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The nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous 
stress tensor is the subject of investigation. Among other, viscoelastic biological media belong 
to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear 
transfer of acoustic energy, is discussed in details. The governing equation of acoustic 
heating is derived by means of the special linear combination of conservation equations  
of fluid motion in differential form. The method to derive the governing equations does not 
need averaging over the sound period, and the final governing dynamic equation of the 
thermal mode is instantaneous. It is valid for both periodic and aperiodic sound. The efficiency  
of acoustic heating for different shapes of acoustic wave is evaluated.  
 
 

INTRODUCTION 

It is well-known, that the standard attenuation of fluid leads to linear dissipation of sound. 
The acoustic heating is the increase of ambient temperature, caused by loses in acoustic 
energy. The acoustic heating is the value related to the entropy or thermal mode. The increase 
in the ambient temperature should be distinguished from the excess temperature associated 
with the sound wave. The latter of which is a wave quantity, damped during sound 
propagation in a fluid with standard attenuation. The role of periodic sound in the origin  
of acoustic heating in standard thermoviscous fluid flows is well-studied theoretically and 
experimentally [1, 2]. Interest in acoustic heating has grown over the last few years in 
connection with biomedical applications. Such applications require accurate estimation of heating 
during medical therapy, which applies sound of different kinds including impulses. 

This study is devoted to nonlinear dissipation of sound energy in a fluid where among 
standard attenuation, relaxation processes take place. The special mathematic method allows 
to separate equations governing acoustic, vorticity and entropy modes. The method was used 
previously by one of the authors to solve some problems of nonlinear flows [3, 4]. 
Application of this method leads, among other, to the governing equation of acoustic heating. 
Examples of acoustic heating in three-dimension case are discussed in Sec. (5). 
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1. DYNAMIC EQUATIONS GOVERNING FLOW OF FLUID 
 The continuity, momentum and energy equations for a thermoviscous fluid flow without 
external forces read: 
 
 
 
 
 (1) 
 
 

 
 
Here, v denotes the velocity of the fluid, ρ, p are density and pressure, e, T mark the energy per 
unit mass and temperature, correspondingly, χ is the thermal conductivity, and xi, t spatial 
coordinates and time. The operators Div and Grad denote the tensor divergence and dyad 
gradient respectively. P is the tensor of viscous stress. The equation connecting the viscous 
stress tensor and particle displacements ui(r, t) in the medium at a given point in space and time, 
for viscous liquids fits the Maxwell model, in two equivalent forms (τR is the relaxation time) [5, 6]: 
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Two thermodynamic functions e(p, ρ), T(p, ρ) complete the system (1). Their excess 

quantities may be written as a series of excess internal energy e' = e-e0 and temperature T' = T -T0 

in powers of excess pressure and density p' = p - p0, ρ' = ρ - ρ0 (ambient quantities are marked 
by the index 0): 
 
 
 

(3) 
 
 
where E1, . . .Θ5 are dimensionless coefficients, and Cv marks the heat capacity per unit mass 
under constant volume. A small variation in entropy is a total differential, that gives the link 
of the first coefficient in the series of excess temperature (3): 
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The expressions for coefficients E1 and E2 are as follows 

 
(5) 

 
 
where Cp denotes the heat capacity per unit mass under constant pressure, κ and β are the 
compressibility and thermal expansion, correspondingly: 
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2. DEFINITION OF MODES IN THE THREE-DIMENSIONAL FLOW  
OF INNITELY-SMALL MAGNITUDE 

 Based on the linearised version of Eq. (1), dispersion relations can be obtained for three 
independent modes: the acoustic (two branches), vorticity (two branches) and entropy 
(thermal) modes. In general case each of the field variables contains a contribution from all 
modes, for example: ρ = ρa + ρv + ρe. This allows, not only to decompose the main vector for 
each components, but also to separate the governing equations themselves using special 
properties of modes. Let y designates the nominal axis of the beam pointing in the 
propagation direction, and let (x, z) be the coordinates perpendicular to this axis. It is 
convenient to rearrange formulae in the dimensionless quantities as follows: 
 

 
t

λ
c=t',

λ
εz=z',

λ
e=y',

λ
εx=x',

c
v=v,

ρ
ρρ=ρ',

ρc
pp=p' 0

00

0

0
2
0

0
r

r−−

 
(7) 

 

where p0 is static pressure and ε is the diffraction parameter describing relations between the 
characteristic longitudinal and transverse scale. Everywhere below in the text, primes by 
dimensionless quantities are dropped. In the dimensionless quantities, Eqs (1) read: 
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vÂ
z
pvvv

z
vÂ
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vÂ
y
pvvv

y
vÂ
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The dynamic equations in the rearranged form involve dimensionless quantities 
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(9) 
 

The sum of two first coefficients in series of temperature perturbation is a linear attenuation 
due to thermal conductivity, as follows from (9): 

 

 21 δ+δ=δ  (10) 
 

The linear hydrodynamic field is represented by two acoustic modes, two vorticity 
modes and the entropy, or thermal mode. Every type of motion is determined in fact by one of 
the root of dispersion relation of the linear flow, ω(k) [1, 2, 6] and fixes links of perturbations, 
which are independent on time [3, 4]. The dispersion relations for both acoustic modes 
(marked by index 1 and index 2), and entropy mode (marked by index 3) are as follows: 
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In the linear flow (M → 0), the equations for every type of motion may be extracted 

from the system in accordance to specific links inside every mode. That may be formally 
proceeded bymeans of projecting the equations into specific sub-spaces [3, 4, 5]. The dynamic 
equations are obviously independent. The equation for the first acoustic branch is following: 
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The density perturbation for entropy motion satisfy the diffusion equation: 
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3. EQUATION GOVERNING SOUND 

