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Abstract

The problem of both causal and noncausal identification of linear stochastic systems with quasi-harmonically varying parameters
is considered. The quasi-harmonic description allows one to model nonsinusoidal quasi-periodic parameter changes. The
proposed identification algorithms are called generalized adaptive comb filters/smoothers because in the special signal case
they reduce down to adaptive comb algorithms used to enhance or suppress nonstationary harmonic signals embedded in
noise. The paper presents a thorough statistical analysis of generalized adaptive comb algorithms, and demonstrates their
statistical efficiency in the case where the fundamental frequency of parameter changes varies slowly with time according to
the integrated random-walk model.
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1 Introduction

1.1 Problem statement

We will consider the problem of identification of quasi-
periodically varying complex-valued systems governed
by

y(t) =
n∑

i=1

θi(t)u(t− i+ 1) + v(t) = ϕT(t)θ(t) + v(t)

(1)
where t = 1, 2, . . . denotes the normalized discrete time,
y(t) denotes the system output, ϕ(t) = [u(t), . . . , u(t −
n+1)]T denotes regression vector,made up of the past in-
put samples, v(t) denotesmeasurement noise, and θ(t) =
[θ1(t), . . . , θn(t)]

T is the vector of time-varying system
coefficients, modeled as weighted sums of complex expo-
nentials

θ(t) =

K∑

k=1

βk(t)e
j
∑

t

i=1
ωk(i) (2)

βk(t) = [bk1(t), . . . , bkn(t)]
T

bki(t) = aki(t)e
jνki , i = 1, . . . , n.

⋆ This work was supported by the National Science Center.
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The following three types of real-valued quantities are
incorporated in (2): the instantaneous angular frequen-
cies ωk(t), the instantaneous amplitudes aki(t), and the
time-invariant phase shifts νki. With a slight abuse of
terminology, the complex-valued vectors βk(t) will be
further referred to as ‘complex amplitudes’.
Under certain circumstances (in the presence of several
strong reflectors) the model (1)–(2) can be used to de-
scribe rapidly fading mobile radio channels (Giannakis
& Tepedelenlioǧlu, 1998), (Bakkoury et al., 2000). In
this case y(t) denotes the sampled baseband signal re-
ceived by the mobile unit, {u(t)} denotes the sequence
of transmitted symbols, and v(t) denotes channel noise.
We will assume that the frequencies ωk(t) are harmoni-
cally related, namely

ωk(t) = mkω0(t), k = 1, . . . ,K (3)

where ω0(t) denotes the slowly varying fundamental fre-
quency and mk are integer numbers. Such multiple fre-
quencies, called harmonics, appear in the Fourier series
expansions of periodic signals. For example, if parameter
trajectory θ(t) is periodic with period L, it admits the

following Fourier representation: θ(t) =
∑L−1

k=0 βke
jkω0t,

ω0 = (2π)/L.
The notion of ‘time-varying harmonics’ can be regarded
as a natural extension of the Fourier analysis to quasi-
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periodically varying systems, such as (1)–(2). The choice
of the multipliers mk, k = 1, . . . ,K, depends on our
prior knowledge of the system time variation. When all
harmonics are expected to be present, one should set
mk = k. In the presence of odd harmonics only, the nat-
ural choice is mk = 2k − 1, etc.
In the special case where n = 1 and ϕ(t) ≡ 1, equa-
tions (1)–(3) describe a complex-valued harmonic signal
s(t) = θ(t) buried in noise

y(t) = s(t) + v(t), s(t) =
K∑

k=1

bk(t)e
j
∑

t

i=1
ωk(i). (4)

The problem of either elimination or extraction of
harmonic signals buried in noise can be solved us-
ing adaptive comb filters (Nehorai & Porat, 1986),
(Regalia, 1995). For this reason the system identifica-
tion/tracking algorithm described below can be consid-
ered a generalized comb filter.

1.2 Contribution

The problem of causal identification (tracking) of single-
mode quasi-periodically varying systems was studied in
(Niedźwiecki & Kaczmarek, 2004),
(Niedźwiecki & Kaczmarek, 2005a) and (Niedźwiecki &
Kaczmarek, 2005b).
In the recent conference paper (Niedźwiecki & Meller,
2011a), the results presented earlier were extended
to noncausal identification (smoothing). Additionally,
a more sophisticated frequency estimation scheme
was proposed, incorporating frequency rate track-
ing/smoothing and yielding better results in practice.
All papers published so far focus on identification of
single-mode systems, i.e., systems with parameters that
can be modeled as complex sinusoids (cisoids) with
slowly varying amplitudes and a slowly varying instan-
taneous frequency.
This paper extends results presented in (Niedźwiecki
& Meller, 2011a) to nonstationary systems with quasi-
harmonically varying parameters, i.e., to systems with
several frequency modes governed by the same slowly
varying fundamental frequency. In practice such har-
monic modes of variation often arise in oscillatory sys-
tems with nonlinear elements and/or loads (Neimark,
2003).
In principle, quasi-harmonically varying systems can be
identified using the multiple-frequency versions of the
algorithms mentioned above. Such algorithms are made
up of several single-frequency sub-algorithms that work
in parallel and are driven by the common prediction er-
ror. Since the estimated frequencies are in this case re-
garded as mutually unrelated quantities, the harmonic
structure of the system/signal time variation is not ex-
ploited in any way. In this paper we present algorithms
that take advantage of such a prior information, i.e., the
algorithms that perform a coordinated frequency search.
This allows one to improve estimation results consider-
ably.

2 Generalized adaptive notch filter – overview
of known results

Suppose that the identified nonstationary system has a
single frequency mode (K = 1), i.e., it is governed by

y(t) = ϕT(t)θ(t) + v(t), θ(t) = β(t)ej
∑

t

i=1
ω(i) (5)

where β(t) = [b1(t), . . . , bn(t)]
T and ω(t) ∈ (−π, π] are

slowly varying quantities. Furthermore, suppose that:

(A1) The measurement noise {v(t)} is a zero-mean cir-
cular white sequence with variance σ2

v .

(A2) The sequence of regression vectors {ϕ(t)}, inde-
pendent of {v(t)}, is nondeterministic, wide-sense sta-
tionary and ergodic with known correlation matrix 1

Φ = E[ϕ∗(t)ϕT(t)].

Denote by α(t) = ω(t+1)−ω(t) the rate of change of the
instantaneous frequency ω(t). Under assumptions (A1)–
(A2), identification of the system (5) can be carried out
using the following generalized adaptive notch filtering
(GANF) algorithm proposed in (Niedźwiecki & Meller,
2011a)

f̂(t) = ej[ω̂(t−1)+α̂(t−1)]f̂(t− 1)

ε(t) = y(t)−ϕT(t)f̂(t)β̂(t− 1)

β̂(t) = β̂(t− 1) + µΦ−1ϕ∗(t)f̂∗(t)ε(t)

g(t) =
Im

[
ε∗(t)ϕT(t)f̂(t)β̂(t− 1)

]

β̂H(t− 1)Φβ̂(t− 1)

α̂(t) = α̂(t− 1)− γαg(t)

ω̂(t) = ω̂(t− 1) + α̂(t− 1)− γωg(t)

θ̂(t) = f̂(t)β̂(t) (6)

where f̂(t) is an estimate of f(t) = ej
∑

t

i=1
ω(i), and

µ > 0, γω > 0, γα > 0, such that γα ≪ γω ≪ µ, de-
note small adaptation gains determining the rate of am-
plitude adaptation, frequency adaptation and frequency
rate adaptation, respectively.
The gradient search strategy, incorporated in (6) for the
purpose of tracking ω(t) and α(t), is based on mini-
mization of the following instantaneous measure of fit

J(t) = |ǫ(t)|2/2, where ǫ(t) = y(t)−ϕT(t)f(t)β̂(t− 1).
Note that

∂J(t)

∂ω(t)
= Re

[
ǫ(t)

∂ǫ∗(t)

∂ω(t)

]

= −Re
[
jǫ(t)ϕH(t)f∗(t)β̂∗(t− 1)

]

= Im
[
ǫ∗(t)ϕT(t)f(t)β̂(t− 1)

]
. (7)

1 Hereinafter the symbol ∗ will denote complex conjugation,
and the symbol H – Hermitian (conjugate) transpose.
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Therefore, the term g(t) in (6) can be interpreted as a
normalized estimate of the gradient (7). Normalization
makes the algorithm scale-invariant. When it is not ap-
plied, the tracking properties of the GANF algorithm
depend not only on the user-defined adaptation gains γω
and γα, but also on the system-related variables, which
is inconvenient from the practical viewpoint.
Tracking properties of the GANF algorithm (6) were
analyzed in (Niedźwiecki & Meller, 2011a) in the case
where the vector of ‘amplitudes’ β(t) is unknown but
constant:

(A3∗) β(t) ≡ β, i.e., θ(t) = ejω(t)θ(t− 1), ∀t.

