CV (Spi+1), then by the fact that Spi+1 is greedywe obtain thatw(x) ≥ w(δ(Spi+1)∩V (Tx)).
Moreover, δ(Sp1 ⊕ · · · ⊕ Spi+1)∩ V (Tx) = δ(Spi+1)∩ V (Tx) and in such case the claim follows. If, on the other hand,
x /∈ CV (Spi+1), then by the induction hypothesis,w(x) ≥ w(δ(Sp1⊕· · ·⊕Spi)∩V (Tx)). Since x is an ancestor of ui+1,
ui+1 ∈ δ(Sp1 ⊕ · · · ⊕ Spi), and w(ui+1) ≥ w(δ(Spi+1) ∩ V (Tui+1)) (that holds because Spi+1 is greedy), we obtain

w(x) ≥ w(δ((Sp1 ⊕ · · · ⊕ Spi) \ {ui+1}) ∩ V (Tx))+ w(ui+1)

≥ w(δ((Sp1 ⊕ · · · ⊕ Spi) \ {ui+1}) ∩ V (Tx))+ w(δ(Spi+1) ∩ V (Tui+1))
= w(δ((Sp1 ⊕ · · · ⊕ Spi) \ {ui+1}) ∩ V (Tx))+ w(δ(Spi+1) ∩ V (Tx))
= w(δ(Sp1 ⊕ · · · ⊕ Spi+1) ∩ V (Tx)).

The latter holds, because due to condition (iii) in Definition 1, ui+1 /∈ δ(Sp1 ⊕ · · · ⊕ Spi+1).

By the above, Sπ,u is greedy, which in particular gives thatw(u) ≥ w(δ(Sπ,u)). Since δ(Sπ,u) = δ(S)∩V (Tu), we obtain that
w(u) ≥ w(δ(S) ∩ V (Tu)) as desired. �

Lemma 4 given below states that the execution of GSS always stops, and that GSS, for the given Tv , π and A, returns
a greedy search strategy Sπ that clears the edges in Ev according to π , and the edges in Eu are cleared by Sπ according to
an ordering used by one of the search strategies in A. Then, in Lemma 5, we prove that Sπ uses the minimum number of
searchers.

Lemma 4. Let Γ be an ordering for a tree T rooted at v, where Γ (Vv) = {π} for some permutation π . If A is Γ -complete for T ,
then GSS, for the given T , π and A, returns a greedy search Γ -strategy for T .

Proof. First observe that the computation of GSS stops and that the procedure returns a search strategy Sπ . Indeed, if the
computation of Sπ fails in a given iteration of the main loop, then kπ increases (line 13) and the new iteration begins. For
kπ ≥ w(V (T )), the procedure GSS is able to find a search strategy that clears all edges of Tv (regardless of the permutation
π used) and therefore its border is an empty set which implies that such a search strategy is greedy. This guarantees by
Lemma 3 that the condition of the ‘repeat-until’ loop is met (line 14) and the main loop finishes its execution.

The fact that Sπ clears the edges in Ev according to π is obvious (see the ‘for’ loop in lines 5–12). Since A is Γ -complete
for T we obtain that Sπ is a Γ -strategy. Finally note that Sπ /∈ ε⟨Tv⟩ and Lemma 3 give the thesis. �

Lemma 5. Let T be a weighted tree rooted at v. Let Γ be an ordering for the rooted tree T with Γ (Vv) = {π}. If A is Γ -complete
for Tv and there exists a greedy k-search Γ -strategy for Tv , then GSS returns, for the given T , π andA, a greedy search Γ -strategy
Sπ such that s(Sπ ) ≤ k.

Proof. By construction the search strategy Sπ computed by GSS is of the form

Sπ = S1 ⊕ · · · ⊕ Sl,

where Si either equals S(Tu) for some u ∈ δ(S1 ⊕ · · · ⊕ Si−1), u ≠ v, or Si = ⟨v, u⟩ for some u ∈ Vv (see lines 7 and 9 of
GSS that contain the instructions that extend Sπ ). By Lemma 4, Sπ is a greedy search Γ -strategy.

Let Sv be a greedy search Γ -strategy for Tv . Assume that kπ = s(Sv). We prove by induction that for each i = 1, . . . , l,
s(S1 ⊕ · · · ⊕ Si) ≤ kπ and the search strategy S1 ⊕ · · · ⊕ Si can be kπ -extended to a greedy search Γ -strategy for Tv . The
claim clearly follows for i = 1, because S1 clears vπ(1) and so does Sv .

Let now i ∈ {1, . . . , l − 1} and we prove the claim for i + 1. If Si+1 is a search strategy for Tu, u ∈ V (T ) \ {v}, then by
assumption Si+1 is a greedy search Γ -strategy. By the formulation of GSS (line 8), s(Si+1) ≤ kπ −w(δ(S1⊕· · ·⊕Si) \ {u}).
Hence, by Lemma 1 and by the induction hypothesis, s(S1⊕· · ·⊕Si+1) ≤ kπ . By Lemma 2 and by the induction hypothesis,
S1 ⊕ · · · ⊕ Si+1 can be kπ -extended to a greedy search Γ -strategy.

