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a b s t r a c t

In an undirected graph G, a subset C ⊆ V (G) such that C is a dominating set of G, and each
vertex in V (G) is dominated by a distinct subset of vertices from C , is called an identifying
code of G. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and
Levitin in 1998. For a given identifiable graphG, let γ ID(G) be theminimumcardinality of an
identifying code in G. In this paper, we show that for any connected identifiable triangle-
free graph G on n vertices having maximum degree ∆ ≥ 3, γ ID(G) ≤ n − n

∆+o(∆)
. This

bound is asymptotically tight up to constants due to various classes of graphs including
(∆− 1)-ary trees, which are known to have their minimum identifying code of size
n− n

∆−1+o(1) . We also provide improved bounds for restricted subfamilies of triangle-free
graphs, and conjecture that there exists some constant c such that the bound γ ID(G) ≤
n− n

∆
+ c holds for any nontrivial connected identifiable graph G.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Identifying codes, which have been introduced in [24], are dominating sets having the additional property that each
vertex of the graph can be uniquely identified using its neighborhood within the identifying code. They have found
numerous applications, such as fault-diagnosis in multiprocessor networks [24], the placement of networked fire detectors
in complexes of rooms and corridors [30], compact routing [26], or the analysis of secondary RNA structures [20]. Identifying
codes are a variation on the earlier concept of locating-dominating sets (cf. e.g. [9,32,33]), and a special case of the more
general test cover problem [10,28]. Identifying codes have been studied in specific graph classes such as cycles [3,17],
trees [4,6], grids [24] or hypercubes [23,29]. Extremal problems regarding the minimum size of an identifying code have
been studied in [8,11–13,16,27].

Herein, we further investigate these extremal questions by giving new upper bounds on the size of minimum identifying
codes for triangle-free graphs using their maximum degree.

1.1. Notations and definitions

Let G = (V , E) be a simple undirected graph. We denote the vertex set of G by V = V (G) and its edge set by E = E(G).
We also denote by n = |V | the order of G and by ∆ = ∆(G) the maximum vertex degree of G.
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For a vertex v of G, the ball B(v) is the set of all vertices of V which are at distance at most 1 from v. We denote by
N(v) = B(v) \ {v}, the neighborhood of v. For a set X of vertices of G, we define N(X) to be the union of the neighborhoods
of all vertices of X , that is N(X) = ∪x∈X N(x). Whenever we find it necessary to emphasize on the graph G for which the
neighborhood is considered, we write BG(u),NG(u) and NG(X). Two distinct vertices u, v are called twins if B(u) = B(v) [7].
They are called false twins if N(u) = N(v) but u and v are not adjacent [5].

For a subset S of vertices of G, we denote by G[S] the subgraph of G induced by S. Amatching M of a graph G is a subset of
edges of G such that no two edges of M have a common vertex. If within the set of all endpoints of the edges of M no other
edges than the ones ofM exist, we callM an induced matching.

Given a set S of vertices of G, we say that a vertex x of G is S-isolated if x ∈ S and no neighbor of x belongs to S. We say
that vertex u dominates vertex v if v ∈ B(u). For two subsets C,U of vertices, C dominates U if each vertex of U is dominated
by some vertex of C . Set C ⊆ V is called a dominating set of G if C dominates V . The vertices of a pair u, v of vertices of V are
separated by some vertex x ∈ V if x dominates exactly one of the vertices u and v. We call C ⊆ V an identifying code of G if it
is a dominating set of G, and for all pairs u, v of vertices of V , u and v are separated by some vertex of C . The latter condition
can be equivalently stated as B(u)∩ C ≠ B(v)∩ C , or as (B(u)⊕ B(v))∩ C ≠ ∅ (denoting by⊕ the symmetric difference of
sets). In the following, we might simply call an identifying code a code and a vertex of the code, a code vertex. Given a graph
G and a subset S of its vertices, we say that a set C ⊆ S is an S-identifying code of G if C is an identifying code of G[S].

A graph is said to be identifiable if it admits an identifying code. This is the case if and only if it does not contain any pair of
twins [24]. An example of a graph which is not identifiable is the complete graph Kn. For an identifiable graph G, we denote
by γ ID(G) the cardinality of aminimum identifying code ofG. The problem of determining the exact value of γ ID(G) is known
to be an NP-hard problem, even when G belongs to the class of planar graphs of maximum degree 4 having arbitrarily large
girth [1], or to the class of planar graphs of maximum degree 3 and girth 9 [2].

1.2. Main conjecture and motivation

This paper deals with the study of paramater γ ID and its relation with the order and themaximum degree of graphs. This
work is an extension of earlier results.

For any graph G on n vertices, the lower bound γ ID(G) ≥ ⌈log2(n + 1)⌉ was given in [24]. This bound is tight, and all
graphs reaching it have been described in [27]. In [24], it was also shown that the bound γ ID(G) ≥ 2n

∆+2 holds, and all graphs
reaching this bound have been described in [11]. This bound is an improvement over the ⌈log2(n + 1)⌉-bound whenever
∆ ≤ 2n

⌈log2(n+1)⌉
− 2, and shows that the maximum degree has a strong influence on the minimum possible value of γ ID.

Considering upper bounds in terms of n and ∆, we conjecture that the following bound on γ ID holds.

Conjecture 1. There exists a constant c such that for any nontrivial connected identifiable graph G of maximum
degree ∆, γ ID(G) ≤ n− n

∆
+ c.

It is known that there exist examples of specific families of graphs such that γ ID(G) = n− n
∆
(e.g. the complete bipartite

graph K∆,∆, Sierpiński graphs [15] and other classes of graphs described in the first author’s master thesis [11]). Other
classes of graphs with slightly smaller values of parameter γ ID are known, including graphs having high girth. For instance,
it is shown in [4] that γ ID(T ) = ⌈n− n

∆−1+1/∆⌉ for any complete (∆− 1)-ary tree T on n vertices.
For all identifiable graphs having at least one edge, the upper bound γ ID(G) ≤ n − 1 holds [8,16]. This bound is tight,

in particular for the star K1,n−1 and other graphs which have been recently classified in [12]. Hence, for graphs of very high
maximum degree (say ∆ = n− 1), the conjecture holds since n− 1 = n− n

∆
+

1
n−1 .