Note that under (A3∗) the normalization term β̂H(t −

1)Φβ̂(t−1) can be regarded as an estimate of the power
of the noiseless system output

b2 = βHΦβ = E
[
βHϕ∗(t)ϕT(t)β

]
= E

[
|ϕT(t)θ(t)|2

]
.

Using the approximating linear filter (ALF) tech-
nique – the stochastic linearization approach proposed
in (Tichavský & Händel, 1995) – one can show that
the frequency and frequency rate estimation errors
∆ω̂(t) = ω(t) − ω̂(t), ∆α̂(t) = α(t) − α̂(t), can be
approximately expressed in the form

∆ω̂(t) ∼= G1(q
−1)e(t) +G2(q

−1)δ(t) (8)

∆α̂(t) ∼= H1(q
−1)e(t) +H2(q

−1)δ(t) (9)

where {e(t)}, e(t) = −Im[βHϕ∗(t)f∗(t)v(t)/b2], is a
zero-mean white noise with variance σ2

e = σ2
v/(2b

2),
δ(t) = α(t)−α(t−1) denotes the one-step change of the
frequency rate, and

G1(q
−1) = (1− q−1)[γω + (γα − γω)q

−1]/D(q−1)

G2(q
−1) = q−1[1− γω − (1− µ)q−1]/D(q−1)

H1(q
−1) = γα(1− q−1)2/D(q−1)

H2(q
−1) = [1 + (µ+ γω − 2)q−1 + (1− µ)q−2]/D(q−1)

where D(q−1) = 1 + d1q
−1 + d2q

−2 + d3q
−3, d1 = µ +

γω + γα − 3, d2 = 3 − 2µ − γω, d3 = µ − 1. All filters
are asymptotically stable if adaptation gains fulfill the
following (sufficient) stability conditions: 0 < µ < 1,
0 < γω < 1, 0 < γα < 1 and µ(γω + γα) > γα.
In spite of its simplicity, the gradient frequency track-
ing mechanism adopted in (6) has very good statistical
properties – as shown in (Niedźwiecki & Meller, 2011a),
when the instantaneous frequency drifts according to the
Gaussian integrated random-walk (IRW) model, namely

(A4) {δ(t)}, independent of {v(t)} and {ϕ(t)}, is a zero-
mean white sequence with variance σ2

δ .

(A5) The sequences {v(t)} and {δ(t)} are normally dis-
tributed.

the optimally tuned GANF algorithm (6) is statistically
efficient, i.e., it reaches the Cramér-Rao-type lower fre-
quency and frequency rate tracking bounds.
Note that α(t)−α(t−1) = δ(t) implies (1−q−1)2ω(t) =
δ(t−1). Since (1−q−1)2ω(t) = 0 entails ω(t) = γ1+γ2t,
where γ1 and γ2 denote arbitrary constants, the
IRW model can be regarded as a perturbed lin-
ear growth/decay model – for small perturbations
(σδ ≪ σv/b) the corresponding frequency changes will
be further referred to as quasi-linear.

3 Multiple-frequency GANF

Denote by yk(t) = ϕT(t)θk(t) + v(t), where θk(t) =

fk(t)βk(t), and f̂k(t) is an estimate of fk(t) =

ej
∑

t

i=1
ωk(i), the output of this subsystem of (1) which

is associated with the frequency ωk. If the signals
y1(t), . . . , yK(t) were measurable, one could design K
independent GANF algorithms of the form (6), each
taking care of a particular subsystem. Since it holds that

θ(t) =
∑K

k=1 θk(t), the final parameter estimate could
be easily obtained by combining the partial estimates.
Even though the outputs yk(t) are not available, one
can replace them with the surrogate (estimated) outputs
obtained from

ŷk(t) = y(t)−ϕT(t)

K∑

i=1

i6=k

θ̂i(t|t− 1)

where θ̂k(t|t − 1) = f̂k(t)β̂k(t − 1) denotes the one-
step-ahead prediction of θk(t). Note that after replac-
ing y(t) with ŷk(t) in (6), one obtains εk(t) = ŷk(t) −

ϕT(t)θ̂k(t|t − 1) = y(t)− ϕT(t)
∑K

k=1 f̂k(t)β̂k(t− 1) =
ε(t), ∀k, which means that all sub-algorithms should
be driven by the same ‘global’ prediction error. Such
an approach was used, with good results, to design
multiple-frequency algorithms in (Niedźwiecki & Kacz-
marek, 2004). When applied to (6) it yields

f̂k(t) = ej[ω̂k(t−1)+α̂k(t−1)]f̂k(t− 1)

ε(t) = y(t)−ϕT(t)

K∑

k=1

f̂k(t)β̂k(t− 1)

β̂k(t) = β̂k(t− 1) + µΦ−1ϕ⋆(t)f̂⋆
k (t)ε(t)

gk(t) =
Im

[
ε⋆(t)ϕT(t)f̂k(t)β̂k(t− 1)

]

β̂H
k (t− 1)Φβ̂k(t− 1)

α̂k(t) = α̂k(t− 1)− γαgk(t)

ω̂k(t) = ω̂k(t− 1) + α̂k(t− 1)− γωgk(t)

θ̂k(t) = f̂k(t)β̂k(t)

k = 1, . . . ,K

θ̂(t) =

K∑

k=1

θ̂k(t) (10)

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


In (Niedźwiecki & Kaczmarek, 2005b) it was shown
that the number of frequency modes, as well as all ini-
tial conditions needed to smoothly start (start without
initialization transients) the GANF algorithm, can be
inferred from nonparametric DFT-based analysis of a
short startup fragment of the input-output data. The
tool that can be used for this purpose was termed gen-
eralized (system) periodogram, as in the signal case it
reduces to the classical periodogram.
When applied to identification of the system (1)–(3), the
GANF algorithm (10) has two serious drawbacks.
First, it does not take into consideration the harmonic
structure (3), i.e., the estimated frequencies are regarded
as mutually unrelated quantities, while the true har-
monics vary in a coordinated way. Hence, even though
such an unconstrained multiple-frequency generalized
adaptive notch filter can be used to identify the multi-
harmonic system/signal, its tracking characteristics will
be generally inferior to those offered by solutions that
incorporate the harmonic constraints.
Second, the algorithm (10) is not robust to incorrect
frequency matching. While the strong frequency com-
ponents, i.e., those characterized by large values of the
signal-to-noise ratio SNRk(t) =‖ βk(t) ‖

2
Φ

/σ2
v are usu-

ally tracked successfully, the weak ones may be difficult
to follow – even if the initial frequency assignment is
correct, the sub-algorithms tracking such weak compo-
nents may, after some time, lock onto the neighboring,
stronger components, corresponding to higher or lower
frequencies. Moreover, when the system/signal is non-
stationary, the ‘strength’ of different harmonic compo-
nents may vary with time, which further complicates the
picture.

4 Generalized adaptive comb filter

In order to arrive at the algorithm which performs co-
ordinated search of the instantaneous fundamental fre-
quency ω0(t), one should minimize J(t) for

ǫ(t) = y(t)−ϕT(t)
K∑

k=1

fk(t)β̂k(t− 1)

where fk(t) = ej
∑

t

i=1
ωk(i) = ejmk

∑
t

i=1
ω0(i). Note that

∂J(t)

∂ω0(t)
= −Re

[
jǫ(t)ϕH(t)

K∑

k=1

mkf
∗
k (t)β̂

∗
k(t− 1)

]

=
K∑

k=1

mk Im
[
ǫ∗(t)ϕT(t)fk(t)β̂k(t− 1)

]
. (11)

This leads to the following recursive estimation scheme
whichwill be further referred to as a generalized adaptive

comb filter (GACF)

f̂k(t) = ejmk[ω̂0(t−1)+α̂0(t−1)]f̂k(t− 1)

ε(t) = y(t)−ϕT(t)

K∑

k=1

f̂k(t)β̂k(t− 1)

β̂k(t) = β̂k(t− 1) + µΦ−1ϕ⋆(t)f̂⋆
k (t)ε(t)