If Si+1 clears an edge in Ev , then by the fact that A is Γ -complete for Tv we obtain by Theorem 2 that for each
u ∈ δ(S1 ⊕ · · · ⊕ Si), such that CE(S1 ⊕ · · · ⊕ Si) ∩ Eu = ∅, there exists no greedy (kπ −w(δ(S1 ⊕ · · · ⊕ Si) \ {u}))-search
Γ -strategy for Tu. The latter is checked in line 8 of GSS. Thus, Si+1 has to clear an edge in Eu such that u ∈ δ(S1⊕· · ·⊕Si) and
CE(S1⊕· · ·⊕Si)∩Eu ≠ ∅. However, u = v is the only vertex that satisfies the latter condition. By Theorem2(ii),S1⊕· · ·⊕Si+1
can be kπ -extended to a greedy search strategy for Tv , and by the formulation of GSS, s(S1⊕· · ·⊕Si+1) ≤ kπ (lines 6 and 7).

It remains to argue that GSS sets the value of kπ to s(Sv), where Sv is a greedy Γ -strategy such that there exists no
greedy (s(Sv)− 1)-search Γ -strategy for Tv . Note that if s(Sv) = w(v), then the claim follows (due to the initialization in
line 1), so assume that s(Sv) > w(v), which in particular implies that the first iteration of the main loop of GSS does not
find the desired search strategy Sπ . Let us consider any iteration of the main loop of GSS and let k′π be the value of kπ in this
particular iteration, while S′ = Sπ is the search strategy obtained at the end of the iteration. If, for the corresponding integer
kπ = k′π , GSS does not find a desired search strategy Sπ , then by the formulation of GSS the next value of kπ , denoted by k′,
equals si for some i ∈ {1, . . . , |Ev|} (line 11). By the choice of k′ (lines 6,11 and 13), the result of the execution of the main
loop in lines 3–14 is identical for each kπ = k′π , . . . , k′ − 1. Moreover, if kπ = k′, then during some iteration of the nested
‘for’ loop in lines 5–12 either an edge e ∈ Ev becomes clear such that e /∈ CE(S

′) (line 7), or a search strategy S(Tu) ∈ A is
used, u ∈ δ(S′) (line 9). In both cases, the final search strategy obtained at the end of this iteration of the main loop with
kπ = k′ clears more edges than S′. Thus, after a finite number of steps the variable kπ is set to the minimum value that
guarantees that a greedy search Γ -strategy is computed by GSS. �
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In order to simplify the statements, we extend the notion of the connected search number for Γ -strategies. In particular,
given aweighted tree T , a vertex r of T and an orderingΓ for T , the symbol cs(T , r, Γ ) denotes theminimum integer k such
that there exists a connected k-search Γ -strategy for T with homebase r . Then, cs(T , Γ ) = min{cs(T , r, Γ ) : r ∈ V (T )}.

Lemma 6. If T is a weighted tree and Γ is an ordering for T , then at the end of the execution of GWTAS for T and Γ it holds

(i) for each choice of the root for T and for each subtree Tv , |V (Tv)| > 1, a greedy search Γ -strategy Sv has been computed, and
Sv uses the minimum number of searchers among all greedy search Γ -strategies for Tv ,

(ii) GWTAS returns a connected cs(T , Γ )-search Γ -strategy for T .

Proof. We continue with the assumption that T is rooted at an arbitrary vertex r . In the following we refer to the lines of
the pseudo-code of GWTAS.

We prove (i) by induction on the subtree height. Let for brevity v = vi, i ∈ {1, . . . , n}. If Tv satisfies E(Tv) = Ev (i.e. Tv is
of height 1), then the claim follows, because GWTAS tries to clear the edges in Ev according to all permutations in Γ (Vv) by
making the appropriate calls to GSS (lines 9–11). Thus, assume that Tv is of height greater than 1. By the induction hypothesis
and by the formulation of GWTAS (the vertices of T are processed in post-order), we obtain that for each u ∈ Vv the subtree
Tu satisfies (i), i.e. if |V (Tu)| > 1, then Su equals S(Tu) that belongs to A when GSS is called for Tv . We will analyze the
computation of S(Tv).

The procedure GSS is called for Tv , for each permutation π ∈ Γ (Vv) and a collection A that is Γ -complete for Tv

(lines 9–11). The latter follows from the order of processing of the vertices of T by GWTAS (fixed in line 4). By Lemma 5
we obtain that the search strategy Sπ returned by GSS is a greedy search Γ -strategy that uses the minimum number of
searchers and clears the edges in Ev according to π . The thesis follows from the observations that S(Tv) is selected to be a
strategy using theminimumnumber of searchers among all search strategies Sπ returned by GSS (line 12), and GSS is called
for each π ∈ Γ (Vv). Then, S(Tv) is added to A (line 13).

Now we prove (ii). To that end it is enough to argue that Sr , constructed for an arbitrary choice of r , is a connected
search Γ -strategy for the rooted tree T with homebase r and s(Sr) ≤ cs(T , r, Γ ). Then, the thesis follows from the fact
that Sr is added to X′ (line 21), and from the choice of S returned by GWTAS (line 23). To prove the inequality we show
by induction on the number of iterations of the ‘while’ loop (lines 17–20) of GWTAS responsible for the computation of Sr
that the partial search strategy, denoted by Si

r , obtained at the end of the i-th iteration, can be cs(T , r, Γ )-extended to a
connected search Γ -strategy for T with homebase r and that Si

r ≠ Si−1
r . We take S0

r = S(Tr). Note that the cases of i = 0
and i > 0 are analogous, so we consider the latter one. (For i = 0 it is enough to take S−1r = ε⟨T , cs(T , r, Γ )⟩ that clearly
can be extended to a connected cs(T , r, Γ )-search strategy that clears T .)