Moreover, for any connected graph G of maximum degree 2 (i.e. when G is either a path or a cycle), the exact value of
γ ID(G) is known (see [3,17]). In this case, the bound γ ID(G) ≤ n

2 +
3
2 = n− n

2 +
3
2 holds and is reached for infinitely many

values of n (more precisely, this is the case when G is a cycle of odd order n ≥ 7). Hence, the conjecture holds for ∆ = 2.
There is some evidence that even the case∆ = 3might be challenging. Indeed, the similar notion of identifying open codes

(that is, identifying codes on open balls rather than closed balls, i.e. vertices do not dominate or identify themselves) was
studied very recently in [22] for cubic graphs. Denoting γ OID(G) the minimum size of an identifying open code of a graph G,
they are able to prove that in a cubic graph G admitting an identifying open code, γ OID(G) ≤ 3n

4 . Moreover, they conjecture
that the only (connected) examples reaching the bound belong to a set of six graphs, and that otherwise, γ OID(G) ≤ 3n

5 ,
which, if true, would be sharp. This result is proved by using a strong connection to distinguishing transversals of 3-uniform
hypergraphs. It is worth noting that using the same technique in the case of (classic) identifying codes in cubic graphswould
require to handle distinguishing transversals of 4-uniform hypergraphs, which seems to be a much more difficult task.

It was shown in [12] that for any connected identifiable graph G of maximum degree ∆, γ ID(G) ≤ n − n
Θ(∆5)

, and if G
is ∆-regular, γ ID(G) ≤ n − n

Θ(∆3)
. In this paper, we improve these results by showing that the conjectured bound holds

asymptotically when G is triangle-free. More precisely, it is proved in Theorem 13 that γ ID(G) ≤ n − n
∆+o(∆)

when G is
a nontrivial connected identifiable triangle-free graph. This result strongly supports Conjecture 1. Moreover, the proof is
constructive and can be used to build the corresponding code in polynomial time. For some specific subclasses of triangle-
free graphs, we are able to show bounds of the form γ ID(G) ≤ n− n

∆+k for some constants k.
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1.3. Organization of the paper

In Section 2.1, we begin by giving an informal overview of the technique and the construction used to prove our results.
In Sections 2.2–2.4, we introduce some definitions and preliminary results that are needed in the proof of our main result.
This result is proved in Section 2.5. In Section 3, we give improved bounds for restricted subfamilies of triangle-free graphs.
Finally, Section 4 concludes the paper with a remark on the algorithmic consequences of our proof technique.

2. The upper bound

2.1. Proof ideas

The general idea of our proof technique is to construct a sufficiently large independent set of the graph such that some
specific conditions hold. Taking the complement of this set and performing some local modifications yields an identifying
code. This technique originates from the following proposition, which is to give the reader a first intuition of our technique.

Proposition 2. Let G be an identifiable (not necessarily connected) triangle-free graph, and S, an independent set of G. Then, if
the following conditions hold, V (G) \ S is an identifying code of G.

1. S contains no isolated vertex of G.
2. For any pair u, v of vertices of S,N(u) ≠ N(v) (i.e. S does not contain any pair of false twins).
3. For each vertex v of degree 1 in G, some vertex at distance 2 from v does not belong to S.
4. The graph G[V (G) \ S] has no isolated edges.

Proof. Let C = V (G) \ S. Since S is an independent set and does not contain any isolated vertex, C is a dominating set. Let
us now check the separation condition. Let u, v be an arbitrary pair of vertices of V (G). We distinguish several cases.

If u and v are adjacent and both have degree at least 2, since they cannot form an isolated edge in G[C], a neighbor of
either one of u, v belongs to C and separates them.

If u, v are adjacent and one of them, say u, has degree 1, since G is identifiable, v has at least one neighbor. Then, by the
third property of S, there is a vertex at distance 2 of u in C , separating u and v.

If u and v are false twins, they do not both belong to S and hence they are separated by themselves.
Finally, if u and v are not adjacent and are not false twins, if either u or v belong to C , they are separated. If both u and v

belong to S, all their neighbors belong to C , and since they have distinct sets of neighbors they are separated. �

In order to prove our main result, we show how to build (large enough) independent sets in triangle-free graphs such
that the three first conditions of Proposition 2 hold (see Lemma 10). However, it seems difficult to also ensure that the last
condition holds while keeping the size of S reasonably large. Therefore, after building S, we compute the set M of isolated
edges of G[V \ S] and partition V (G) into the end-vertices ofM (set R) together with their neighbors (set L) on the one hand,
and the remaining vertices, V \ (L∪ R), on the other hand. We then build a sufficiently small (L, R)-quasi-identifying code C1,
a variation of an identifying code which will be defined later (see Definition 6). This construction is done in Lemmas 11 and
12. Setting C2 as the complement of S restricted to V \ (L ∪ R), our final code is C1 ∪ C2. We also combine this method with
another technique (Proposition 3) which is suitable for the special case where the graph has a large number of false twins.
The whole procedure is sketched in Algorithm 1.

Algorithm 1 Construction of an identifying code
Input: a nontrivial connected identifiable triangle-free graph G = (V , E)
1: Compute the set X of vertices having at least one false twin
2: if X is ‘‘small’’ then
3: Use Lemma 10 to compute an independent set S of G fulfilling the three first properties listed in Proposition 2.
4: Compute the set R ⊆ V of vertices such that for each v ∈ R, v has a neighbor u where both u and v are of degree at

least 2, and all the vertices of N(u) ∪ N(v) \ {u, v} belong to S.
5: L← N(R) \ R
6: Compute an (L, R)-quasi-identifying code C1 of G using the constructions of Lemmas 11 and 12.
7: C2 ← (V \ (L ∪ R)) \ S
8: C ← C1 ∪ C2
9: else {i.e. X is ‘‘big’’}

10: C ← an identifying code of G computed using Proposition 3.
11: end if
12: return C

This process is detailed in Section 2.5 (Theorem 13). All auxiliary results needed for this proof are developed in the next
subsections.
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2.2. Preliminary results

The next proposition shows how to build an identifying code of a graph Gwhich has relatively small size when G contains
a large number of false twins. We let ≡ denote the false twin relation over V (G), where u ≡ v if u, v are false twins. This
relation is an equivalence relation. We call an equivalence class of≡ nontrivial if it has at least two elements.

Proposition 3. Let G be a nontrivial connected identifiable triangle-free graph on n vertices and maximum degree ∆ non
isomorphic to C4. Let F = {F1, . . . , F|F |} be the set of all nontrivial equivalence classes over ≡ in G. Then G has an identifying
code of size at most n− |F |.

Proof. First, we may suppose that G is not isomorphic to P3 since in that case the lemma holds: P3 has its minimum
identifying code of size 2 and |F | = 1.

For each Fi ∈ F , 1 ≤ i ≤ |F |, let xi be an arbitrary vertex of Fi, and let X = ∪|F |i=1 xi. We claim that if G is not isomorphic
to P3 or C4, C = V (G)\X is an identifying code of G. First, observe that C is a dominating set of G. Now, consider two vertices
x, y. We need to show that they are separated from each other.