 The nonlinear terms in every conservation equation from the right-hand side of system (8) 
include, in general, inputs of every mode in the weakly nonlinear flow. We fix links determining 
every mode in the linear flow and consider every excess quantity as a sum of the specific excess 
quantities of every mode. The consequent decomposing of the governing equations for sound 
and thermal modes may still be achieved by means of linear projection, for details refer to [5]. 
In simple terms, projecting is the linear combination of equations in such a way as to keep the 
terms of the chosen mode in the linear part, and reduce all other terms. Corresponding 
projectors are linear, application of them at the set (8) yield correct terms of order M2. 
Keeping only the terms corresponding to the acoustic rightwards progressive wave, one can 
easily obtain the equation analogous to the Khokhlov-Zabolotskaya-Kuznetsov one: 
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In Eq. (15), the series of square root of Laplacian Δ+∂∂=Δ ε22 / y  is used: 

∫⊥Δ+∂∂≈Δ dyy ε2/1/ , that is a common practise in wave theory. The nonlinear term in Eq. 
(15) may be considered as a result of the self-action of sound, which corrects the dynamic 
equations by nonlinear terms. 
 

4. INTERACTION BETWEEN MODES. ACOUSTIC HEATING 

 The important property of projection is not only to decompose the specific perturbations 
in the linear part of equations, but to distribute nonlinear terms correctly between different 
dynamic equations. In the context of acoustic heating, the magnitude of excess density 
specific for the entropy mode is small compared to that of the sound. Multiplying the first, 
second, third equation form the system (8), by: 
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respectively and forth and fifth equation by -1 and 1, respectively and taking a sum of all 
equations reduces all terms belonging to the acoustic, and vorticity modes in the linear part of the 
final equation. As for the nonlinear part of the final equation, only acoustic quadratic terms 
are considered there. That yields the dynamic equation for acoustic heating: 
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which becomes simpler after ordering: 
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5. NUMERICAL EXAMPLES 

 The solution of Eq. (17) governing the decrease in the ambient density ρent, is a fairly 
complex problem considering that the excess acoustic density itself should satisfy Eq. (15), 
which itself is nonlinear and accounts for attenuation due to thermal conduction and 
dispersion. It should be noted that ρent is not an acoustic quantity. The acoustic terms in right 
hand side of Eq. (17) play the role of nonlinear source of heating. The acoustic source in Eq. (17) 
is instantaneous and describes dynamic of the thermal mode in any time. Let us consider only 
terms originating from relaxation, both in the governing equations for sound and entropy 
excess density (Eqs. (17, 15)). In terms of dimensional temperature Te, and accounting for 
Eqs. (3, 17), the governing equation of acoustic heating becomes: 
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and using (5) we obtain the following relation for φ: 
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The coefficient φ depends exclusively on the molecular properties of a fluid and for 

example for water equals: φ = 4, 38 · 10-61/K [8, 9]. The excess acoustic density in Eq. (18) 
should satisfy the Eq. (15), but the solution of Eq. (15) is a fairly complex problem itself. 
However, it is reasonable as the first approximation to solve the simplified version of linear 
Eq. (15) ( )0→0,→ˆ δA . Expanding operator Δ  in series with respect to power of ε and 
keeping only O(ε) terms, we obtain  
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The solution of Eq. (22) with the following initial condition: ρa(t = 0, y ) = sin(y) sin(ny) 

takes form 
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The numerical examples based on Eq. (18) with the solution (23) are presented at the 

Fig. (1). The variable ε is equal: ε = λ /R (λ, R are length of sound wave and radius of the 
transmitter, respectively ) and was chosen according to the experimental data: n = 0.01. The 
value n used in the calculations is equal 0.1, τ = 10-5. 
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Fig. 1. Dimensionless variations in partial derivative of temperature  
with respect to time calculated for two values of r: r = 0 and r = 1, respectively 

 
6. VARIATIONS IN TEMPERATURE IN UID WITH STANDARD ATTENUATION. 

COMPARISON WITH THE UID WITH THE MAXWELL STRESS TENSOR 

The equation of acoustic heating for the fluid with the standard attenuation is as follows: 
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μ, ξ are bulk and shear viscosity, respectively. The solution of Eq. (22) with the following 
initial condition: ρa(t=0,y) = sin(y), takes form 
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The numerical examples based on Eq. (18) and Eq. (26) with the solution (28) are 

presented at the Fig. (2). 
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Fig. 2. Dimensionless variations in partial derivative of temperature with respect to time for Maxwell 
fluid (based on Eq. (18)), marked by solid line and for the fluid with standard attenuation (based on 

Eq. (26)), marked by dashed line, calculated for values: y = 0.01 and for two values of r: r = 0 and r = 1 
 

7. CONCLUSIONS 

The equation governing acoustic heating, Eq. (17) is a result of consequent decomposing  
of weakly nonlinear equations for sound and non-acoustic motions. It is the main result of this 
study. The method applies in a wide variety of flows with different mechanisms of dissipation 
and dispersion, it leads to instantaneous equations and does not need temporal averaging of the 
conservative equations with respect to sound period. 

Illustrations (Fig. 1, 2) reveal, that increase in temperature, associating with the entropy 
motion, ∫ ∂T/∂tdt, is always positive. It is simply a square under a curve. The method provides us 
to equations, dependent on coefficients of thermodynamic state and allows to compare acoustic 
heating caused by sound in the Maxwell fluid and in the fluid with standard attenuation. 
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