Suppose that the claim holds for Si
r , i ≥ 0, and we consider the (i + 1)-st iteration. By the induction hypothesis,

s(Si
r) ≤ cs(T , r, Γ ) and Si

r can be cs(T , r, Γ )-extended to a connected search strategy S′ that clears T . Note that S′ is
greedy, because δ(S′) = ∅. Since CE(S

i
r) ∩ Ev = ∅ for each v ∈ δ(Si

r), by Theorem 2 we obtain that there exist v ∈ δ(Si
r))

and a greedy (cs(T , r, Γ )−w(δ(Si
r) \ {v}))-search strategy S such that Si

r ⊕S can be cs(T , r, Γ )-extended to a connected
search strategy that clears T . By (i) we have that a greedy search Γ -strategy Sv for Tv has been computed by GWTAS, i.e.
Sv ∈ A, and s(Sv) ≤ s(S). Therefore, by Lemma 1 and by the induction hypothesis,

s(Si
r ⊕ Sv) = max{s(Si

r), w(δ(Si
r) \ {v})+ s(Sv)} ≤ max{cs(T , r, Γ ), s(Si

r ⊕ S)} ≤ cs(T , r, Γ ).

By Lemma 2, Si
r ⊕ Sv can be cs(T , r)-extended to a connected search strategy that clears T . �

We finish this sectionwith a theorem that follows from the proceduresGSS andGWTAS. The theoremprovides a structural
characterization of greedy search strategies and it will be useful in the last section where we give the 3-approximation
algorithm.

Theorem 3. Let T be a weighted tree rooted at r, let Γ be an ordering for T and let d = |Er |. If there exists a greedy k-search
Γ -strategy for T that clears the edges in Er according to a permutation π ∈ Γ (Vr), then there exists a greedy k-search Γ -strategy
S that clears the same subgraph and satisfies

S = S1 ⊕ · · · ⊕ Sl,

where l ≥ d and

Si = S1
i ⊕ · · · ⊕ S

ti
i , i = 1, . . . , d,

where ti ≥ 1, S1
i = ⟨r, π(i)⟩ and S

j
i , j = 2, . . . , ti, is a greedy search Γ -strategy for Tv for some v ∈ V (Tπ(i)) for each

i = 1, . . . , d. Moreover, Si is a greedy search Γ -strategy for Tv for some v ∈ δ(S1 ⊕ · · · ⊕ Si−1) for each i = d+ 1, . . . , l. �

In other words, Si, i ≤ d, clears rπ(i) and a subtree of Tπ(i). Moreover, for each i = d + 1, . . . , l the search strategy Si
for Tv is greedy, where v ∈ δ(S1 ⊕ · · · ⊕ Si−1). Note that we may without loss of generality assume that td = 1, or in other
words, that Sd clears only the edge rπ(d) and then the search strategies Sd+1, . . . , Sl follow. In section Section 5 we will
work with this assumption in order to simplify the statements.
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4.3. The complexity of the generic algorithm

In this section we analyze the running time of GWTAS and we start by proving that GSS runs in O(n log n)-time for an
n-node tree.

Lemma 7. The running time of GSS is O(n log n) for the given input rooted tree T , permutation π and a Γ -complete set A for T ,
where n = |V (T )|.

Proof. First we analyze the running time of the ‘for’ loop (lines 5–12). For each subtree Tu the search strategy S(Tu) can be
accessed in constant time. Also, the vertices in δ(Sπ ) can be stored in a min-heap H , where the key value associated with
a vertex u ∈ δ(Sπ ) is s(S(Tu)) − w(u). Then, finding the search strategy S(Tu) in line 8 requires O(1) time, because the
condition s(S(Tu)) ≤ kπ − w(δ(Sπ ) \ {u}) is equivalent to s(S(Tu))− w(u) ≤ kπ − w(δ(Sπ )), because w(δ(Sπ ) \ {u}) =
w(δ(Sπ )) − w(u). Since the right hand side of this inequality does not depend on u, the minimal element of H determines
a search strategy in A that can be used in each iteration of the ‘while’ loop. The computation of Sπ ⊕ S(Tu) (line 9) can
be performed in time O(|S(Tu)|). If the choice of kπ does not allow to clear an edge vπ(j) for some j ∈ {1, . . . , |Ev|}, then
it is not necessary to recalculate in any iteration of the ‘for’ loop the part of the search strategy computed in the previous
iteration. Indeed, for each j = 1, . . . , |Ev| the j-th iteration may start by using the part of the previous search strategy that
clears all edges ‘between’ clearing vπ(j) and vπ(j + 1). After each extension of Sπ with S(Tu) we add to the heap H each
vertex in δ(S(Tu)) and we remove u from H .

The total number of search strategies in A used to construct the final search strategy Sπ is O(n), which implies that the
total time required for insertions to and removals form H is O(n log n). The total time to construct Sπ itself is linear, i.e. O(n),
because the total number of clearing moves of any partial (monotone) search strategy for T is at most |E(T )| < n. This
completes the proof. �

The running time of GWTAS clearly depends on the number of permutations in the given ordering Γ for T . We introduce
the value of γ that is assumed to bound the size of each permutation set, i.e. |Γ (X)| ≤ γ for each X ∈ V .