If x, y are false twins, the one belonging to the code separates them. Otherwise, since G is identifiable, there is a vertex z
which is able to separate them, say z belongs to B(x), but not to B(y). If z belongs to the code, we are done. Otherwise, z ∈ X .

If z is a neighbor of x, consider a false twin z ′ of z. If z ′ ≠ y, z ′ belongs to the code and separates x, y, so we are done.
Otherwise, since G is not isomorphic to P3 and z, y are false twins, one of x or y has another neighbor, say t . If t belongs to
the code we are done. Otherwise, if t is a neighbor of y, since G is not isomorphic to C4, either x or y has another neighbor.
We can repeat the argument but this time, either this neighbor or its false twin separates x, y. If t is a neighbor of x, t cannot
be a false twin of y and therefore either t or its false twin separates x, y.

Finally, if z = x, x and y are not adjacent. But since they are not false twins, there is another vertex, say u, with u ∉ {x, y},
such that u is adjacent to exactly one of x, y. Now, either u belongs to the code and we are done, or a false twin of u (which
also is adjacent to exactly one of x, y), which completes the proof. �

In the proof of our main result, we first construct an independent set S having some given properties. Then, we consider
the set V (G)\S as a potential code, andmodify it in order to identify those vertices which form isolated edges in G[V (G)\S].
The following definition introduces a notion which helps to formalize this situation.

Definition 4. Given a graph G together with an induced matchingM of G, we denote by R(M), the set of end-vertices of the
edges of M and by L(M), the set of neighbors of the vertices of R(M): L(M) = N(R(M)) \ R(M). M is called a strong induced
matching if the following holds:

• L(M) is an independent set in G.
• Each vertex x of R(M) has degree at least 2 in G (i.e. N(x) ∩ L(M) ≠ ∅).

An illustration of a strong induced matching is given in Fig. 1. Note that in some graphs, one cannot necessarily find a
strong induced matching. Indeed, if G is triangle-free, each edge of such a matching must belong to at least some induced
path on four vertices.

Note that in any triangle-free graph G having a strong inducedmatchingM,G[L(M)∪R(M)] has no isolated edge (i.e. two
adjacent vertices of degree 1). Since in a triangle-free graph, a pair of twins necessarily forms an isolated edge, the following
observation is immediate.

Observation 5. Let G be a triangle-free graph having a strong induced matching M. Then G[L(M) ∪ R(M)] is identifiable.

In order to construct small identifying codes of a triangle-free graph G having a strong induced matching M , we will
construct special codes for the subgraph of G induced by set L(M) ∪ R(M). These codes are defined as follows.

Definition 6. Let G be a triangle-free identifiable graph having a strong induced matchingM with L = L(M) and R = R(M).
Let G′ = G[L ∪ R]. We say that C ⊆ L ∪ R is an (L, R)-quasi-identifying code of G if:

1. Each vertex of L ∪ R is dominated by some vertex of C .
2. For each pair u, v of vertices in L ∪ R, C ∩ BG′(u) ≠ C ∩ BG′(v), unless u and v both belong to L and NG′(u) = NG′(v).
3. For each edge e ofM , at least one of the vertices of e belongs to C .

Note that because of condition number 2 of Definition 6, an (L, R)-quasi-identifying code ofG is not necessarily an (L∪R)-
identifying code of G. Conversely, because of condition number 3, an (L ∪ R)-identifying code of G might not be an (L, R)-
quasi-identifying code of G.

The following proposition shows that we can use an (L, R)-quasi-identifying code of G to construct a valid identifying
code of G.

Proposition 7. Let G = (V , E) be an identifiable triangle-free graph having a strong induced matching M, with L = L(M)
and R = R(M), and suppose that L does not contain any pair of false twins in G. Also suppose that there exists an (L, R)-quasi-
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Fig. 1. Example of a strong induced matchingM (thick edges) in a triangle-free graph.

identifying code C1 of G without C1-isolated vertices and a (V \ (L ∪ R))-identifying code C2 of G where all the neighbors of
vertices of L within V \ (L ∪ R) belong to C2.1 Then, C1 ∪ C2 is an identifying code of G.

Proof. We show that each pair of vertices of G is separated. Since C2 is a (V \ (L ∪ R))-identifying code, all pairs of vertices
of V \ (L ∪ R) are separated. Since C1 is (L, R)-quasi-identifying and there are no C1-isolated vertices, each vertex x of L ∪ R
is dominated by at least one vertex of R∩ C1 (see points number 1 and 3 of Definition 6), which we denote fC1(x). Moreover,
by the definition of sets L and R, no vertex of V \ (L ∪ R) is dominated by a vertex of R. Therefore, all pairs of vertices x, y
with x ∈ L∪ R and y ∈ V \ (L∪ R) are separated by fC1(x). It remains to check the pairs of vertices of L∪ R. By contradiction,
suppose there are two vertices u, v of L ∪ Rwhich are not separated. By point number 2 of Definition 6, u and v belong to L
and have the same neighborhood within L∪ R. But since we assumed that they are not false twins and all their neighbors in
V \ (L ∪ R) are in C2, u and v are separated by the neighbors they do not have in common, a contradiction. �

2.3. Building large independent sets in triangle-free graphs

In order to use Proposition 2, we need to build (large enough) independent sets in triangle-free graphs. We use the
following result of Shearer [31] to show that triangle-free graphs have large independent sets which fulfill some useful
conditions. Note that the proof of the following theorem is constructive.

Theorem 8 ([31]). Let G be a triangle-free graph on n vertices and average degree d. Then G has an independent set of size at
least d(ln d−1)+1

(d−1)2
n.

The following corollary of Theorem 8 is an approximate bound which is easier to deal with and which is tight enough
for our purposes. It follows from the facts that d(G) ≤ ∆(G) and that when x > 1, the function x(ln x−1)+1

(x−1)2
is decreasing.

Moreover in that case, x(ln x−1)+1
(x−1)2

≥
ln x−1

x and for x ≥ 3, ln x−1
x > 0.

Corollary 9. Let G be a triangle-free graph on n vertices and maximum degree ∆ ≥ 3. Then G has an independent set of size at
least ln∆−1

∆
n.

1 Note that if a (V \ (L∪R))-identifying code C exists (i.e. G[V \ (L∪R)] is identifiable), then adding all neighbors of vertices of L to C yields an identifying
code. In fact, any superset of an identifying code is still an identifying code.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


F. Foucaud et al. / Discrete Applied Mathematics 160 (2012) 1532–1546 1537

We get the following lemma as a corollary, which we will use in the proof of our main result.

Lemma 10. Let G be an identifiable triangle-free graph on n vertices and maximum degree ∆ ≥ 3, and let Y be the set of all
vertices of G having no false twin. Then G[Y ] has an independent set S with the following properties:

1. For each vertex u of degree 1 in G, there exists a vertex of G at distance 2 of u which does not belong to S.
2. |S| ≥ ln∆−1

∆
|Y |.