θ̂k(t) = f̂k(t)β̂k(t)

k = 1, . . . ,K

g(t) =

∑K
k=1 mk Im

[
ε⋆(t)ϕT(t)f̂k(t)β̂k(t− 1)

]

∑K
k=1 m

2
k β̂

H
k (t− 1)Φβ̂k(t− 1)

α̂0(t) = α̂0(t− 1)− γαg(t)

ω̂0(t) = ω̂0(t− 1) + α̂0(t− 1)− γωg(t)

θ̂(t) =
K∑

k=1

θ̂k(t) (12)

One can show, using the ALF technique, that under
(A1)–(A2) and the following assumption

(A3) βk(t) ≡ βk, i.e., θk(t) = ejωk(t)θk(t − 1), k =
1, . . . ,K, ∀t.

which is a multi-frequency variant of (A3∗), the fre-
quency and frequency rate estimation errors ∆ω̂0(t) =
ω0(t) − ω̂0(t), ∆α̂0(t) = α0(t) − α̂0(t), can be approxi-
mately expressed in the form (see Appendix 1)

∆ω̂0(t) ∼= G1(q
−1)e0(t) +G2(q

−1)δ(t) (13)

∆α̂0(t) ∼= H1(q
−1)e0(t) +H2(q

−1)δ(t) (14)

where the transfer functions G1(q
−1),G2(q

−1),H1(q
−1)

and H2(q
−1) are identical with those appearing

in (8)–(9), and e0(t) =
∑K

k=1 mkek(t), ek(t) =

−Im
[
βH
k ϕ

∗(t)f∗
k (t)v(t)/b

2
0

]
, b20 =

∑K
k=1 m

2
kb

2
k and

b2k = βH
k Φβk. Note that the normalizing term∑K

k=1 m
2
k β̂

H
k (t−1)Φβ̂k(t−1), which appears in the ex-

pression for gk(t) in (12), can be regarded as an estimate
of b20.
Furthermore, one can show that {ek(t)}, k = 1, . . . ,K,
are zero-mean white noise sequences with cross-
correlation functions given by (see Appendix 2)

E [ek(t)el(s)] =

{
ρkl(t) for t = s

0 for t 6= s
(15)

where

ρkl(t) =
σ2
v

2b40

{
Re[βH

k Φβl] cos[φk(t)− φl(t)]

− Im[βH
k Φβl] sin[φk(t)− φl(t)]

}
(16)
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and φk(t) =
∑t

i=1 ωk(i) = mk

∑t
i=1 ω0(i).

Setting l = k in (16), one obtains

σ2
ek

= E[|ek(t)|
2] =

σ2
vb

2
k

2b40
(17)

where b2k = βH
k Φβk is the power of the k-th component

of the noiseless system output.
When frequency changes are sufficiently slow, so that the
functions fk(t), k = 1, . . . ,K, can be regarded as locally
almost periodic, the sequences {ek(t)} are mutually or-
thogonal in the sense that

〈ρkl(t)〉T
∼= 〈ρkl(t)|ω0(t) ≡ ω0〉∞ = 0, ∀k 6= l

where 〈x(t)〉T = (1/T )
∑T−1

i=0 x(t − i) denotes the local
average of x(t), and T ≫ T0 = 2π/ω0. Using this result,
one obtains

〈
σ2
e0
(t)

〉
T
=

〈
E[|e0(t)|

2]
〉
T
∼=

K∑

k=1

m2
kσ

2
ek

=
σ2
v

2b20
(18)

Suppose that the assumption (A4) holds true. Then, us-
ing standard results from the linear filtering theory, one
obtains

〈
E
{
[ω̂0(t)− ω0(t)]

2
}〉

T
=

〈
E
{
[∆ω̂0(t)]

2
}〉

T

∼= g[G1(z
−1)]

〈
σ2
e0
(t)

〉
T
+ g[G2(z

−1)]σ2
δ (19)

〈
E
{
[α̂0(t)− α0(t)]

2
}〉

T
=

〈
E
{
[∆α̂0(t)]

2
}〉

T

∼= g[H1(z
−1)]

〈
σ2
e0
(t)

〉
T
+ g[H2(z

−1)]σ2
δ (20)

where

g[X(z−1)] =
1

2πj

∮
X(z−1)X(z)

dz

z

is an integral evaluated along the unit circle in the z-
plane andX(z) denotes any stable proper rational trans-
fer function.
The first term on the right hand side of (19) constitutes
the variance component of the mean-squared frequency
estimation error, and the second term – its bias com-
ponent. The same remark applies to (20). According to
(18), the variance components in (19) and (20) are in-
versely proportional to the quantity which will be fur-
ther referred to as effective signal-to-noise ratio (ESNR)

ESNR =
b20
σ2
v

=

∑K
k=1 m

2
kb

2
k

σ2
v

and which differs from the signal-to-noise ratio defined
as

SNR =

〈
E[|ϕT(t)θ(t)|2]

〉
T

σ2
v

∼=

∑K
k=1 b

2
k

σ2
v

≤ ESNR

We note that equations (13)–(14) are identical with
those derived earlier for the single frequency case – the
only change needed to move from (8)–(9) to (13)–(14)
is replacement of the noiseless output power b2, which
appears in the expression for σ2

e , with the effective
output power b20, which appears in the expression for
<σ2

e0
(t)>T . Since in the multi-frequency case (K > 1)

it holds that b20 >
∑K

k=1 b
2
k, the variance components

of the mean-squared fundamental frequency and fre-
quency rate tracking errors are smaller than the analo-
gous errors observed, under the same SNR, in the single
frequency case. This increased (compared to the uncon-
strained frequency estimation case) accuracy bonus is
available due to incorporation in the estimation pro-
cess prior information about the harmonic structure
of the identified quasi-periodic phenomenon. The same
qualitative effect can be observed in time-invariant fre-
quency estimation schemes, such as the ones described
in (Nehorai & Porat, 1986) and (James et al., 1994).

5 Generalized adaptive comb smoother

The important consequence of the fact that the approx-
imate error equations (13)–(14) are identical with those
derived in (Niedźwiecki & Meller, 2011a) for systems
with a single frequency mode of parameter variation,
is that the smoothing technique proposed there is di-
rectly applicable to the multiple-frequency case. Follow-
ing (Niedźwiecki & Meller, 2011a), suppose that a pre-
recorded data block Ω(N) = {y(i),ϕ(i), i = 1, . . . , N}
of length N is available, which is typical of off-line ap-
plications, i.e., those based on parameter/signal recon-
struction, rather than tracking. The smoothed estimates
of ω0(t), α0(t) and θ(t), based on Ω(N), will be denoted

by ω̃0(t), α̃0(t) and θ̃(t), respectively
2 .

To obtain smoothed estimates, one can use a cascade of
postprocessing filters derived in (Niedźwiecki & Meller,
2011a) and (Niedźwiecki & Meller, 2011b). The pro-
posed fixed-interval generalized adaptive comb smooth-
ing (GACS) procedure, listed in Table 1, is six-step

Step 1: The preliminary estimates ω̂0(t) and α̂0(t) are
obtained using the pilot algorithm based on (12).

Step 2: To obtain the smoothed frequency rate esti-
mates α̃0(t), the trajectory {α̂0(t), t = 1, . . . , N} is fil-
tered, backward in time, using the anticausal filter S(q):
α̃0(t) = S(q)α̂0(t), where

S(q) = 1− (1− q)H2(q) = γαq/D(q).

Step 3: To obtain the smoothed frequency estimates
ω̃0(t), the trajectory {ω̂0(t), t = 1, . . . , N} is processed

2 In the Kalman filtering/smoothing literature, the filtered
and smoothed estimates of the state vector x(t) are usually
denoted by x̂(t|t) and x̂(t|N), respectively. In this paper a
different notation is used to avoid false associations.
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using the noncausal filter S(q)T (q−1), where

T (q−1) =
a1q

−1

1 + a2q−1
, a1 =

γα
γω

, a2 =
γα − γω

γω
.

This can be achieved by means of backward-time
processing of the prefiltered trajectory: ω̃0(t) =
q−1S(q)ω̄0(t), where ω̄0(t) = qT (q−1)ω̂0(t).

Step 4: The amplitude coefficients are re-estimated us-
ing the frequency-guided version of the pilot algorithm,
obtained by replacing in (12) the causal frequency es-
timates ω̂0(t) with their noncausal (smoothed) counter-
parts ω̃0(t), evaluated at Step 3.