Lemma 8. Let T and Γ be an input to GWTAS. The running time of GWTAS is O(γ n3 log n), where n = |V (T )| and |Γ (X)| ≤ γ
for each X ∈ V .

Proof. The time required to compute S(Tv) that is added to A (lines 7–14) is O(|Γ (Vv)|p), where p is the complexity of GSS,
because for this purpose the procedure GSS is called for each permutation in Γ (Vv). Thus, by Lemma 7, the time complexity
of finding S(Tv) is O(|Γ (Vv)|n log n) = O(γ n log n). Also, at the beginning of each iteration of the nested ‘for’ loop of GWTAS
(lines 9–11) one can check whether S(Tvi) has been computed previously in order to avoid repeating the computations.
The latter is possible, because the same subtree Tvi may appear for different choices of the root. Note that there are O(n2)
pairwise different non-empty sets Vv and subtrees Tv (O(n) for each choice of the root of T ). Thus, the computation of all
search strategies S(Tv) requires O(γ n3 log n) time. The computation of Sr for the given choice of the root r (lines 16–20)
requires O(n log n) time and the analysis is analogous to the one for GSS. Thus, finding all connected search strategies Sr
that clear T entirely and have different homebases r ∈ V (T ) requires O(n2 log n) time in total and does not increase the
overall complexity of GWTAS. �

5. An approximation algorithm

We say that a partial search strategy S for a weighted tree T rooted at r is simple if S is greedy and S = S1 ⊕ · · · ⊕ Sd,
where Si clears an edge ru ∈ Ev and a subtree of Tu for each i = 1, . . . , d and d = |Er |.

Informally speaking, a simple search strategy S for T is restricted in the following way. If a particular move of S clears
an edge ru, u ∈ Vr , then the following moves clear some edges of Tu. However, once the next edge in Er becomes clear, the
strategy is not allowed to clear any edges of Tu in its future moves. There exist trees for which each simple search strategy
uses more searchers than k searchers, where k is the number of searchers used by a greedy search strategy that uses the
minimum number of searchers (see e.g. the tree in Fig. 1).

Let for brevity d = |Er |. Let S be a greedy search strategy. We may without loss of generality assume that S has the form
as in Theorem 3. Recall that Si, i ≤ d, clears rπ(i) and a subtree of Tπ(i). Moreover, for each i = d + 1, . . . , l the search
strategy Si for Tv is greedy, where v ∈ δ(S1 ⊕ · · · ⊕ Si−1). As argued before, we may assume without loss of generality that
td = 1, i.e. Sd = ⟨r, π(d)⟩. Note that the part of S composed with the first d search strategies, i.e. S1 ⊕ · · · ⊕ Sd, is simple,
but if l > d, then S is not simple in general.

Now we perform the following modification to S in order to convert it into a simple search strategy. Find the integer
i ∈ {1, . . . , d} such that the greedy search strategy Sd+1 clears a subtree of Tπ(i), i.e. CE(Sd+1) ⊆ E(Tπ(i)). Then, perform the
moves of Sd+1 immediately prior to Si+1, i.e. let the new search strategy be as follows

S1 ⊕ · · · ⊕ Si ⊕ Sd+1 ⊕ Si+1 ⊕ · · · ⊕ Sd ⊕ Sd+2 ⊕ · · · ⊕ Sl.

Note that if i = d, then the above does not change S. Repeat this step for the remaining search strategies Sd+2, . . . , Sl. The
final search strategy obtained in this way is denoted byS = S1 ⊕ · · · ⊕ Sd, (3)
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such that for each i = 1, . . . , dSi = S1
i ⊕ · · · ⊕

S li
i (4)

is the search strategy such that Sj
i = S

j
i for each j = 1, . . . , ti, while the search strategies (if any) Sti+1

i , . . . , S li
i are the ones

among Sd+1, . . . , Sl that clear subtrees of Tπ(i). Note that in particular S1
i = ⟨r, π(i)⟩ for each i = 1, . . . , d. Also, S is a valid

partial search strategy for T with homebase r , because the order in which the search strategies Sd+1, . . . , Sl are performed
in S is the same as in S. Moreover, S is greedy, because CE(S) = CE(S). Hence, S is simple.We say that S is the simple search
strategy that corresponds to S.

As an example let us consider the search strategy S presented in Fig. 1, where the shaded areas together with the moves
that clear the edges in Er give the search strategies S1 = ⟨r, u1⟩ ⊕ S(Tu1)⊕ S(Tu2), S2 = ⟨r, u3⟩ ⊕ S(Tu3) and S3 = ⟨r, u4⟩.
The simple search strategy that corresponds to S is as follows: S = S1 ⊕ S2 ⊕ S3, whereS1 = ⟨r, u1⟩ ⊕ S(Tu1)⊕ S(Tu2)⊕ S(Tu6)⊕ S(Tu10),S2 = ⟨r, u3⟩ ⊕ S(Tu3)⊕ S(Tu7)⊕ S(Tu11),S3 = ⟨r, u4⟩ ⊕ S(Tu4)⊕ S(Tu5)⊕ S(Tu8)⊕ S(Tu9)⊕ S(Tu12).

Note that in this example s(S) > s(S).
Now we prove a technical result that will be used in the proof of the next lemma. Informally speaking, we prove that all

vertices u ∈ δ(S1, . . . , Sp), p ≥ d, such that their weight is ‘large’, i.e.w(δ(S1⊕· · ·⊕Sp)\{u}) < min{w(u), w(r)/2}, belong
to a unique subtree Tv for some v ∈ Vr . Note that δ(S1, . . . , Sp) may contain at most one such vertex u, but δ(S1, . . . , Sp+1)
may contain another one.