Proof. Let S1 ⊆ Y be the set of vertices of Y having degree 1 in G. Note that since G is identifiable, it has no isolated edges
and therefore S1 is an independent set in G (and G[Y ]). Moreover since Y has no vertices having a false twin, all vertices of S1
are at distance at least 3 from each other. Let T1 be the set of vertices constructed as follows. All the vertices of S1 belong to
T1. For each element s of S1, its unique neighbor in G belongs to T1, and some arbitrary neighbor at distance 2 of s belongs to
T1. Since all the vertices of S1 are at distance at least 3 from each other, for each vertex s of S1 there is a vertex at distance 2
of s belonging to T1 \ S1. We now set Y1 = T1 ∩ Y . Note that we have |S1| ≥

|T1|
3 ≥

|Y1|
3 since for each vertex of S1, at most

three vertices of G have been inserted into T1.
Now, let Y2 = Y \ Y1. By the previous construction, Y2 neither contains a vertex of degree 1 in G, nor a neighbor of such

a vertex. By Corollary 9, G[Y2] has an independent set S2 of size at least ln∆−1
∆
|Y2|.

Taking S = S1 ∪ S2, we get an independent set of G[Y ] fulfilling the first property of the claim. Moreover, Y1 and Y2 form
a partition of Y , S1 ⊆ Y1 and S2 ⊆ Y2. Since for all strictly positive x, 1

3 > ln x−1
x , we have:

|S| ≥
|Y1|

3
+

ln∆− 1
∆

|Y2| ≥
ln∆− 1

∆
|Y |. �

2.4. Quasi-identifying the vertices in and around a strong induced matching

This subsection is devoted to the construction of small enough quasi-identifying codes.
Recall that in order to prove our main result, given a nontrivial identifiable connected triangle-free graph G, we will

construct an independent set S and consider the (possibly empty) strong induced matching M such that R(M) forms the
set of isolated edges of V (G) \ S. In order to ensure that there are no isolated edges uv in G[V (G) \ S], it would suffice
to remove an arbitrary neighbor of either u or v from S. However, this could lead to a very large identifying code. Indeed,
consider the example of a complete graph Kn where each edge is subdivided twice, K ∗n . The original vertices of Kn form a
(maximal) independent set S and each original edge of Kn corresponds to an isolated edge in the subgraph of K ∗n induced by
the complement of S, K ∗n [V (K ∗n ) \ S]. Now, in K ∗n , getting rid of all isolated edges of K ∗n [V (K ∗n ) \ S] by removing vertices from
S requires a vertex cover of Kn, that is, n− 1 vertices. This would yield an identifying code of size |V (K ∗n )| − 1, which is not
interesting.

Hence, in order to overcome this problem, we show in this subsection how to build an (L(M), R(M))-quasi-identifying
code of bounded size. We first deal with the special case where all vertices of R(M) have degree exactly 2 (note that by
Definition 4 they must have degree at least 2).

Lemma 11. Let G be an identifiable (not necessarily connected) triangle-free graph having a strong induced matching M where
L = L(M), R = R(M), and all vertices of R have degree exactly 2. Then, there is an (L, R)-quasi-identifying code C of G having
the following properties:

1. |C | ≤ |L| + |R|2 .
2. No vertex of R is C-isolated.
3. At least half of the vertices of L belong to C.

Proof. In order to simplify its construction, let us first define the multigraph GL,R = (L, E) with vertex set L and in which
there is an edge between two vertices l1, l2 of L if and only if there exist two vertices r1, r2 of R, such that l1, r1, r2, l2 is a
3-path in G. In other words, we contract every path of length 3 of G[L ∪ R] having both endpoints in L, into one edge. There
can be multiple edges in GL,R (but no loops), since several disjoint 3-paths may join l1 to l2.

From GL,R we will build an oriented multigraph
−→
G L,R. Given an orientation of

−→
G L,R, we define the subset S(

−→
G L,R) of

vertices of L ∪ R in the following way: all the vertices of L belong to S(
−→
G L,R), and for each arc

−→
l1l2 of

−→
G L,R corresponding

to the path l1r1r2l2 in G, r2 belongs to S(
−→
G L,R). Note that |S(

−→
G L,R)| = |L| +

|R|
2 . An illustration is given in Fig. 2, where the

gray vertices belong to S(
−→
G L,R). Our aim is to construct an orientation of

−→
G L,R for which S(

−→
G L,R) is the desired (L, R)-quasi-

identifying code of G.
We start by orienting the arcs of

−→
G L,R in an arbitrary way. Note that S(

−→
G L,R) fulfills all three required properties of the

statement of the lemma. Hence, if S(
−→
G L,R) is an (L, R)-quasi-identifying code of G, we are done. So suppose this is not the

case. Note that S(
−→
G L,R) fulfills conditions number 1 and 3 of Definition 6. Hence, there are pairs of vertices of L ∪ R which

are not separated by S(
−→
G L,R). The only case where a pair l, r is not separated by S(

−→
G L,R), is when l ∈ L, r ∈ R, and both
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Fig. 2. Correspondence between a special subset of L ∪ R and
−→
G L,R .

Fig. 3. Vertices l and r are not separated.

Fig. 4. Local modification of the constructed code.

belong to S(
−→
G L,R), but they are only dominated by each other and themselves. This is equivalent to the case where l is of

in-degree 1 in
−→
G L,R (see Fig. 3 for an illustration). In this case, in order to fix this problem, wemodify the orientation of

−→
G L,R

as follows.
At first, consider a connected component

−→
G 1 of

−→
G L,R, and construct an arbitrary spanning tree

−→
T 1 of

−→
G 1, rooted in some

vertex l. Now, go through all vertices of
−→
T 1, level by level in a bottom–up order from the leaves up to the root. Whenever

the in-degree of the current vertex, v, is equal to 1, swap the orientation of the arc joining v to its parent in
−→
T 1. Doing so,

the in-degree of v in
−→
G 1 becomes distinct from 1, and the in-degree of its parent is either incremented or decremented

by 1. Note that except for the root l, all vertices of
−→
G 1 have now an in-degree different from 1. This process is repeated for

all connected components of
−→
G L,R.

Let C = S(
−→
G L,R) be the new set corresponding to the new orientation. If C is an (L, R)-quasi-identifying code of G, we

are done. Otherwise, as observed earlier, it means that some roots of the spanning trees we built, have in-degree 1 in
−→
G L,R.

