
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS 
No  Electrical Engineering 2012 
 
 
 
Maciej  CZYŻAK 
Robert SMYK 
Gdansk University of Technology 
 
 
REALIZATION OF MULTI-OPERAND MODULAR ADDERS 

IN THE FPGA TECHNOLOGY 
 

The paper presents the design and realization of the Multi-Operand Modular Adder 
(MOMA) structures in the Xilinx FPGA environment with the use of the Virtex 6 
technology. The design is based on the LUTs(26x 1) that simulate small RAMs that serve as 
the main component for  the look-up realization of addition and modulo generation. In this 
paper the MOMAs for modular addition of five-bit operands are shown. In the paper first 
the general structures of the MOMAs are considered and next two approaches to the multi-
operand modulo addition are examined. Both approaches make use of the four-operand 
MOMAs, in the first approach, the four-operand  MOMA is based on the two-operand 
modular adders, whereas in the second approach first the four operand binary addition is 
performed followed by the modulo reduction. The implementation of both MOMA types is 
shown and analyzed with respect to hardware amount and pipelining frequency,   
 

1. INTRODUCTION 
 Since their introduction at the beginning of 90's the Field Programmable Gate 
Arrays (FPGA) have become in many cases an alternative to the  Application 
Specific Integration Circuits (ASIC). The advantage of the FPGA over the ASICs is 
due to the fact that there is no need to design specfic VLSI chip which i time-
consumming and expensive. Currently the FPGAs are known that contain about 

 transistors and the clock frequencies above 1 GHz. The more advanced 
FPGAs are composed of the Configurable Logic Blocks (CLB), RAMs, DSP 
blocks and transceivers. The CLBs contain smaller parts termed slices that in turn 
contain small RAMs  or , where  k=4,5.6, latches, multiplexers 
and logic gates that allow to construct fast carry-chains for implementation of 
addition. The fact that the FPGAs can be programmed in software have changed 
the attitude towards less conventional arithmetics such as residue arithmetic [1], 
[2], that can be used for implementation of the digital signal processing 
algorithms.The  realization of the  most common  DSP algorithms  such as FFT 
and FIR require, along with the modular multiplication, the multi-operand modulo 
addition.Such addition can be represented as  
 

9106 ×

)12( ´k )22( 1 ´-k



Maciej CZYŻAK, Robert SMYK 
 
 

                                                              (1) 

It is assumed that are binary numbers , with the binary length 
. In the DSP algorithms that are  typically three types of operands, 

one is for small operands of the length equal to the length of the  Residue Number 
System (RNS) moduli , with . Such operands come up in 
binary/residue converters and when adding residues in residue channels of the  
FFT  or FIR processors[3]. The second type are the operands of 8-15 bits that are 
resudues of the special class of moduli akin to class. The third type are the 
operands of 30-50 bits that appear in RNS/B converters. In this work we take into 
consideration the operands of the first group. In general, there are two approches 
to perform (1). The first is the multi-operand addition with the result in the 
standard binary form or in the carry-save form. This is followed by the modulo A 
operation. The second approach is the use of the interleaving of the binary addition 
for the group of operands  and modulo generation and the succeding modulo 
addition for the reduced number of operands. In this work we shall consider the 
multi-operand modular addition where Two-Operand Modulo Adder (TOMA) is 
the basic buliding block and such in which the  Four-Operand Modulo 
Adder(FOMA) is the basic block. The hardware amount and delay for two 
MOMAs based on LUTs implemented using Xilinx Virtex 6 family  are analyzed. 
 

2. MULTI-OPERAND MODULO ADDER BASED ON THE TOMA 
 
In this subchapter we shall analyse the MOMA structure in the form of the tree 

structure based on TOMAs. First we shall consider the structure of the TOMA .  
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                             

Fig. 2     5-bit TOMA based on RAMs 

A

N

i
iA XX å

=

=
1

iX 1-£ AX i
é ùAb 2log=

im 6 ,5£im

12 -l

mXX 21 +

RAM1 

3
 

3 

RAM2 

2 2 

3 1 

RAM3 

X2,(0,2 )       X1,(0,2) X2,(3,4)    X1,(3,4) 

3 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


REALIZATION OF MULTI-OPERAND MODULAR ADDERS IN THE FPGA 
TECHNOLOGY 

 
 
 

This structure of the TOMA is based on small RAMs termed LUTs in 
Xilinx FPGA. The TOMA based on the LUTs is presented in detail in the 
companion paper [4] . In the TOMA from Fig.2 RAM1 implements three-bit binary 
addition of low-order bits, generates 3-bit sum and 1-bit carry that enters the RAM2 
that realizes two-bit addition for high-order bits with the input carry. The formal 
description is given in [4]. The number of outputs of the RAM is equal to the 
number of the LUTs needed to implement the given RAM.  
In the following we shall analyze hardware amount of the TOMA of Fig. 2.  
Denote as the hardware amount of the LUT (RAM ). Hence we have 
for the 5-bit TOMA of Fig.1 

  (2) 
 
The delay is   equal to . Such description of delay symbolises only the 
number of stages of the LUTs in the structure and not the real delay because this 
depends not only on the LUT delay but also on internal connections of the  LUTs 
within the slice and  switching matrix. Although, the LUT outputs are registered 
but the internal structure may influence the attainable pipelining frequency.  