Lemma 9. Let T be a weighted tree rooted at r and let S be a greedy search strategy for T of the form as in Theorem 3 such that
S1 ⊕ · · · ⊕ Sj is not greedy for each j = d, . . . , l − 1. There exists i ∈ {1, . . . , d} such that for each p ∈ {d, . . . , l − 1} and
u ∈ δ(S1 ⊕ · · · ⊕ Sp) satisfying w(δ(S1 ⊕ · · · ⊕ Sp) \ {u}) < min{w(u), w(r)/2} it holds u ∈ V (Tπ(i)).

Proof. If there exists at most one pair p and u that satisfies the condition in the lemma, then there is nothing to prove. Thus,
assume that p1, u1 and p2, u2, d ≤ p1 < p2 < l, us ∈ δ(S1 ⊕ · · · ⊕ Sps), s = 1, 2, are two such pairs, i.e.

w(δ(S1 ⊕ · · · ⊕ Sps) \ {us}) < w(us) and w(δ(S1 ⊕ · · · ⊕ Sps) \ {us}) < w(r)/2, (5)

s = 1, 2. Suppose for a contradiction that us belongs to V (Tπ(js)), s = 1, 2, and j1 ≠ j2. It holds w(r) < w(δ(S1⊕· · ·⊕Sp2)),
because otherwise, by Lemma 3, S1 ⊕ · · · ⊕ Sp2 would be greedy, which would contradict our assumption. Hence,

w(r)/2 < w(u2), (6)

because, by (5), w(r) < w(δ(S1 ⊕ · · · ⊕ Sp2)) = w(δ(S1 ⊕ · · · ⊕ Sp2) \ {u2})+w(u2) < 2w(u2). If u2 ∈ δ(S1 ⊕ · · · ⊕ Sp1),
then let u′2 = u2 and otherwise let u′2 be the ancestor of u2 that belongs to δ(S1 ⊕ · · · ⊕ Sp1). Since u′2 ≠ r (because
p1 ≥ d implies that r /∈ δ(S1 ⊕ · · · ⊕ Sp1)) and Sq is greedy for each q = d + 1, . . . , l, w(u′2) ≥ w(u2). Then, note that
w(u′2) ≤ w(δ(S1 ⊕ · · · ⊕ Sp1) \ {p1}), because u′2 ∈ δ(S1 ⊕ · · · ⊕ Sp1) \ {u1}. Thus, w(u2) ≤ w(δ(S1 ⊕ · · · ⊕ Sp1) \ {u1}).
This, (5) and (6) give us

w(r)/2 < w(u2) ≤ w(δ(S1 ⊕ · · · ⊕ Sp1) \ {u1}) < w(r)/2,

which is a contradiction. �

Let v ∈ V (T ) and let u be a child of v in a weighted rooted tree T . Define πv
u : {1, . . . , |Vv|} → Vv to be any permutation

of Vv such that πv
u (|Vv|) = u (the remaining vertices in Vv are ordered arbitrarily). Then, let for each set Vv ∈ V

Γ1(Vv) = {π
v
u : u ∈ Vv}.

For the purpose of the proof of the next lemmawe introduce the followingnotation. Given anypartial search strategyS for
T and an ordering Γ for T , we use the symbol ξΓ (S) to denote a partial search Γ -strategy for T such that CE(S) = CE(ξΓ (S))
and the number of searchers used by ξΓ (S) is minimum, i.e. s(ξΓ (S)) ≤ s(S′) for each partial Γ -search strategy S′ for T
such that CE(S

′) = CE(S). Note that it follows directly from the definition that if S is greedy, then ξΓ (S) is greedy as well.

Lemma 10. Let T be a weighted rooted tree. If there exists a greedy k-search strategy S for T , then there exists a greedy 3k-search
Γ1-strategy for T that clears the edges in CE(S).

Proof. Let r be the root of T and let π be the permutation that determines the order of clearing the edges in Er by S. Assume
without loss of generality that S is as in Theorem 3. Let S be the simple search strategy that corresponds to S. Recall that S
has the form as in (3) and in (4).

First we select an integer a ∈ {1, . . . , d} as follows. If there exist p ∈ {d, . . . , l− 1} and u ∈ δ(S1 ⊕ · · · ⊕ Sp) that satisfy
the condition in Lemma 9, then let a = i, where u ∈ V (Tπ(i)), and otherwise let a = d. By the definition, there exists a
permutation π ′ ∈ Γ1(Vr) such that π ′(d) = π(a). Let pi, i = 1, . . . , d, be the integer such that Spi clears rπ

′(i) and a subtree
of Tπ ′(i). Hence,Sp1 ⊕ · · · ⊕

Spd (7)
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is a simple search strategy for T that clears the edges in Er according to the permutation π ′. The search strategy in (7) is
greedy due to the fact that it clears exactly the edges in CE(S). Informally speaking, we obtain the latter search strategy by
taking the simple search strategy S that corresponds to S and by changing the order in which S ‘processes’ the subtrees Tu,
u ∈ Vr , so that the edges in Er are cleared according to π ′. Thus, in particular, the last subtree Tu, u ∈ Vr , partially cleared by
the search strategy in (7) is either the same as in S, or it is the one the contains at least one vertex u from Lemma 9.