Let l be such a root with in-degree 1. Observe that l has a unique neighbor in C ∩ R, say r . Let r2 be the neighbor of r in R. It
is sufficient to take out l from C and to replace it by r2 in order to separate l from r in G[L ∪ R] (see Fig. 4 for an illustration),
without changing the cardinality of C . Moreover, all neighbors of l are still separated from the other vertices because they
are all in R \ C and therefore have a neighbor in R ∩ C , which itself has at least one neighbor in L ∩ C . Hence C is now an
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Fig. 5. Illustration of sets L1, L2, R1 , and R2 .

(L, R)-quasi-identifying code of G. Since the process did not change the cardinality of C , we get property number 1 of the
claim of the lemma.

Notice that there are at most |L|2 connected components in G[L∪ R] since each of them contains at least two vertices of L.
Thus property number 3 of the claim of the lemma follows.

Property number 2 is fulfilled by the construction of C since in each pair of adjacent vertices of R, either it has a code
vertex in L as a neighbor if there was no modification done, or in R if a switch of two elements of L and R was necessary.
Moreover, for each such pair, at least one of its elements belongs to the code. This shows that C is an (L, R)-quasi-identifying
code and completes the proof. �

We now deal with the general case, where the vertices of R(M) have degree at least 2 as required in Definition 4.

Lemma 12. Let G be an identifiable (not necessarily connected) triangle-free graph having a strong induced matching M, with
L = L(M) and R = R(M). There exists a set L′ of vertices of L ∪ R such that |L′| ≥ |L|3 , and C = (L ∪ R) \ L′ is an (L, R)-quasi-
identifying code of G having no C-isolated vertices.

Proof. Let us first divide sets L and R into the following subsets: let R1 ⊆ R be such that r ∈ R1 if both r and its unique
neighbor in R are of degree 2. Let L1 ⊆ L be the set of all neighbors of vertices of R1, let R2 = R \ R1, and let L2 = L \ L1 (see
Fig. 5 for an illustration).

We can use Lemma 11 to construct an (L1, R1)-quasi-identifying code C1 of G such that the three properties described in
the statement of Lemma 11 are fulfilled. Let C1 be such a code, in particular we have |C1| ≤ |L1| +

|R1|
2 . Let us now describe

the construction of two distinct (L, R)-quasi-identifying codes Ca and Cb.

• Construction of code Ca.
We construct Ca such that |Ca| ≤ |L1| +

|R1|
2 + |L2| +

|R2|
2 +min


|L1|
2 ,
|R2|
2


, as follows.

1. Put C1 into Ca.
2. Put L2 into Ca.
3. For each pair r, r ′ of adjacent vertices of R2, let r∗ be one of them having at least two neighbors in L (by definition of

R2 either r or r ′ has this property). Put r∗ into Ca.
4. For each pair r, r ′ of adjacent vertices of R2, let r∗ be the one which was put into Ca in the previous step. Check if r∗

has less than two neighbors within Ca ∩ L (this may happen if some of its neighbors are in L1, and they do not belong
to C1). If this is the case, pick an additional neighbor of r∗ – which exists since r has at least two neighbors in L – and
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put it into Ca. Note that this is done at most |R2|2 times. Moreover, at most |L1|2 new vertices from L1 are put into Ca in
such a way since by property number 3 of Lemma 11, there are at most |L1|2 vertices of L1 not in C1.

5. Finally, consider each Ca-isolated vertex l of L, take it out of Ca and put an arbitrary neighbor of l into Ca (this operation
does not affect the size of Ca).

• Construction of code Cb.
We construct Cb such that |Cb| ≤ |L1| +

|R1|
2 + 3 |R2|2 , as follows.

1. Put C1 into Cb.
2. Put R2 into Cb.
3. For each pair r, r ′ of adjacent vertices of R2, one arbitrary neighbor in L of either r or r ′ is put into Cb.
4. Finally, in the same way as for the construction of Ca, we get rid of each Cb-isolated vertex l of L by taking l out of Cb

and putting an arbitrary neighbor of l into Cb instead.

Let us now prove that Ca and Cb are (L, R)-quasi-identifying codes without Ca-isolated or Cb-isolated vertices. First note
that in both constructions, the final step consists in replacing some Ca-isolated vertices from Ca (resp. Cb). In order to simplify
the proof, let C∗a (resp. C∗b ) be the code as it is before this last step.We first prove that C∗a (resp. C∗b ) have all desired properties
except that there remain C∗a -isolated (resp. C∗b -isolated) vertices in L. We then prove that performing the last step transforms
it into an (L, R)-quasi-identifying code with all required properties.

It can first be noticed that both C∗a and C∗b are dominating sets, so point number 1 of Definition 6 holds.
Let us now show point number 2 of Definition 6 (the separation condition). In both codes, the vertices of all pairs u, v of

vertices of L1 ∪ R1 are separated from each other, since C1 is a subset of both C∗a and C∗b .
Now, suppose that u ∈ R1 and v ∈ L2∪R2. By definition of R1, no vertex of R1 is adjacent to any vertex of L2∪R2. Therefore,

by condition number 3 of Definition 6, either u or its neighbor in R1 belong to C1, hence u and v are separated.
Thus, it remains to check if u and v are separated when u ∈ L1 and v ∈ L2 ∪ R2, and when both u and v belong to L2 ∪ R2.

We deal with C∗a and C∗b separately.
Code C∗a .

• Suppose u ∈ L1 and v ∈ L2 ∪ R2. Note that u is dominated by some vertex x within L1 ∪ R1 since C1 ⊆ C∗a . If v ∈ L2, u
and v are separated by x since no vertex of L2 is adjacent to any vertex of L1 ∪ R1. If v ∈ R2 and v ∉ C∗a , then u and v are
separated by the neighbor of v in R2, which belongs to C∗a . Similarly, if u has a neighbor in R1 belonging to C1, we are done.
Otherwise, it means that v ∈ C∗a and u ∈ C1 (otherwise uwould not be dominated by C1). Hence v has another neighbor
in L, say u′, belonging to C∗a , and u′ separates u from v. Indeed, at step 4 of the construction of Ca, either v already had at
least two neighbors in L ∩ C∗a , or an additional one has been added.
• Now, suppose both u and v belong to L2 ∪ R2.

If both u and v ∈ L2, they are separated since the whole set L2, which is independent, belongs to C∗a .
If both u and v belong to R2 and they are not adjacent, they are separated since either themselves or their respective
neighbors in R2 belong to C∗a by step 3 of its construction. Otherwise, for the same reason one of them (say u) belongs to
the code. It is ensured in step 4 that at least one neighbor of u in L belongs to C∗a , therefore u and v are separated by this
neighbor.
If u ∈ L2 and v ∈ R2 and they are not adjacent, they are separated by u since the whole set L2 belongs to C∗a . Otherwise,
if v ∉ C∗a , they are separated by the neighbor of v in R2. Otherwise, again by step 4 of the construction v has a second
neighbor in L ∩ C∗a , separating them.