Step 5: To obtain the smoothed amplitude es-

timates β̃k(t), k = 1, . . . ,K, the re-estimated am-
plitude trajectories {β̄k(t), t = 1, . . . , N} are fil-
tered, backward in time, using the anticausal fil-

ter F (q): β̃k(t) = F (q)β̄k(t), k = 1, . . . ,K, where
F (q) = µ/[1− (1− µ)q].

Step 6: To obtain the smoothed partial parameter esti-

mates θ̃k(t), the smoothed amplitude estimates β̃k(t) are

combined with the smoothed phase estimates φ̃k(t) =

mk

∑t
i=1 ω̃0(t). The smoothed parameter estimate θ̃(t)

is evaluated as a sum of its harmonic components.

Remark: We note that Step 2 above is optional – if all
that is needed is estimation of θ(t), the frequency rate
smoothing part of the algorithm can be skipped.

Denote by ∆ω̃0(t) = ω0(t)− ω̃0(t) and ∆α̃0(t) = α0(t)−
α̃0(t) the frequency and frequency rate smoothing er-
rors, respectively. Under assumptions (A1) – (A3), the
approximate error equations can be obtained in the form

∆ω̃0(t) ∼= I1(q
−1)e0(t) + I2(q

−1)δ(t) (21)

∆α̃0(t) ∼= J1(q
−1)e0(t) + J2(q

−1)δ(t) (22)

where

I1(q
−1) = S(q)T (q−1)G1(q

−1)

I2(q
−1) =

1− S2(q)S2(q−1)

1− q−1

J1(q
−1) = S(q)H1(q

−1)

J2(q
−1) =

1− S(q)S(q−1)

1− q−1
.

Denote byX+(q−1) =
[
X(q−1)X(q)

]
+
the stable factor

of a rational transfer function X(q−1)X(q). Based on
(21) - (22), the mean-squared estimation errors can be
evaluated in a way similar to (19) - (20)

〈
E
{
[ω̃0(t)− ω0(t)]

2
}〉

T
=

〈
E
{
[∆ω̃0(t)]

2
}〉

T

∼= g[I+1 (z−1)]
〈
σ2
e0
(t)

〉
T
+ g[I+2 (z−1)]σ2

δ (23)

〈
E
{
[α̃0(t)− α0(t)]

2
}〉

T
=

〈
E
{
[∆α̃0(t)]

2
}〉

T

∼= g[J+
1 (z−1)]

〈
σ2
e0
(t)

〉
T
+ g[J+

2 (z−1)]σ2
δ . (24)

Table 1. Generalized adaptive comb smoother

pilot filter :

f̂k(t) = ejmk [ω̂0(t−1)+α̂0(t−1)]f̂k(t − 1)

ε(t) = y(t) −ϕT(t)
∑K

k=1 f̂k(t)β̂k(t− 1)

β̂k(t) = β̂k(t− 1) + µΦ−1ϕ⋆(t)f̂⋆
k
(t)ε(t)

g(t) =
∑

K

k=1
mk Im[ε⋆(t)ϕT(t)f̂k(t)β̂k(t−1)]

∑
K

k=1
m2

k
β̂H

k
(t−1)Φβ̂k(t−1)

α̂0(t) = α̂0(t − 1) − γαg(t)

ω̂0(t) = ω̂0(t− 1) + α̂0(t− 1)− γωg(t)

t = 1, . . . , N, k = 1, . . . ,K

frequency rate smoother [optional] :

[ α̃0(N) = α̃0(N + 1) = α̃0(N + 2) = α̂0(N) ]

α̃0(t) = −d1α̃0(t + 1) − d2α̃0(t + 2)

− d3α̃0(t + 3) + γαα̂0(t+ 1)

t = N − 1, . . . , 1

frequency smoother :

[ ω̄0(0) = ω̂0(1) ]

ω̄0(t) = −a2ω̄0(t− 1) + a1ω̂0(t)

t = 1, . . . , N

[ ω̃0(N + 1) = ω̃0(N + 2) = ω̃0(N + 3) = ω̂0(N) ]

ω̃0(t) = −d1ω̃0(t+ 1)− d2ω̃0(t + 2)

− d3ω̃0(t+ 3) + γαω̄0(t)

t = N, . . . , 1

frequency−guided filter :

f̃k(t) = ejmkω̃0(t)f̃k(t − 1)

ε̄(t) = y(t) −ϕT(t)
∑K

k=1 f̃k(t)β̄k(t− 1)

β̄k(t) = β̄k(t− 1) + µΦ−1ϕ∗(t)f̃∗

k
(t)ε̄(t)

t = 1, . . . , N, k = 1, . . . ,K

amplitude smoother :

[ β̃k(N + 1) = β̄k(N) ]

β̃k(t) = (1 − µ)β̃k(t+ 1) + µβ̄k(t)

t = N, . . . , 1, k = 1, . . . ,K

output filter :

θ̃k(t) = f̃k(t)β̃k(t), θ̃(t) =
∑K

k=1 θ̃k(t)

t = 1, . . . , N

6 Optimization and Cramér-Rao bounds

Consider a system (1)–(3) with pseudo-linear frequency
changes. In order to achieve the best tracking/smoothing
results, the adaptation gains of the GACF/GACS algo-
rithms should be chosen so as to trade-off the bias and
variance components in (19)–(20) and (21)–(22). Such
optimal settings depend exclusively on the balance be-
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tween the bias and variance error components, deter-
mined by the scalar coefficient

κ =
E[w2(t)]

2 〈E[e20(t)]〉T

∼=
b20σ

2
δ

σ2
v

= ESNR · σ2
δ

further referred to as the rate of nonstationarity of the
analyzed system [in signal analysis a similar concept was
introduced earlier in (Tichavský & Händel, 1995)].
Using residue calculus (Jury, 1964), one can easily derive
analytical expressions quantifying the mean-squared es-
timation errors in terms of µ, γω and γα. Unfortunately,
these expressions (not listed here) are too complicated
to enable minimization of the MSE scores in an explicit,
analytical form. For this reason the optimal values of
adaptation gains were searched numerically. The opti-
mal settings that minimize the frequency and frequency
rate, tracking and smoothing, errors were found to be in
all four cases identical – the corresponding values, ob-
tained for several nonstationarity rates κ, are listed in
Table 2.
Our next step was to establish the Cramér-Rao-type
lower tracking bounds (LTBω0

, LTBα0
) and lower

smoothing bounds (LSBω0
, LSBα0

), which set the upper
limits for the frequency and frequency rate estimation
accuracy using any causal/noncausal identification al-
gorithm – see Table 2. Note the performance gains that
can be achieved when tracking is replaced with smooth-
ing. Even though such analysis has mainly a theoretical
value, it allows one to evaluate tracking/smoothing per-
formance of the proposed algorithms in absolute, rather
than relative, terms. The LTBs and LSBs for the system
governed by (1)–(3) were obtained under assumptions
(A1) – (A5) and, to make the analysis easier, under
some technical constraints imposed on the initial con-
ditions – see Appendix 3. Again, rather than providing
the closed-form analytical formulas, we show how LTBs
and LSBs can be established numerically for a given
value of κ.
It was found out that there is a perfect agreement be-
tween the lower tracking and smoothing bounds and the
MSE values obtained by minimizing (19)–(20) and (21)–
(22), respectively – in some cases the computed values
agreed up to the six decimal place. This means that, at
least theoretically, the optimally tuned GACF/GACS
algorithms should be statistically efficient frequency and
frequency rate trackers/smoothers. In the next section
wewill verify this statement using computer simulations.
According to the results given above, in the constant-
amplitude case the frequency estimates are unambiguous
– in spite of the fact that the corresponding amplitude
estimates are complex-valued quantities and, as such,
could potentially create nonidentifiability problems. Al-
though the same was also observed in the time-varying-
amplitude case, some caution is needed in interpreting

the quantities ω̂0(t), ω̃0(t) and β̂k(t), β̃k(t) unless iden-
tifiability is formally proved. Note, however, that this
potential nonidentifiability problem does not extend to

estimation of θ(t), which is our main interest here.