Now we may consider the MOMA tree structure based on the TOMA. It is 
known that for n operands n-1 TOMAs are needed. Such MOMA has the known 
form of  n-1 TOMAs as in Fig. 1 for n=8. 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                     all lines are 5-bit  

Fig.1 Multi-operand adder for n=8 based on the TOMA 
 
Hence the MOMA based on the TOMA requires  

)12( 6 ´

LUTA )12( ´k

LUTLUTLUTLUTRAMRAMRAMTOMA AAAAAAAA  125343211 =×+×+×=++=

LUTD tt ×= 3

mi
iXå

=

8

1

TOMA TOMA TOMA TOMA 

TOMA TOMA 

TOMA 

X1 X2 X3 X4 X5 X6 X7 X8 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Maciej CZYŻAK, Robert SMYK 
 
 

                                          (3) 
                                           (4) 

 
2. FOUR-OPERAND MODULO ADDER (FOMA) 
 
 In this subchapter we shall consider four-operand modulo m adder being a 
series connection of a block of two 5-bit binary adders working in parallel and the 
modulo m generator. It will be examined if such configuration is more effective 
for MOMAs with greater number of operands than the structure based on TOMAs. 
It is assumed that RAMs  ,with k=5,6,7 can be used. in the Xilinx 
environment and Virtex 6 family . The RAMs   can configured as two 
RAMs operating in parallel with output multiplexer controlled by the most 
significant bit of the argument. Such solution does not contribute substantially to 
the delay. The FOMA is shown in Fig. 3 and the FOMA operation is given in 
Algorithm 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                         

 
 
 
 
 
 
 
 
 
 

Fig. 2  5-bit FOMA based on RAMs 
 
 

LUTnMOMA AnA ××= 12)(

LUTnMOMA tnt ××= 3)(

)( 12 ´k

)( 127 ´

RAM1A 

3
 

3 

RAM2A 

2 2 

1 

3 

2 2 

RAM1B 

3 3 

RAM2B 

3 

RAM3 

RAM5 

RAM4 

1 3 

3 1 

5 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


REALIZATION OF MULTI-OPERAND MODULAR ADDERS IN THE FPGA 
TECHNOLOGY 

 
 
 
 
Algorithm 1. 
 
 Input: 4 5-bit operands , i=0,1,2,3 with . 

                             (5) 

 Output:  

Step 1. Decompose the operands into 2-bit high-order segments and 3-bit low 
order segments as 

 and                   (6) 
 
Step 2. Compute in parallel by look up ( RAM1A, RAM1B) 
 

           (7a) 

         (7b) 

 
Step 3. Construct the address vectors 

                             (8a) 
 

                               (8b) 
Step 4. Compute in parallel by look up  using RAM2A andRAM2B. 
 

       (9a) 

      (9b) 

 
Step 5.Construct the address vector 
 

                             (10) 
 

iX é ù 52 =iXlog

( ))()()()()( ,,,, iiiii
ii xxxxxX 01234=« X

mi
iXr å

=

=
3

0

( )), )()( ii xx 34=i,H,X ( ))()()(
,, ,, iii
iL xxx 012=X

( ))( ,)(
,

)(
,

)()()()()( ,,,)( 01
0

01
1

01
2

01
3

011
2

0

001 2 LLLL
j

j
j

jL ssscxxS =«×+= å
=

S

( ))( ,)(
,

)(
,

)()()()()( ,,,)( 23
0

23
1

23
2

23
3

233
2

0

223 2 LLLL
j

j
j

jL ssscxxS =«×+= å
=

S

( ))()()()()( ,,,, 01
3

1
41

1
3

0
3

0
4 cssss=(01)

HV

( ))()()()()( ,,,, 23
3

3
41

3
3

2
3

2
4 cssss=(23)

HV

( ))( ,)(
,

)(
,

)()()()()( ,,)( 01
3

01
4

01
5

01301
3

1
2

0

001 22 LLLH
j

j
j

jH ssscssS =«×+×+=å
=

S

( ))( ,)(
,

)(
,

)()()()()( ,,)( 23
3

23
4

23
5

23323
3

3
2

0

223 22 HHHH
j

j
j

jH ssscssS =«×+×+=å
=

S

( ))( ,)(
,

)(
,

)(
,

)(
,

)(
, ,,,,, 23

0
23
1

23
2

01
0

01
1

01
2 LLLLLL ssssss=(0123)

LV

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Maciej CZYŻAK, Robert SMYK 
 
 
 
Step 6. Compute in parallel by look up  using RAM3 

 

       (11) 

 
Step 7.Construct the address vector 
 

                      (12) 
 
Step 8. Compute in parallel by look up  using RAM4 
 

  (13) 

 
Step 9. .Construct the address vector 
 

                             (14) 
 
Step 10. Compute in parallel by look up  using RAM5 
 

       (15) 

The number of 1-bit LUTs to construct TOMA is equal to  . The delay is    .  
In Table 1 the results of realization of the 8-operand MOMA based on seven 
TOMAs in three stages 8 operand MOMA based on two FOMAs in the first stage 
and one TOMA in the second stage.  
 