Code C∗b .

• If u ∈ L1 and v ∈ L2 ∪ R2, u and v are separated by a neighbor of v belonging to R2 since the whole set R2 is in C∗b .
• Now, suppose u, v ∈ L2 ∪ R2.

If both u, v belong to L2, and they have the same set of neighbors within R, we are done since they do not need to be
separated (point number 2 of Definition 6). Otherwise, they are separated since all their neighbors within L ∪ R belong
to R2, and R2 ⊆ C∗b .
If both u, v belong to R2, u and v are separated by themselves if they are not adjacent. Otherwise, they are separated by
a neighbor of one of them in L ∩ C∗b , added at step 3 of the construction.
Finally, if u ∈ R2 and v ∈ L2, then u and v are either separated by u if u and v are not adjacent, or by the neighbor of u in
R2 otherwise.

Let us now check point number 3 of Definition 6, i.e. that for each pair of adjacent vertices in R, at least one of them
belongs to the code. This is true for vertices of R1 since C1 is an (L1, R1)-quasi-identifying code and therefore fulfills this
condition. This is also ensured for vertices of R2 at step 3 of the construction of Ca and at step 2 of the construction of Cb.

Hence, we have shown that both C∗a and C∗b are (L, R)-quasi-identifying codes.
Moreover, there are no C∗a -isolated (resp. C∗b -isolated) vertices in R: there are no such vertices in R1 by Lemma 11, and no

such vertices in R2 for C∗a by step 4 of its construction, and for C∗b as well since R2 ⊆ C∗b .
As announced previously, we now have to deal with the last step of the constructions of both Ca and Cb. It is easily

observed that this step does not affect the domination property of both codes. Indeed, the former Ca-, Cb-isolated vertices
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themselves are now dominated by some neighbor. Moreover each of their neighbors belongs to R, and since Ca and Cb are
(L, R)-quasi-identifying its own neighbor in R belongs to the code.

Let us prove that the separation condition is still satisfied by Ca and Cb. Let Cx (x ∈ {a, b}) be the considered code and
let l ∈ L be a Cx-isolated vertex which gets replaced in Cx by one of its neighbors in R, say rl. The only vertices which
might be affected by the modification, are vertices which were previously dominated by l, i.e. vertices of B(l): assume, by
contradiction, that u ∈ B(l) is no longer separated from some vertex v.

If u = l, in Cx, we have B(l) ∩ Cx = {rl}. Since B(v) ∩ Cx = {rl} and the neighbor of rl in R belongs to Cx, v ∈ L. Moreover,
observe that v was dominated by a vertex of C∗x , say v′, and v′ ∉ B(l) since l is C∗x -isolated. Hence, it means that v was also
C∗x -isolated. But then, in the last step of the construction of Cx, one of l and v, say l, has been considered first and replaced
by rl, leaving them separated by v′, a contradiction.

Now, if u is a neighbor of l, u ∈ R and the neighbor of u in R, call him u′, belongs to Cx by construction. Since C∗x is
an (L, R)-quasi-identifying code, u′ has a neighbor belonging to L and to the code. Hence u and u′ are separated, u ≠ rl
and v must be a neighbor of u′ not belonging to the code. Hence u ∈ R2 since u′ has degree at least 3. Moreover,
v ∈ L2; otherwise, since C1 ⊆ Cx, v would be dominated within C1 and u, v would be separated—a contradiction. Now,
if Cx = Ca, v ∈ Ca, a contradiction. If Cx = Cb, u ∈ Cb, a contradiction too. This completes the proof of the separation
property.

Now, note that point number 3 of Definition 6 remains verified as no vertex of R is removed from neither Ca or Cb in
the last step of their construction. Finally, observe that thanks to the last step of the constructions, there are no Cx-isolated
(x ∈ {a, b}) vertices in L anymore. Moreover, this step has not created any Cx-isolated vertices in R. Indeed, the vertices
which are added, did not belong to C∗x , and hence their neighbor in R did. This completes the proof of the validity of both
constructions Ca and Cb.

Let us now determine a lower bound on the cardinality of (L∪ R) \ Cx, for x ∈ {a, b}. Taking into account that |L1| ≤ |R1|,
we obtain:

|(L ∪ R) \ Ca| ≥ |L1| + |L2| + |R1| + |R2| − |Ca|

≥
|R1|

2
+
|R2|

2
−min


|L1|
2

,
|R2|

2


.

Thus, both following equations hold:

|(L ∪ R) \ Ca| ≥
|R1|

2
+
|R2|

2
−
|L1|
2
≥
|R2|

2
(1)

|(L ∪ R) \ Ca| ≥
|R1|

2
+
|R2|

2
−
|R2|

2
=
|R1|

2
≥
|L1|
2

. (2)

Similarly,

|(L ∪ R) \ Cb| ≥ |L1| + |L2| + |R1| + |R2| − |Cb|

≥ |L2| +
|R1|

2
−
|R2|

2

≥ |L2| +
|L1|
2
−
|R2|

2

= |L| −
|L1|
2
−
|R2|

2
. (3)

Hence intuitively, the previous equations show that our two codes fit to two different situations: Ca is useful when either
|L1| or |R2| is large enough compared to |L|, whereas Cb is useful when |L1| + |R2| is small enough compared to |L|. Let

C ∈ {Ca, Cb} be the code having the minimum cardinality. Then, using inequalities (1)–(3) and denoting b =
max


|L1|,|R2|


|L|

we get:

|(L ∪ R) \ C | ≥ max

|L1|
2

,
|R2|

2
, |L| −

|L1|
2
−
|R2|

2


=
|L|
2
·max


|L1|
|L|

,
|R2|

|L|
, 2−

|L1| + |R2|

|L|


≥
|L|
2
·max


max {|L1|, |R2|}

|L|
, 2−

2 ·max {|L1|, |R2|}

|L|


=
|L|
2
·max {b, 2− 2b}

≥
|L|
2
·min

b≥0
{max {b, 2− 2b}} .
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Fig. 6. Vertices u, v with (N(u) ∪ N(v)) \ {u, v} ⊆ S.

Note that minb≥0 {max {b, 2− 2b}} = 2
3 . Hence, we get:

|(L ∪ R) \ C | ≥
|L|
2
·
2
3
=
|L|
3

.

Note that equality in the previous inequality is achieved when |L1| = |R1| = |R2| = 2|L2|.
Putting L′ = (L ∪ R) \ C , we obtain the claim of the lemma. �

2.5. The main result

We are now ready to prove the main theorem of this paper. The proof has been sketched in Algorithm 1, we now provide
all the details.