7 Simulation and experimental results

7.1 ALF-based analysis

To check the validity of the analytical expressions (19)–
(20), based on the approximating linear filter equations
(13)–(14), the following two-tap FIR system (inspired
by channel equalization applications) was simulated

y(t) = θ1(t)u(t) + θ2(t)u(t− 1) + v(t) (25)

where u(t) denotes a white 4-QAM [quadrature am-
plitude modulation – see e.g. (Giannakis & Tepedelen-
lioǧlu, 1998)] input sequence (u(t) = ±1 ± j, σ2

u = 2)
and v(t) denotes a complex-valued Gaussian measure-
ment noise.
Each of n = 2 impulse response coefficients had K = 4
modes of variation – system parameters varied according
to

θ(t) =

[
θ1(t)

θ2(t)

]
=

4∑

k=1

βk0e
j
[
νk+mk

∑
t

τ=1
ω0(τ)

]

β10 = [2− j, 1 + j2]T,β20 = [1− j, 1]T

β30 = [1, 1]T,β40 = [0.5, j0.5]T

where mk = k, the phase shifts ν1, . . . , ν4 were drawn
independently from the uniform distribution on [0, 2π),
and the fundamental frequency ω0(t) was governed by
the integrated random-walk model [obeying (A4) and
(A5)], starting from ω0(0) = π/4. Note that in this case
ϕ(t) = [u(t), u(t − 1)]T, Φ = I2σ

2
u, b

2
1 = 20, b22 = 6,

b23 = 4, b24 = 1 and b20 = 96 (since
∑4

k=1 b
2
k = 31, there

was a noticeable discrepancy between SNR and effective
SNR).
The approximations (19)–(20) were checked for 3 values
of the signal-to-noise ratio: SNR=0 dB (σv = 5.5678),
SNR=10 dB (σv = 1.7607) and SNR=20 dB (σv =
0.5568), for 2 values of the nonstationarity rate: κ =
10−10 and κ = 10−9, and for 10 values of the adaptation
gain µ, ranging from 0.01 to 0.1. To reduce the number of
design degrees of freedom, the two other gains adopted
for GACF/GACS algorithms were set to: γω = µ2/2 and
γα = µ3/8 – in agreement with the general tendency
observed, under different levels of effective SNR, for the
optimal settings (this rule of thumb was found to work
quite well in practice). The mean-squared frequency and
frequency rate estimation errors were evaluated (for the
optimally tuned GACF algorithm) by means of joint
time and ensemble averaging. First, for each realization
of the measurement noise sequence and each realiza-
tion of the frequency trajectory, the mean-squared errors
were computed from 1000 iterations of the GACF filter
(after the algorithm has reached its steady-state). The
obtained results were next averaged over 50 realizations
of {δ(t), v(t)} and ν1, . . . , ν4.
Figs. 1 and 2 show comparison of theoretical curves
and the time-averaged values of the mean-squared fre-
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Table 2. Optimal GACF/GACS settings and the corresponding
normalized lower tracking bounds.

κ µopt γopt
ω γopt

α LTBω0
/σ2

δ
LTBα0

/σ2
δ

LSBω0
/σ2

δ
LSBα0

/σ2
δ

10−10 0.0472 0.00113 0.0000138 2.05 · 105 8.21 · 101 1.18 · 104 1.38 · 101

5 · 10−10 0.0613 0.00192 0.0000306 9.09 · 104 6.28 · 101 5.28 · 103 1.05 · 101

10−9 0.0685 0.00241 0.0000432 6.39 · 104 5.58 · 101 3.73 · 103 9.39

5 · 10−9 0.0886 0.00407 0.0000955 2.82 · 104 4.26 · 101 1.67 · 103 7.18

10−8 0.0990 0.00509 0.000134 1.97 · 104 3.79 · 101 1.18 · 103 6.40

5 · 10−8 0.127 0.00852 0.000295 8.66 · 103 2.89 · 101 5.28 · 102 4.89

10−7 0.142 0.0106 0.000414 6.06 · 103 2.57 · 101 3.73 · 102 4.36

5 · 10−7 0.181 0.0177 0.000905 2.63 · 103 1.95 · 101 1.67 · 102 3.33

10−6 0.201 0.0219 0.00126 1.83 · 103 1.73 · 101 1.18 · 102 2.96

quency and frequency rate estimation errors obtained
via simulation. Note the good agreement between the-
oretical evaluations and the actual algorithm’s perfor-
mance, which can be observed for SNR ≥ 10 dB. Gen-
erally, the degree of fit improves with decreasing κ and
increasing SNR, which is consistent with the operating
range of the approximating linear filter technique. Sim-
ilar results, not reported here, were obtained for the
GACS algorithm.

7.2 Statistical efficiency

Fig. 3 shows comparison of the theoretical values of the
lower frequency tracking bound LTBω0

and the lower
frequency rate tracking bound LTBα0

with experimen-
tal results obtained for optimally tuned GACF algo-
rithm designed for the system described in Section 7.1.
In agreement with the results of theoretical analysis pre-
sented in Section 6, for small rates of system nonstation-
arity the proposed GACF algorithm is statistically effi-
cient, i.e., under the conditions specified earlier, it can’t
be outperformed by any other tracking algorithm. The
same conclusion can be drawn after inspection of the
plots shown in Fig. 4, illustrating behavior of the opti-
mally tuned GACS algorithm.

7.3 Performance

The aim of this simulation experiment was to com-
pare performance of the proposed GACF/GACS algo-
rithms with that yielded by the unconstrained multiple-
frequency versions of the GANF/GANS algorithms.
The simulated two-tap FIR system (25) was governed by

θ(t) =

[
θ1(t)

θ2(t)

]
=

4∑

k=1

C(t)βk0e
jmk

∑
t

τ=1
ω0(τ)

where C(t) = diag{sin(πt/1000), cos(πt/1000)} and
β10 = [−1,−j]T, β20 = [−0.112, j0.112]T, β30 =
[−0.0402,−j0.0402]T, β40 = [−0.0207, j0.0207]T.
The fundamental frequency was changing sinusoidally
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]

Fig. 1. Average variance of the frequency estimation error
(upper figure) and the frequency rate estimation error (lower
figure) for a nonstationary FIR system with 4 frequency
modes governed by the integrated random-walk model. The
theoretical results (solid lines) are compared with simulation
results obtained for the rate of nonstationarity κ = 10−10

and 10 different values of µ (γω = µ2/2, γα = µ3/8). The
corresponding signal-to-noise ratios were equal to: SNR=0
dB (◦), SNR=10 dB (×) and SNR=20 dB (+).

according to

ω0(t) =
π

10

[
1 +

1

3
sin

(
πt

1000

)]
.
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Fig. 2. Average variance of the frequency estimation error
(upper figure) and the frequency rate estimation error (lower
figure) for a nonstationary FIR system with 4 frequency
modes governed by the integrated random-walk model. The
theoretical results (solid lines) are compared with simulation
results obtained for the rate of nonstationarity κ = 10−9

and 10 different values of µ (γω = µ2/2, γα = µ3/8). The
corresponding signal-to-noise ratios were equal to: SNR=0
dB (◦), SNR=10 dB (×) and SNR=20 dB (+).

Only the odd harmonics were present: mk = 2k − 1,
k = 1, . . . , 4. Similarly as in the previous experiments,
the system was excited with a 4-QAM sequence.
Fig. 7 shows comparison of the mean-squared parame-
ter tracking/smoothing errors yielded by the proposed
GACF/GACS algorithms.All MSE values were obtained
by means of joint time averaging (the evaluation inter-
val [1001,3000] was placed inside a wider analysis inter-
val [1,4000]), and ensemble averaging (50 realizations of
measurement noise were used). The standard deviation
of noise was equal to σv = 0.04. For each value of µ,
the values of adaptation gains γω and γα were chosen
using the rule of thumb described in Section 7.1. Note
that the GACS algorithm yields uniformly better results
than its GACF counterpart. Both GACF and GACS al-
gorithms perform better than the correspnding multifre-
quency GANF and GANS algorithms, respectively.