Note that the search strategy in (7) may use a different number of searchers than S. Observe that S1
pi = S1

pi = ⟨r, π
′(i)⟩

for each i = 1, . . . , d.
Suppose for a contradiction that S is a greedy k-search strategy such that there exists no greedy 3k-search Γ1-strategy

for T that clears the edges in CE(S). Moreover, assume without loss of generality that |S| is minimum among all such search
strategies S.

Since we work in this proof only with the ordering Γ1 we will write for brevity ξ in place of ξΓ1 .
Let us consider the following partial search strategy for TS1

p1 ⊕ ξ(S2
p1)⊕ · · · ⊕ ξ(S l1

p1) ⊕ · · · ⊕ S1
pd ⊕ ξ(S2

pd)⊕ · · · ⊕ ξ(S ld
pd). (8)

Since π ′ ∈ Γ1(Vr), S1
pi = ⟨r, π

′(i)⟩ and CE(ξ(Sj
i)) = CE(Sj

i) for each i = 1, . . . , d, j = 1, . . . , li, we obtain that the latter is
a (simple) greedy search Γ1-strategy for T that clears the edges in CE(S). Thus, in order to obtain the desired contradiction
it is enough to argue that the search strategy in (8) uses at most 3s(S) searchers.

Our proof uses induction on the length of a search strategy. To give the formal statement of our induction hypothesis we
need a lexicographical ordering for ordered pairs of integers. Given four integers a, b, a′, b′ let (a, b) E (a′, b′) if and only if
a < a′, or a = a′ and b ≤ b′. Let P = {(i, j) : i = 1, . . . , d, j = 2, . . . , li}. We prove by induction on (i, j) ∈ P that the partial
search strategyS1

p1 ⊕ ξ(S2
p1)⊕ · · · ⊕ ξ(S l1

p1) ⊕ · · · ⊕ S1
pi−1 ⊕ ξ(S2

pi−1)⊕ · · · ⊕ ξ(S li−1
pi−1)⊕

S1
pi ⊕ ξ(S2

pi)⊕ · · · ⊕ ξ(Sj
pi) (9)

uses at most 3s(S) searchers. Note that this in particular implies that the search strategy in (8) uses at most 3s(S) searchers
(by taking (i, j) = (d, ld)). Due to the simplifying assumptions from Section 2 and due to (1) we obtain that we can skip the
analysis for the pair (i, 1) for each i = 1, . . . , d.

Suppose that the claim holds for some (i, j) ∈ P , where (i, j) ≠ (d, ld). (We omit the analysis for the base case (1, 2),
because it is analogous to the one that follows for the general case.) For brevity, denote the search strategy in (9) by S. We
argue that the claim holds for S ⊕ ξ(Sj+1

pi ). (We assume without loss of generality that j < li, for otherwise the claim needs
to be proven for S⊕S1

pi+1⊕ξ(S2
pi+1) and the proof is analogous.) Let v be the homebase of ξ(Sj+1

pi ). If s(S) ≥ s(S⊕ξ(Sj+1
pi )),

then the claim follows immediately from the induction hypothesis, so assume that this inequality does not hold. This in
particular implies, by Lemma 1, that

s(S ⊕ ξ(Sj+1
pi )) = w(δ(S) \ {v})+ s(ξ(Sj+1

pi )). (10)

For brevity we use the symbols S∗ and S′ to denote the following search strategies. If j + 1 ≤ ti, then let S′ = S
j+1
pi , while

otherwise let S′ = Sp, where p ∈ {d+1, . . . , l} and CE(Sp) = CE(ξ(Sj+1
pi )). Hence, in both cases S′ is the part of S that clears

the edges cleared by ξ(Sj+1
pi ). Then, let S∗ be selected in such a way that S∗ ⊕ S′ can be extended to S. Informally speaking,

S∗ is the part of S prior to S′. Observe that the minimality of |S| in particular implies that

s(ξ(Sj+1
i )) ≤ 3s(S′), (11)

because S′ is greedy.

Claim 1. The following conditions hold:

(i)
i−1

q=1 w(V (Tπ ′(q)) ∩ δ(S)) ≤ w(r),
(ii) w(V (Tπ ′(q)) ∩ δ(S)) ≤ w(V (Tπ ′(q)) ∩ δ(S∗)) for each q ∈ {1, . . . , i− 1} such that V (Tπ ′(q)) ∩ CV (S∗) ≠ ∅,
(iii) V (Tπ ′(i)) ∩ δ(S) = V (Tπ ′(i)) ∩ δ(S∗),
(iv) V (Tπ ′(q)) ∩ δ(S) = ∅ for each q = i+ 1, . . . , d,
(v) r ∈ δ(S) if and only if i < d.

Prof of Claim 1. First note that it follows from the definition of S that V (Tπ ′(q)) ∩ δ(S) = V (Tπ ′(q)) ∩ δ(S) for each
q = 1, . . . , i − 1. Since S is greedy, w(δ(S)) ≤ w(r). This proves (i). Condition (ii) then follows from the fact that Sp is
greedy for each p = d + 1, . . . , l, while (iii) follows from the construction of S, i.e. from the fact that the search strategies
Sd+1, . . . , Sl that clear subtrees of Tπ ′(i) are ‘executed’ in the same order both in S and in S. Note that

δ(S) =

i
q=1 V (Tπ ′(q)) ∩ δ(S) ∪ {r} if i < di
q=1 V (Tπ ′(q)) ∩ δ(S) if i = d.