Theorem 13. Let G be a connected identifiable triangle-free graph on n vertices with maximum degree ∆ ≥ 3. Then γ ID(G) ≤
n− n

∆+ 3∆
ln∆−1

= n− n
∆+o(∆)

.

Proof. Let F = {F1, . . . , F|F |} be the set of all nontrivial equivalence classes over the false twin relation ≡ over V (G). Let
X = ∪|F |i=1 Fi and Y = V (G) \ X . We distinguish two cases.

Case 1: |Y | ≥ 3n
ln∆+2 .

In this case, let S be an independent set of G[Y ] given by Lemma 10: we have |S| ≥ ln∆−1
∆
|Y | ≥ 3n(ln∆−1)

∆(ln∆+2) . Consider
all pairs u, v of vertices of G such that u and v are adjacent, both u and v have degree at least 2, and all the vertices of
N(u) ∪ N(v) \ {u, v} belong to S (see Fig. 6 for an illustration). Since all neighbors of u and v (except u and v themselves)
are in S, these neighbors form an independent set. Let M be the (possibly empty) set of all edges uv such that u and v form
such a pair. By the previous remark, M is a strong induced matching of G. Let us denote L = L(M) and R = R(M). Note that
we have L(M) ⊆ S.

Let us now partition V (G) into two subsets of vertices: L∪ R on the one hand, and V (G) \ (L∪ R) on the other hand. Such
a partition is illustrated in Fig. 7. Note that G[L ∪ R] is identifiable by Observation 5. Let us show that G[V (G) \ (L ∪ R)] is
also identifiable. By contradiction, suppose it is not the case and let u, v be a pair of vertices such that BG[V (G)\(L∪R)](u) =
BG[V (G)\(L∪R)](v). Vertices u and v are therefore adjacent, and since G is triangle-free, neither u nor v has other neighbors
within G[V (G) \ (L∪ R)]. Since G is identifiable, at least one of them has a neighbor in L. Suppose they both have a neighbor
in L. Then by construction of S, u and v both do not belong to S. But then u and v should belong to R, a contradiction. Thus,
one of them, say u, has degree 1 in G, and all neighbors of v belong to L ⊆ S. But by the first property of S in Lemma 10, at
least one vertex at distance 2 of u does not belong to S, a contradiction.

We will now build two subsets C1 ⊆ L ∪ R and C2 ⊆ V (G) \ (L ∪ R) such that C = C1 ∪ C2 is an identifying code of G.

• Building C1 ⊆ L ∪ R.
If L ∪ R = ∅we take C1 = ∅. Otherwise, we build C1 using Lemma 12: applying it to G andM , we know that there exists
an (L, R)-quasi-identifying code C1 of Gwithout C1-isolated vertices. From Lemma 12we also know that |L′| ≥ |L|3 , where
L′ = (L ∪ R) \ C1.
• Building C2 ⊆ V (G) \ (L ∪ R).

Again if V (G) \ (L ∪ R) = ∅ we take C2 = ∅. Otherwise, we take C2 to be the complement of S in V (G) \ (L ∪ R):
C2 = (V (G) \ (L ∪ R)) \ S. Let us show that C2 is a


V (G) \ (L ∪ R)


-identifying code of G.

First, recall that G′ = G[V (G) \ (L ∪ R)] is identifiable. Note that S does not contain any vertex v which is isolated in G′.
Indeed, G does not contain any isolated vertex, hence if v is isolated in G′, v has a neighbor in L. But L ⊆ S, a contradiction
since S is an independent set. We also claim that for each vertex v of degree 1 in G′, there is a vertex at distance 2 of v in
G′ not belonging to S. Let w be the unique neighbor of v in G′. If v is also of degree 1 in G, since G′ has no pair of twins,
by the first property of S in Lemma 10, w must have a neighbor x not in S. Vertex x cannot belong to L, hence it belongs
to G′ and we are done. Now, if v is not of degree 1 in G, all its neighbors in G other than w belong to L. But since G′ is
identifiable,w has at least one neighbor other than v, belonging to G′ but not to S, since otherwise v andw would belong
to set R. Finally, by construction of G′, there are no isolated edges in G[V (G′) \ S].
Under these conditions we can apply Proposition 2 on G′ and on set S restricted to V (G′), which shows that C2 is a
V (G) \ (L ∪ R)


-identifying code of G.
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Fig. 7. Partition of V (G).

Wenowhave an (L, R)-quasi-identifying code C1 ofGwithout C1-isolated vertices, and showed that C2 is a (V (G)\(L∪R))-
identifying code of G. Moreover, S does not contain any pair of false twins. Furthermore, since C2 is the complement of S in
G[V (G) \ (L∪ R)], all neighbors of L in G[V (G) \ (L∪ R)] belong to C2. Therefore, we can apply Proposition 7 and C = C1 ∪ C2
is an identifying code of G.

Let us now upper-bound the size of C . To this end, we lower-bound the size of its complement. From the construction of
C1 and C2, we have V (G) \ C = (S \ L) ∪ L′.

Since L ⊆ S and |L′| ≥ |L|3 , we have |(S \ L) ∪ L′| ≥ |S|3 .
Hence, we get:

|V (G) \ C | ≥
|S|
3

≥
ln∆− 1

∆(ln∆+ 2)
n

=
n

∆ ln∆+2
ln∆−1

=
n

∆+ 3∆
ln∆−1

.

Hence, |C | ≤ n− n
∆+ 3∆

ln∆−1
.

Case 2: |Y | ≤ 3n
ln∆+2 .

Then, |X | ≥ n− 3n
ln∆+2 . Since each set of F has size at most ∆, we have:

|F | ≥
|X |
∆

≥
ln∆− 1

∆(ln∆+ 2)
n

=
n

∆+ 3∆
ln∆−1

.
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Since ∆ ≥ 3,G is not isomorphic to C4 and we can apply Proposition 3: G has an identifying code of size at most
n− |F | ≤ n− n

∆+ 3∆
ln∆−1

. �

3. Improved bounds for subclasses of triangle-free graphs

3.1. A generalized bound and an application to graphs of bounded chromatic number

It can be noted that the value of the bound of Theorem 13 heavily relies on Corollary 9. For large values of ∆, this bound
is nearly optimal [31]. However, directly using the slightly stronger original bound of J. Shearer (Theorem 8) or a stronger
bound holding for some particular class of graphs, one could obtain a strengthened result as follows. Let G be a nontrivial
connected identifiable triangle-free graph on n vertices having maximum degree ∆. Suppose each subgraph H of G has an
independent set of size at least f (∆)|V (H)|. Let f ′(∆) = min

 1
3 , f (∆)


. Then, the value ln∆−1

∆
in Lemma 10 can be replaced

by f ′(∆), and the condition for applying Case 1 in the proof of Theorem 13 can be replaced by |Y | ≥ 3n
∆f ′(∆)+3 . We then get

the following theorem:

Theorem 14. Let G be a nontrivial connected identifiable triangle-free graph on n vertices with maximum degree ∆ such that
each subgraphH of G has an independent set of size at least f (∆)|V (H)|. Let f ′(∆) = min

 1
3 , f (∆)


. Then γ ID(G) ≤ n− n

∆+ 3
f ′(∆)

.