7.4 Estimation of MRI noise

Magnetic resonance imaging (MRI) equipment is used to
visualize internal structures of the human body without
exposing subjects to harmful radiation. It is utilized in
many medical institutions for diagnostic purposes and,
quite recently, as an aid during some operations – in the
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κ
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α(

t)
|2 >

]

Fig. 3. Comparison of the theoretical values of the lower
frequency (upper figure) and frequency rate (lower figure)
tracking bounds (solid lines) with experimental results ob-
tained for the system with quasi-linear frequency changes for
3 different SNR values: SNR=0 dB (◦), SNR=10 dB (×),
SNR=20 dB (+), and 9 different values of the rate of system
nonstationarity κ.

latter case it works in the nearly real-timemode (Kurumi
et al., 2007).
MRI devices generate very loud harmonic noise (with
intensity exceeding 100 dB) caused by vibration – ow-
ing to the Lorentz force – of the gradient coil. Exposure
to this noise is very annoying both for the patients and
for the medical staff. MRI noise can be reduced using
the active noise control (ANC) techniques, the better
the more accurately one can track the underlying mul-
tiharmonic signal (K > 30). Since this signal is nonsta-
tionary – both the amplitudes and the fundamental fre-
quency change over time – its estimation is a challenging
task. Fig. 8 shows the time plots and periodograms of
the original MRI noise (recorded in the axial mode), as
well as the time plots and periodograms of prediction er-

rors ε(t) = y(t)− ŝ(t|t− 1) = y(t)−
∑K

k=1 f̂k(t)̂bk(t− 1)
yielded by the proposed adaptive comb filter (ACF) and
by the multiple-frequency version of the adaptive notch
filter (ANF). All results were obtained for µ = 0.01,
γω = µ2/2 and γα = µ3/8. The complex-valued ver-
sion of the MRI signal was obtained using the discrete
Hilbert transform.
While the time plots obtained for ANF and ACF look
similar, the corresponding periodograms differ signifi-
cantly. It is clear that the ACF is much more effective
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Fig. 4. Comparison of the theoretical values of the lower
frequency (upper figure) and frequency rate (lower figure)
smoothing bounds (solid lines) with experimental results ob-
tained for the system with quasi-linear frequency changes,
for 3 different SNR values: SNR=0 dB (◦), SNR=10 dB (×),
SNR=20 dB (+), and 9 different values of the rate of system
nonstationarity κ.
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Fig. 5. Real parts (solid lines) and imaginary parts (broken
lines) of system parameters observed in a short time interval.
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Fig. 6. Evolution of the instantaneous fundamental frequency
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Fig. 7. Comparison of the mean-squared parameter track-
ing (◦) and parameter smoothing (∗) errors yielded by the
generalized adaptive notch algorithms (upper figure) and
generalized adaptive comb algorithms (lower figure) for the
two-tap FIR system with sinusoidally varying fundamental
frequency of parameter variation and sinusoidally varying
amplitudes of all harmonics.

in suppressing signal harmonics than ANF, even though
both algorithms used the same starting values. The fail-
ure of the ANF algorithm can be explained by its poor
frequency matching capabilities – after some initial pe-
riod the algorithm locks on dominant harmonics, leaving
the remaining ones unattenuated.

8 Conclusion

The problem of identification of linear stochastic sys-
tems with quasi-harmonically varying parameters was
considered. Both causal and noncausal identification
algorithms were derived, referred to as generalized
adaptive comb filters (GACFs) and generalized adap-
tive comb smoothers (GACSs), respectively. In both
cases the frequency and frequency rate estimation
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Fig. 8. Time plots (upper figures) and periodograms (lower
figures) of the: MRI noise (two top plots), prediction errors
yielded by the ACF algorithm (two middle plots), and pre-
diction errors yielded by the multiple-frequency ANF algo-
rithm (two bottom plots).

properties of the proposed algorithms were analyzed
using the method of approximating linear filter. It
was shown, and later confirmed by means of computer
simulations, that when the fundamental frequency of
parameter changes varies slowly with time according
to the integrated random-walk model, the optimally
tuned GACF/GACS algorithms are (under Gaussian
assumptions) statistically efficient frequency and fre-
quency rate trackers/smoothers, i.e., they reach the
Cramér-Rao-type lower tracking/smoothing bounds –
expressions allowing one to evaluate these bounds were
also derived in the paper.
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Niedźwiecki, M. & Meller, M. (2011a). Identification of quasi-
periodically varying systems with quasi-linear frequency
changes. Proc. 18th IFAC World Congress, Milano, Italy, pp.
9070-9078.
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APPENDIX 1
Derivation of (13) and (14)

Denote by ∆θ̂k(t) = θk(t) − θ̂k(t) the parameter esti-

mation error and let ∆x̂k(t) = Im[θHk (t)Φ ∆θ̂k(t)/b
2
0].

According to (Tichavský & Händel, 1995), when carry-
ing ALF analysis, one should neglect all terms of order

higher than one in∆ω̂k(t), ∆α̂k(t), ∆θ̂k(t), δ(t) and v(t),
including all cross-terms.

To derive recursion for ∆x̂(t) =
∑K

k=1 ∆x̂k(t), note that

θ̂k(t) = ζk(t) + µΦ−1ϕ∗(t)ε(t)

ε(t) = ϕT(t)

K∑

k=1

θk(t) + v(t)−ϕT(t)

K∑

k=1

ζk(t)

where ζk(t) = ej[ω̂k(t−1)+α̂k(t−1)]θ̂k(t− 1) and

α̂k(t) = mkα̂0(t), ω̂k(t) = mkω̂0(t) (26)
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Therefore

θ̂k(t) =
[
I− µΦ−1ϕ∗(t)ϕT(t)

]
ζk(t)

+ µΦ−1ϕ∗(t)ϕT(t)θk(t) + µΦ−1ϕ∗(t)v(t) + ξk(t)

where

ξk(t) = µΦ−1ϕ∗(t)ϕT(t)

K∑

i=1
i6=k

[ θi(t)− ζi(t) ]

Since in the case considered θk(t) = ejωk(t)θk(t−1), the
last relationship leads to

∆θ̂k(t) =
[
I− µΦ−1ϕ∗(t)ϕT(t)

]
θk(t)

−
[
I− µΦ−1ϕ∗(t)ϕT(t)

]
ζk(t)

− µΦ−1ϕ∗(t)v(t) − ξk(t). (27)

Note that ζk(t) can be rewritten in the form ζk(t) =

ejωk(t)e−j∆ω̂k(t−1)e−j∆α̂k(t−1)[θk(t − 1) − ∆θ̂k(t − 1)].

Using the following approximations e−j∆ω̂k(t−1) ∼= 1 −

j∆ω̂k(t−1), e−j∆α̂k(t−1) ∼= 1−j∆α̂k(t−1), that hold for
small frequency and frequency rate errors, respectively,
and applying ALF rules, one arrives at

ζk(t) = ejωk(t)e−j∆ω̂k(t−1)e−j∆α̂k(t−1)×

× [θk(t− 1)−∆θ̂k(t− 1)] ∼= ejωk(t)[ 1− j∆ω̂k(t− 1)]×

× [1− j∆α̂k(t− 1)][θk(t− 1)−∆θ̂k(t− 1)]

∼= ejωk(t)[ 1− j∆ω̂k(t− 1)− j∆α̂k(t− 1)]×

× [θk(t− 1)−∆θ̂k(t− 1)] ∼= θk(t)− ejωk(t)∆θ̂k(t− 1)

− j[∆ω̂k(t− 1) + ∆α̂k(t− 1)]θk(t). (28)

Combining (27) with (28), one obtains

∆θ̂k(t) ∼=
[
I− µΦ−1ϕ∗(t)ϕT(t)

]
ejωk(t)∆θ̂k(t− 1)

+ j
[
I− µΦ−1ϕ∗(t)ϕT(t)

]
[∆ω̂k(t− 1)

+ ∆α̂k(t− 1)]θk(t)− µΦ−1ϕ∗(t)v(t) − ξk(t). (29)

Let ∆θ̃k(t) = ∆θ̂k(t)f
∗
k (t). After multiplying both sides

of (29) with f∗
k (t), one arrives at

∆θ̃k(t) ∼=
[
I− µΦ−1ϕ∗(t)ϕT(t)

]
∆θ̃k(t− 1)

+ j
[
I− µΦ−1ϕ∗(t)ϕT(t)

]
[∆ω̂k(t− 1)

+ ∆α̂k(t− 1)]βk − µΦ−1ϕ∗(t)f∗
k (t)v(t) − ξk(t)f

∗
k (t).
(30)

For small values of adaptation gains µ, γω and γα, the

quantities ∆θ̃k(t), ∆ω̂k(t) and ∆α̂k(t) change slowly
compared to ϕ(t) and fk(t), k = 1, . . . ,K, i.e., (30) can
be regarded as a two-scale difference equation. When

solving such equation for slowly varying quantities, one
is allowed to replace some functionals of the fast vary-
ing quantities with their time averages. This is usually
referred to as a deterministic averaging technique.