(12)

This gives (iv) and (v) and ends the proof of Claim 1. �
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a b c

Fig. 2. Case 1: (a) S∗; (b) S; (c) S.

In order to use Lemma 9 in the analysis that follows, we need to prove the following fact.

Claim 2. S1 ⊕ · · · ⊕ Sq is not greedy for each q = d, . . . , l− 1.

Proof of Claim 2. Suppose for a contradiction that S1⊕· · ·⊕Sq is greedy for some q ∈ {d, . . . , l−1}. We argue by induction
on t = q, . . . , l that

s(ξ(S1 ⊕ · · · ⊕ St)) ≤ 3s(S). (13)

By the minimality of |S| and by the fact that S1⊕ · · · ⊕ Sq is greedy, s(ξ(S1⊕ · · · ⊕ Sq)) ≤ 3s(S1⊕ · · · ⊕ Sq) ≤ 3s(S) and
the claim follows for t = q. Thus, assume that the induction hypothesis holds for some t ∈ {q, . . . , l − 1} and we analyze
the case for t+1. Let us consider ξ(S1⊕· · ·⊕St)⊕ ξ(St+1). By the definition of ξ , the latter is a Γ1-strategy. We argue that
it uses at most 3s(S) searchers. Note that δ(ξ(S1 ⊕ · · · ⊕ St)) = δ(S1 ⊕ · · · ⊕ St). Let u ∈ δ(S1 ⊕ · · · ⊕ St) be the vertex
such that St+1 is a partial search strategy for Tu. Then, by the minimality of |S|,

w(δ(ξ(S1 ⊕ · · · ⊕ St)) \ {u})+ s(ξ(St+1)) ≤ w(δ(S1 ⊕ · · · ⊕ St) \ {u})+ 3s(St+1)

≤ 3s(S1 ⊕ · · · ⊕ St+1) ≤ 3s(S).

This, (13) and Lemma 1 give that s(ξ(S1 ⊕ · · · ⊕ St+1)) ≤ s(ξ(S1 ⊕ · · · ⊕ St) ⊕ ξ(St+1)) ≤ 3s(S) as desired. Hence,
s(ξ(S)) ≤ 3s(S), which violates our earlier assumption on S. This completes the proof of Claim 2. �

We consider the following cases.

Case 1: i = d. Note that pd = a and, due to Claim 1(v), r /∈ δ(S), i.e. the root r is not guarded during the moves of ξ(Sj+1
pd ).

This situation is illustrated in Fig. 2, where π = (u1, u2, u3) and π ′(d) = u3. Hence, pd = d in this example.
Fig. 2(b) gives the border and the subtree of T (the subtree marked with grey) cleared by S. S∗ is given in Fig. 2(a),
while Fig. 2(c) depicts the search strategy S.

If pd = d, then by Claim 1(ii)–(iv) we obtain that
w(δ(S) \ {v}) ≤ w(δ(S∗) \ {v}).

If pd ≠ d, then r ∈ δ(S∗) and therefore by Claim 1(i), Claim 1(ii) and Claim 1(iv),
w(δ(S) \ {v}) ≤ w(r)+ w(V (Tπ ′(i)) ∩ δ(S)) ≤ w(δ(S∗) \ {v}).

Thus, in both cases we obtain by (10) and (11) that
s(S ⊕ ξ(Sj+1

pd )) = w(δ(S) \ {v})+ s(ξ(Sj+1
pd )) ≤ w(δ(S∗) \ {v}))+ 3s(S′). (14)

By Lemma 1 and by the definitions of S∗ and S′, w(δ(S∗) \ {v}) + s(S′) ≤ s(S∗ ⊕ S′) ≤ s(S). Hence, (14) and
s(S′) ≤ s(S) complete the proof in this case.

Case 2: i < d, pi ≠ d and j+ 1 ≤ ti. We have that S′ = S
j+1
pi . By Claim 1(v), r ∈ δ(S). See Fig. 3 that serves as an example in

this case, where π = (u1, u2, u3), π ′ = (u2, u1, u3) and i = 2.
By Claim 1(i), and by (10), (11)

s(S ⊕ ξ(Sj+1
pi )) ≤ w(r)+

i−1
q=1

w(V (Tπ ′(q)) ∩ δ(S))+ w(V (Tπ ′(i)) ∩ δ(S) \ {v})+ 3s(S′)

≤ 2w(r)+ w(V (Tπ ′(i)) ∩ δ(S) \ {v})+ 3s(S′). (15)
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a b c

Fig. 3. Case 2: (a) S; (b) S∗; (c) S, where π ′ = (u2, u1, u3).

Note that pi ≠ d implies that r is guarded during the moves of S′ = S
j+1
pi in S, or in other words, r ∈ δ(S∗). Thus,

by Lemma 1,

w(r)+ w(V (Tπ ′(i)) ∩ δ(S∗) \ {v})+ s(S′) ≤ w(δ(S∗) \ {v})+ s(S′) ≤ s(S∗ ⊕ S′) ≤ s(S).