Synthesis results in Virtex 6 6vlx240tff784-1: 

Eight-operand modular adder based on TOMAs: 
Timing Summary: 
 minimum period: 3.011ns (maximum Frequency: 332.116MHz) 
 minimum input arrival time before clock: 0.413ns 
 maximum output required time after clock: 0.777ns 
 
Primitive and Black Box Usage:  LUT5: 21, LUT6: 63    
 

( ))(
,

)(
,

)(
,

)()()(
,

)(
,

)( ,,,)( 0123
0

0123
1

0123
2

0123
3

012323
2

0

010123 2 LLLL
j

jL
j

jLL ssscssS =«×+=å
=

S

( ))()(
,

)(
,

)(
,

)(
,

)(
,

)(
, ,,,,,, 23

3
23
3

23
4

23
5

01
3

01
4

01
5 cssssss HHHHHH=(0123)

HV

( ))(
,

)(
,

)(
,

)(
,

)()()(
,

)(
,

)( ,,,)( 0123
3

0123
4

0123
5

0123
6

012330123
3

23
5

3

010123 22 HHHHH
j

jH
j

jHH sssscssS =«×+×+=å
=

S

( ))( ,)(
,

)(
,

)(
,

)(
,

)(
,

)(
, ,,,,,, 23

0
23
1

23
2

01
3

01
4

0123
5

0123
6 LLLHHHH sssssss=(0123)

FV

( )01234

2

0

0123
6

3

0123 22 rrrrrR
m

j

j
jK

j

j
jH ,,,,)(

,
)(

, =«×+×= åå
==

RSS

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


REALIZATION OF MULTI-OPERAND MODULAR ADDERS IN THE FPGA 
TECHNOLOGY 

 
 
 
 

Eight-operand adder based on FOMAs and TOMA  
Timing Summary: 
 minimum period: 2.985ns (maximum Frequency: 335.008MHz) 
 minimum input arrival time before clock: 1.766ns 
 maximum output required time after clock: 0.777ns 
 
Primitive and Black Box Usage: LUT3: 4, LUT5: 32, LUT6: 64 

         
  3. CONCLUSIONS 
 Two ways of design of the multi-operand modular adders in the Xilinx FPGA 
environment with the use of the Virtex 6 have been analyzed. The first technique 
is based on the tree of TOMAs while the second the tree of FOMAs with the use of 
the TOMA when needed. It has has been stated that the required hardware amount 
in terms of the number of LUTs is the same for the number of operands being the 
power of 2, but the delay is smaller for the structure based on FOMAs and the 
difference grows with depth of the tree.   
 

 
REFERENCES  

 
[1]  N.S. Szabo and R.J. Tanaka, Residue Arithmetic and its Applications to Computer 

Technology, New York, McGraw-Hill, 1967. 
[2]  M .Soderstrand et al., Residue Number System Arithmetic: Modern Applications in 

Digital Signal  Processing, IEEE Press, NY, 1986. 
[3] A. Omondi, B. Premkumar, Residue Number Systems: Theory and Implementation, 

London, Imperial College Press, 2007. 
[4] S.J.Piestrak, "Design of residue generators and multioperand modulo adders using 

carry-save adders," IEEE Trans. Comp., vol. 43, pp.68-77, Jan. 1994. 
[5] G.Alia, E.Martinelli, Designing multi-operand modular adders, Electronic Letters, 

vol.32, No. 1, Jan.1996 
[6] R.Smyk, M.Czyżak, Design and realization of two-operand modular adders in the 

FPGA, Poznań University of Technology, Academic Journals, Electrical Engineering 
( this issue). 

[6] G. Alia, E. Martinelli, "VLSI binary-residue converters for pipelined processing," 
Computer J., vol. 33, no.5, pp. 473-475, 1990.  

[7] A.B. Premkumar," A formal framework for conversion from binary to residue 
numbers," IEEE Trans. Circuits and Systems-II, vol.49, no.2, Feb.2002, pp. 135-144. 

[8] M. Czyżak, "High-speed binary-to-residue converter with improved architecture," 
27th Int. Conf. on Fundamentals of Electrotechnics and Circuit Theory,  Gliwice-
Niedzica, May 26-29, 2004, pp. 431-436. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Maciej CZYŻAK, Robert SMYK 
 
 
 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