Denote by 〈x(t)〉T = (1/T )
∑T−1

i=0 x(t− i) the local aver-
age of x(t), and by 〈x(t)〉∞ = limT 7→∞ 〈x(t)〉T the cor-
responding limiting value (provided it exists).
We will exploit the fact that for any process {ϕ(t)}
obeying (A2), and for sufficiently large values of T , it
holds that

〈
ϕ(t)ϕT(t)

〉
T

∼=
〈
ϕ(t)ϕT(t)

〉
∞

= Φ and〈
ϕ(t)ϕT(t)ejωt

〉
T

∼=
〈
ϕ(t)ϕT(t)ejωt

〉
∞

= 0, ∀ω 6= 0.
According to the first relationship, the data-dependent
matrix I−µΦ−1ϕ∗(t)ϕT(t) in (30) can be replaced with
I − µΦ−1

〈
ϕ(t)ϕT(t)

〉
T

∼= (1 − µ)I. Similarly, accord-
ing to the second relationship, since for sufficiently slow

frequency variations fk(t), f̂k(t), k = 1, . . . ,K, are lo-
cally almost periodic functions of time, it holds that
〈ξk(t)f

∗
k (t)〉T

∼= 0, allowing one to neglect the last term
on the right hand side of (30). Hence, using the averag-
ing technique, one arrives at the following approximate
error equation

∆θ̃k(t) ∼= (1− µ)∆θ̃k(t− 1) + j(1 − µ)[∆ω̂k(t− 1)

+ ∆α̂k(t− 1)]βk − µΦ−1ϕ∗(t)f∗
k (t)v(t). (31)

Multiplying both sides of (31) with βH
k Φ, one obtains

βH
k Φ∆θ̃k(t) ∼= λβH

k Φ∆θ̃k(t− 1)

+ jλ[∆ω̂k(t− 1) + ∆α̂k(t− 1)]βH
k Φβk

− µβH
k ϕ

∗(t)f∗
k (t)v(t) (32)

where λ = 1 − µ. Finally, dividing both sides of equa-
tion (32) by b20, taking imaginary parts, and noting that

βH
k Φ∆θ̃k(t) = θk(t)

HΦ∆θ̂k(t) and βH
k f

∗
k (t) = θHk (t),

one arrives at

∆x̂k(t) ∼= λ∆x̂k(t− 1)

+
λb2k
b20

[ ∆ω̂k(t− 1) + ∆α̂k(t− 1) ] + µek(t)

where ek(t) = −Im
[
βH
k ϕ

∗(t)f∗
k (t)v(t)/b

2
0

]
. Note that

∆x̂(t) =
∑K

k=1 mk∆x̂k(t), e0(t) =
∑K

k=1 mkek(t) and

b20 =
∑K

k=1 m
2
kb

2
k. Hence, after incorporating (26), one

obtains

∆x̂(t) ∼= λ∆x̂(t− 1) + λ[∆ω̂0(t− 1) + ∆α̂0(t− 1)]

+ µe0(t). (33)
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To derive recursions for ∆ω̂0(t) and ∆α̂0(t), note that
in the tracking mode it holds that

g(t) =

∑K
k=1 mk Im

[
ε⋆(t)ϕT(t)f̂k(t)β̂k(t− 1)

]

∑K
k=1 m

2
k β̂

H
k (t− 1)Φβ̂k(t− 1)

∼=

∑K
k=1 mkIm[ε∗(t)ϕT(t)ζk(t)]

b20

and

ε(t) = ϕT(t)θk(t)−ϕ
T(t)ζk(t) +ϕ

T(t)ψk(t) + v(t)

ψk(t) =

K∑

i=1
i6=k

[ θi(t) + ζi(t) ].

Furthermore, Im[ε∗(t)ϕT(t)ζk(t)] = Im[zk(t)−|ϕT(t)ζk(t)|
2]

= Im[zk(t)], where zk(t) = θHk (t)ϕ
∗(t)ϕT(t)ζk(t)

+ψH
k (t)ϕ

∗(t)ϕT(t)ζk(t) +v∗(t)ϕT(t)θk(t).
Using (28) and applying the ALF rules, one obtains the
following approximation

θHk (t)ϕ
∗(t)ϕT(t)ζk(t) ∼= θ

H
k (t)ϕ

∗(t)ϕT(t)θk(t)

− θHk (t− 1)ϕ∗(t)ϕT(t)∆θ̂k(t− 1)

− jθHk (t)ϕ
∗(t)ϕT(t)θk(t)[ ∆ω̂k(t− 1) + ∆α̂k(t− 1) ]

= βH
k ϕ

∗(t)ϕT(t)βk − β
H
k ϕ

∗(t)ϕT(t)∆θ̃(t− 1)

− jβH
k ϕ

∗(t)ϕT(t)βk[ ∆ω̂k(t− 1) + ∆α̂k(t− 1) ]

which, after averaging, leads to

zk(t) ∼= β
H
k Φβk − jβH

k Φβk[ ∆ω̂k(t− 1) + ∆α̂k(t− 1) ]

− βH
k Φ∆θ̃k(t− 1) + v∗(t)ϕT(t)θk(t).

Since βH
k Φβk = b2k, one arrives at

g(t) = Im[z(t)/b20]
∼= −∆x̂(t− 1)−∆ω̂0(t− 1)

−∆α̂0(t− 1) + e0(t).

Note that

∆α̂0(t) = ∆α̂0(t− 1) + δ(t) + γαg(t)

∆ω̂0(t) = ∆ω̂0(t− 1) + ∆α̂0(t− 1) + γωg(t).

Combining the last three equations, one arrives at

∆α̂0(t) ∼= (1− γα)∆α̂0(t− 1) + δ(t) + γαe0(t)

− γα∆ω̂0(t− 1)− γα∆x̂(t− 1) (34)

∆ω̂0(t) ∼= (1− γω)∆ω̂0(t− 1) + (1− γω)∆α̂0(t− 1)

+ γωe0(t)− γω∆x̂(t− 1). (35)

Finally, solving the set of linear equations (33), (34) and
(35) for ∆ω̂0(t) and ∆α̂0(t), one obtains (13) and (14),
respectively.

APPENDIX 2
Derivation of (16)

The relationship E [ek(t)el(t)] = 0, ∀k 6= l stems from
the fact that {v(t)} is a sequence of zero-mean indepen-
dent random variables, independent of {ϕ(t)}. To arrive
at the expression for ρkl(t) we will introduce the follow-
ing notation

v(t) = vR(t) + jvI(t), ηk(t) = β
T
k ϕ(t) = ηkR(t) + jηkI(t)

where the subscript R/I denotes the real/imaginary part
of a complex variable.
Note that

ek(t) = −Im
[
η∗k(t)e

−jφk(t)v(t)/b20

]

=
1

b20

{
[ηkR(t)vR(t) + ηkI(t)vI(t)] sin φk(t)

−[ηkR(t)vI(t)− ηkI(t)vR(t)] cosφk(t)
}
.

Since the sequence {v(t)} is circular, it holds that
E[v2R(t)] = E[v2I (t)] = σ2

v/2 and E[vR(t)vI(t)] = 0. Using
these relationships, and the fact that the process {v(t)}
is independent of {ϕ(t)}, one arrives at

Ev [ek(t)el(t)]

=
σ2
v

2b40

{
[ηkR(t)ηlR(t) + ηkI(t)ηlI(t)] cos [φk(t)− φl(t)]

+ [ηkR(t)ηlI(t) + ηkI(t)ηlR(t)] sin [φk(t)− φl(t)]
}
.
(36)

After elementary but tedious calculations, one can show
that

Eϕ [ηkR(t)ηlR(t) + ηkI(t)ηlI(t)] = Re[βH
k Φβl]

Eϕ [ηkR(t)ηlI(t) + ηkI(t)ηlR(t)] = −Im[βH
k Φβl]. (37)

Finally, combining (36) with (37), one obtains

E [ek(t)el(t)] = Eϕ {Ev [ek(t)el(t)]}

=
σ2
v

2b40

{
Re[βH

k Φβl] cos[φk(t)− φl(t)]

− Im[βH
k Φβl] sin[φk(t)− φl(t)]

}
= ρkl(t).