Hence, Claim 1(iii) together with (15) finishes the proof in this case.
Case 3: i < d, pi ≠ d and j+ 1 > ti. By Claim 2, S∗ is not greedy. Thus, Lemma 3 gives that

w(r) ≤ w(δ(S∗)). (16)

By (10) by Claim 1(iv) and by Claim 1(v),

s(S ⊕ ξ(Sj+1
pi )) = w(δ(S) \ {v})+ s(ξ(Sj+1

pi ))

= w(r)+
i−1
q=1

w(V (Tπ ′(q)) ∩ δ(S))+ w(V (Tπ ′(i)) ∩ δ(S) \ {v})+ s(ξ(Sj+1
pi )). (17)

Since S∗ = S1 ⊕ · · · ⊕ Sp−1 for some p ∈ {d+ 1, . . . , l}, we obtain that Vr ⊆ CV (S∗) and hence by Claim 1(ii) and
Claim 1(iii),

i−1
q=1

w(V (Tπ ′(q)) ∩ δ(S))+ w(V (Tπ ′(i)) ∩ δ(S) \ {v}) ≤ w(δ(S∗) \ {v}). (18)

If

w(δ(S∗) \ {v}) ≥ w(v), (19)

then by (11), (16), (17), (18), by the fact that w(δ(S∗)) = w(δ(S∗) \ {v})+ w(v), and by Lemma 1,

s(S ⊕ ξ(Sj+1
pi )) ≤ w(δ(S∗))+ w(δ(S∗) \ {v})+ 3s(S′)

≤ 3w(δ(S∗) \ {v})+ 3s(S′) ≤ 3s(S∗ ⊕ S′) ≤ 3s(S). (20)

If

w(r) ≤ 2w(δ(S∗) \ {v}), (21)

then by (17), (18) and by Lemma 1,

s(S ⊕ ξ(Sj+1
pi )) ≤ 3w(δ(S∗) \ {v})+ 3s(S′) ≤ 3s(S). (22)

The construction of the search strategy in (8), the assumption that i < d, Claim 2 and Lemma 9 imply that (19)
or (21) holds.

Case 4: i < d and pi = d. Note that from the assumption that td = 1 it follows that S′ = Sp for some p ∈ {d + 1, . . . , l}.
Also, r /∈ δ(S∗), and by Claim 1(v), r ∈ δ(S).

First we argue that

w(δ(S∗) \ {v}) ≥ w(r)/2. (23)
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Suppose for a contradiction that this does not hold.We have that v ∈ δ(S∗), which implies thatw(v) = w(δ(S∗))−
w(δ(S∗) \ {v}). Since, due to Claim 2, S∗ is not greedy, Lemma 3 gives that w(δ(S∗)) > w(r). Thus, w(v) >
w(r) − w(r)/2 = w(r)/2. Hence, we obtain that w(δ(S∗) \ {v}) < w(r)/2 < w(v). This in particular implies
that p and v satisfy the conditions in Lemma 9, which contradicts i < d (in other words, due to the choice of a, we
should have π ′(d) = π(d), contrary to π ′(i) = π(d), i < d). This gives the desired contradiction and proves (23).

By (23) and by Lemma 1 we obtain

w(r)/2+ s(S′) ≤ w(δ(S∗) \ {v})+ s(S′) ≤ s(S). (24)

Note that r /∈ δ(S∗) implies that V (Tπ ′(q)) ∩ CV (S∗) ≠ ∅ for each q = 1, . . . , d. Hence, by Claim 1(ii)–(iii),
w(δ(S) \ {r})) ≤ w(δ(S∗)) and hence

w(δ(S) \ {r, v})+ s(S′) ≤ w(δ(S∗) \ {v})+ s(S′) ≤ s(S). (25)

Finally we obtain by (10), (24) and (25) that

s(S ⊕ ξ(Sj+1
pi )) = w(δ(S) \ {v})+ s(ξ(Sj+1

pi )) ≤ w(δ(S) \ {v, r})+ w(r)+ 3s(S′) ≤ 3s(S). �

Define ∆ = max{|NT (v)| : v ∈ V (T )}. By the construction of Γ1 we have that |Γ1(X)| ≤ ∆ for each X ∈ V . Thus,
Lemmas 6, 8 and 10 then give the following theorem.

Theorem 4. There exists a O(∆n3 log n)-time 3-approximation algorithm for connected searching of weighted trees. �

6. Conclusions

The main contribution of this work is a 3-approximation algorithm for finding connected search strategies for weighted
trees. This gives a constant factor approximation polynomial-time algorithm for the pathwidth of weighted trees. The latter
problem is also known to be NP-complete [28].

Note that the algorithm GWTAS can be used to find an optimal connected search strategy for a weighted tree if we provide
the ordering Γ such that Γ (X) gives all possible permutations of X for each set X ∈ V . Thus, the constant γ in Lemma 8 is
then bounded by ∆!. It has been proven in [12] that there exists an optimal algorithm for connected searching of weighted
trees whose complexity is O(∆!n3 log(∆!n)). Thus, by Lemma 6, we can slightly improve the worst case complexity of that
algorithm, namely we have obtained the following.

Corollary 1. Let T be a weighted tree and let n = |V (T )|. An optimal connected search strategy for T can be computed in time
O(∆!n3 log n).

There are some interesting open questions that arise. One of them is: does there exist an efficient algorithm with a
smaller approximation ratio? Note that an improved algorithm can be obtained e.g. by proving an analogue of Lemma 10 for
an appropriately defined permutation set Γ . On the other hand, one may ask about lower bounds, i.e. what is the constant c
such that for each ϵ > 0 there is no (c − ϵ)-approximation algorithm for the connected searching of weighted trees, unless
P = NP?
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