It is an easy observation that any k-colorable graph has an independent set of size at least n
k , and any subgraph of a k-

colorable graph is k-colorable. Hencewe can apply Theorem 14 to k-colorable triangle-free graphs. Examples of large classes
of graphs with bounded chromatic number are for example: bipartite graphs, graphs of bounded degeneracy, graphs having
no Kℓ-minor [25], or graphs of bounded genus [21]—in particular, planar triangle-free graphs are 3-colorable following
Grötzsch’s theorem [18]. We get the following corollary:

Corollary 15. Let G be a nontrivial connected identifiable triangle-free graph on n vertices with maximum degree ∆ and
chromatic number χ(G). Then γ ID(G) ≤ n− n

∆+3max{3,χ(G)}
. In particular:

• If G is bipartite or planar, γ ID(G) ≤ n− n
∆+9 .

• If G is k-degenerate, γ ID(G) ≤ n− n
∆+3(k+1) .

2

• If G has no Kℓ-minor, γ ID(G) ≤ n− n
∆+3c1(ℓ)

, where c1(ℓ) depends only on ℓ.3

• If G has genus g(G) = g, γ ID(G) ≤ n− n
∆+3c2(g)

, where c2(g) depends only on g.4

3.2. Graphs having no false twins

Let G be a triangle-free graph without any pair of false twins. By considering Case 1 of the proof of Theorem 13, we have
Y = V (G), which leads to the following bound:

Theorem 16. Let G be a nontrivial connected identifiable graph G on n vertices having maximum degree ∆ and no pair of false
twins. Then γ ID(G) ≤ n− n

3∆
ln∆−1

= n− n
o(∆)

.

Hence any class of connected triangle-free graphs of maximum degree ∆ having its minimum identifying code of size at
least n− n

Θ(∆)
should contain false twins. Note that this is the case of the complete (∆− 1)-ary tree already mentioned in

the Introduction (all its leaves are false twins), and of the classes of graphs described in [11] (which are built using copies of
small complete bipartite graphs K∆,∆ joined to each other, and therefore contain many false twins).

3.3. Graphs of girth at least 5

In this paper, we have considered triangle-free graphs, that is, graphs of girth at least 4. It is natural to ask whether much
stronger bounds on parameter γ ID hold for graphs of larger girth. However note that the answer to this question is negative
because of the complete (∆− 1)-ary tree on n vertices T , which was already mentioned earlier. This graph has infinite girth
and γ ID(T ) = ⌈n− n

∆−1+1/∆⌉ [4].
However, with an additional condition on the minimum degree of the graph, the question was answered in the positive

in [11] and recently in [14], where the following bounds are given.

Theorem 17 ([11]). Let G be a connected identifiable graph on n vertices having minimum degree at least 2 and girth at least 5.
Then γ ID(G) ≤ 7n

8 + 1.

2 It is a well-known fact that a k-degenerate graph is (k+ 1)-colorable.
3 It was conjectured by Hadwiger that c1(ℓ) ≤ ℓ− 1 [19], which would be optimal. However it is known that c1(ℓ) = O(ℓ

√
ln(ℓ)) [25].

4 A theorem of Heawood states that c2(g) ≤


7+
√
1+48g
2


[21].
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Table 1
Upper bounds in subclasses of connected identifiable graphs on n vertices withmaximum degree∆.

Graph class Upper bound on γ ID Reference

Triangle-free n− n
∆+ 3∆

ln∆−1
Theorem 13

Bipartite n− n
∆+9 Corollary 15

Planar triangle-free n− n
∆+9 Corollary 15

Triangle-free without false twins n− n
3∆

ln∆−1
Theorem 16

Minimum degree 2, girth at least 5 7n
8 + 1 Theorem17 [11]

Minimum degree δ, girth at least 5
 3
2 + oδ(1)

 ln δ
δ
n Theorem18 [14]

Theorem 18 ([14]). Let G be an identifiable graph on n vertices having minimum degree δ ≥ 1 and girth at least 5. Then
γ ID(G) ≤ ( 3

2 + oδ(1)) ln δ
δ
n, where oδ(1) is a function of δ tending to 0 when δ tends to infinity.

Note that these two bounds aremuch stronger than any bound of the form n− n
Θ(∆)

, such as the one of Conjecture 1. They
are best possible in the sense that relaxing either the condition on girth 5 or minimum degree 2, there are graphs which
have much larger identifying codes. If one drops the minimum degree 2 condition, such a graph is the complete (∆−1)-ary
tree. If one drops the girth 5 condition, there are ∆-regular graphs (∆ ≥ 2) having girth 4 and their minimum identifying
code of size n− n

Θ(∆)
[11]. Wewould like to refer the interested reader to [14], where this question is studied in more detail.

3.4. Summary of all results

We summarize the bounds discussed in this paper in Table 1.

4. On the complexity of finding a small identifying code

We note that our proofs provide a polynomial-time algorithm to compute the identifying codes of Theorem 13. Indeed,
their constructions are based on the codes computed in Lemmas 11 and 12, and the independent set of Lemma 10 for the first
code, and on the construction of Proposition 3 for the second code. All these constructions are described in the corresponding
proofs and can be done in polynomial time. Let us give an explicit complexity bound.

We observe that the running time of the constructions is at most of the order O(n2 ln n). Indeed, the most difficult step is
to compute and compare the neighborhoods of the vertices in order to build the false twin equivalence classes in the proof of
Theorem 13. To do this one can represent each neighborhood as a binary word of length n. Bitwise comparing two of them
requires O(n) operations, hence a classical sorting algorithm can sort them all in time O(n2 ln n). Comparing them takes
O(n2) time. Moreover, the construction of the independent set of Lemma 10 is based on Theorem 8 given in [31]. There, the
author gives a randomized linear-time algorithm for computing the independent set. Note that the random (constant-time)
step of this algorithm can be turned into a deterministic linear-time computation, which leads to an O(n2) algorithm. All
other steps and constructions can also be done in time O(n2). Hence, we have the following theorem.

Theorem 19. Let G be a connected identifiable triangle-free graph on n vertices with maximum degree ∆ ≥ 3. Then, an
identifying code of G having cardinality at most n− n

∆+ 3∆
ln∆−1

can be computed in time O(n2 ln n).
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