APPENDIX 3
Computation of Lower Tracking/Smoothing Bounds

In this appendix, we will derive expressions for theoret-
ical upper bounds that limit tracking/smoothing capa-
bilities of any causal/noncausal frequency and frequency
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rate estimation algorithms applied to quasi-periodically
varying systems with quasi-linear frequency changes.
The corresponding lower tracking bounds (LTBs) and
lower smoothing bounds (LSBs) belong to the class of
posterior (or Bayesian) Cramér-Rao bounds, applicable
to signals/systems with random parameters 3 .
Denote by u and y and c0 the vectors of system in-
puts (regarded as a known deterministic sequence, e.g. a
particular realization of a stochastic process), noisy out-
puts, and fixed initial conditions, respectively, and let
x̂(y,u, c0) be an estimator of a real-valued random pa-
rameter vector x based on (y,u, c0). Then, under weak
regularity conditions, one can show that (van Trees,
1968)

E[(x̂(y,u, c0)−x)(x̂(y,u, c0)−x)T|u, c0] ≥ J−1(u, c0)

where

J(u, c0) = −E

[
∂2 log p(y,x|u, c0)

∂x∂xT

]

= E

[
∂ log p(y,x|u, c0)

∂x

∂ log p(y,x|u, c0)

∂xT

]

and p(y,x|u, c0) = p(y|x,u, c0)p(x) is the joint proba-
bility density function of the pair (y,x) given u and c0.
When the input signal is a stochastic process, initial
conditions are random, and averaging is extended to all
realizations of u and c0, one obtains the following result

E[(x̂(y,u, c0)− x)(x̂(y,u, c0)− x)T] ≥ E[J−1(u, c0)]

≥ {E[J(u, c0)]}
−1

= J̄−1

where the second transition stems from the Jensen’s in-
equality for matrices – see Olkin and Pratt (1958).
In the case considered, let xt = [α0(1), . . . , α0(t)]

T, yt =
[y(1), . . . , y(t)]T and ut = [ϕT(1), . . . , ϕT(t)]T.
To simplify further analysis, we will assume, in ad-
dition to (A1)–(A5), that the complex-valued ‘ampli-
tudes’ can be written down in the form βk = βk0e

jνk ,
k = 1, 2, . . . ,K, where βk0 are fixed (determinis-
tic) complex-valued vectors and νk are mutually
independent random phase shifts, distributed uni-
formly over the interval [0, 2π). Note that under
the last assumption it holds that E[βkβ

H
l ] = O,

∀k 6= l. Furthermore, we will assume that α0(0)
is uniformly distributed over [αmin, αmax], and that
ω0(0) is a known deterministic quantity. Hence,
the vector of initial conditions can be specified as
c0 = [β10, . . . ,βK0, ν1, . . . , νK , α0(0), ω0(0)]

T, where
the quantities β10, . . . ,βK0 and ω0(0) are deterministic,
and the quantities ν1, . . . , νK and α0(0) are stochastic.

3 When the estimated quantities are stochastic variables,
rather than unknown deterministic constants, the classical
Cramér-Rao inequality does not apply.

First of all, note that

log p(yt,xt|ut, c0) = log p(yt|xt,ut, c0) + log p(xt).

Since, under the assumptions listed above, the vectors
xt and c0 fully determine θ(τ), τ = 1, . . . , t: θ(τ) =∑K

k=1 βke
jmkφ0(τ), where

φ0(τ) =

τ∑

n=1

ω0(n) = ω0(0) +

τ∑

n=1

n−1∑

m=1

α0(m), (38)

one arrives at (for normally distributed {v(τ)})

log p(yt|xt,ut, c0) = log p[yt|θ(1),ϕ(1), . . . , θ(t),ϕ(t)]

= c1 −
1

σ2
v

t∑

τ=1

|v(τ)|2 = c1 −
1

σ2
v

t∑

τ=1

|y(τ) −ϕT(τ)θ(τ)|2

(39)

where c1 is a constant independent of xt.
Differentiating (39) with respect to α0(m), one obtains

∂ log p(yt|xt,ut, c0)

∂α0(m)

=
2

σ2
v

t∑

τ=1

Re

{
[y(τ) −ϕT(τ)θ(τ)]∗ϕT(τ)

∂θ(τ)

∂α0(m)

}
.

and

∂2 log p(yt|xt,ut, c0)

∂α0(m)∂α0(n)

=
2

σ2
v

t∑

τ=1

Re

{
−
∂θH(τ)

∂α0(n)
ϕ∗(τ)ϕT(τ)

∂θ(τ)

∂α0(m)

+ [y(τ)−ϕT(τ)θ(τ)]∗ϕT(τ)
∂2θ(τ)

∂α0(m)∂α0(n)

}

=
2

σ2
v

t∑

τ=1

Re
{

−
∂θH(τ)

∂α0(n)
ϕ∗(τ)ϕT(τ)

∂θ(τ)

∂α0(m)

+ v∗(t)ϕT(τ)
∂2θ(τ)

∂α0(m)∂α0(n)

}
.

where the last transition stems from y(τ) = ϕT(τ)θ(τ)+
v(τ).
This leads to

E

[
∂2 log p(yt|xt,ut, c0)

∂α0(m)∂α0(n)

]

= −
2

σ2
v

t∑

τ=1

Re

{
E

[
∂θH(τ)

∂α0(n)
ϕ∗(τ)ϕT(τ)

∂θ(τ)

∂α0(m)

]}

= −
2

σ2
v

t∑

τ=1

E

[
∂θH(τ)

∂α0(n)
Φ

∂θ(τ)

∂α0(m)

]
.
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Using (38), one arrives at

∂θ(τ)

∂α0(m)
= j

K∑

k=1

mkβke
jmkφ0(τ)

k∑

s=1

s−1∑

l=1

δτ,l

= j

K∑

k=1

mkβke
jmkφ0(τ)max(τ −m, 0)

where δτ,l = {0 if τ 6= l, 1 if τ = l} denotes theKronecker
delta. This allows one to reach

E

[
∂θH(τ)

∂α0(n)
Φ

∂θ(τ)

∂α0(m)

]

= −
K∑

k=1

m2
kβ

H
k Φβk max(τ −m, 0)max(τ − n, 0)

= −
K∑

k=1

m2
kb

2
k max(τ −m, 0)max(τ − n, 0) ,

where the crossterms βH
k Φβl = ej(νl−νk)βH

k0Φβl0, k 6= l
average to zero due to independence of the phase shifts
νk and νl.
Therefore

−E

[
∂2 log p(yt|xt,ut, c0)

∂xt∂xT
t

]
=

2b20
σ2
v

At (40)

where [At]mn =
∑t

τ=1max(τ −m, 0) ·max(τ − n, 0).

In an analogous way, one can derive the second compo-
nent of the generalized Fisher matrix. First, note that

log p(xt)

= log p[ α0(1), α0(2)− α0(1), . . . , α0(t)− α0(t− 1) ]

= c2 + c3 −
1

2σ2
δ

t∑

τ=2

w2(τ)

= c2 + c3 −
1

2σ2
δ

t∑

τ=2

[α0(τ)− α0(τ − 1)]2 (41)

where c2 = log[1/(αmax − αmin)] and c3 are constants
independent of xt.
Differentiation of (41) results in

log p(xt)

α0(m)
= −

1

2σ2
δ

t∑

τ=2

∂

∂α0(m)
[α0(τ) − α0(τ − 1)]2

=
1

σ2
δ





α0(2)− α0(1) for m = 1

α0(m+ 1)− 2α0(m) + α0(t− 1) for 1 < m < t

α0(t− 1)− α0(t) for m = t

=
1

σ2
δ





δ(2) for m = 1

δ(m+ 1)− δ(m) for 1 < m < t

−δ(t) for m = t

which leads to

E

[
∂ log p(xt)

∂xt

∂ log p(xt)

∂xT
t

]
=

1

σ2
δ

Bt (42)

where

Bt =




1 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . .

0 . . . 0 −1 2 −1

0 . . . 0 0 −1 1




.

Combining (40) with (42), one obtains

J̄t =
2b20
σ2
v

At +
1

σ2
δ

Bt =
1

σ2
δ

[2κAt +Bt] .

The asymptotic (steady-state) bounds on accuracy of
frequency and frequency rate estimates can be obtained
from

LTBω0
= lim

t7→∞
inf
ω̂0(·)

E{ [ω0(t)−ω̂0(t)]
2} = lim

t7→∞
bT
t J

−1
t bt

LTBα0
= lim

t7→∞
inf
α̂0(·)

E{ [α0(t)− α̂0(t)]
2} = lim

t7→∞

[
J−1
t

]
tt

wherebT
t = [1T

t−1, 0], and 1t denotes the vector of ones of
length t. The analogous expressions for lower smoothing
bounds read

LSBω0
= lim

t7→∞
inf
ω̃0(·)

E{ [ω0(t)− ω̃0(t)]
2} = lim

t7→∞
cTt J

−1
2t ct

LSBα0
= lim

t7→∞
inf
α̃0(·)

E{ [α0(t)− α̃0(t)]
2} = lim

t7→∞

[
J−1
2t

]
tt

where cTt = [1T
t−1,0

T
t+1] and 0t denotes the vector of

zeros of length t. The values of LTB and LSB, shown in
Table 1, were computed numerically for t ranging from
100 to 600 (the convergence is slower for smaller values
of κ).
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