380

Cent. Eur. J. Phys. « 11(3) - 2013 » 380-386
DOI: 10.2478/s11534-013-0186-4

\//
VERSITA

Central European Journal of Physics

Acoustic field and the entropy mode induced by it in
a waveguide filled with some non-equilibrium gases

Research Article

Anna Perelomova*

Gdansk University of Technology,
Faculty of Applied Physics and Mathematics,
ul. Narutowicza 11/12, 80-952 Gdansk, Poland

Received 8 November 2012; accepted 31 January 2013

Abstract:

The non-linear propagation of an acoustic beam in a rectangular waveguide is considered. The medium

of sound propagation, is a gas where thermodynamically non-equilibrium processes take place: such as
exothermic chemical reactions or excitation of vibrational degrees of a molecule’s freedom. The incident
and reflected compounds of the acoustic field do not interact in the leading order in the case of periodic
weakly nonlinear sound with zero mean value of velocity. The acoustic heating or cooling in a waveguide

is discussed.
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1. Introduction

As a rule, sound waves propagate over bounded vol-
umes. Many studies are devoted to resonators of different
shapes, above all, those filled with newtonian fluids [1, 2].
Kaner et. al. introduced the analytical method of different
scales to describe the acoustic field in one-dimensional
resonators [3]. This method uses slow dependence of the
shape of the progressive wave on nonlinearity and atten-
uation, and its fast dependence on the retarded time. In
this way, it becomes possible to consider the wave field
in a resonator as a sum of non-interacting planar waves,
which travel in opposite directions if they are periodic and
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their mean values are zero [4]. It has been established,
that nonlinearity leads to discontinuities in the waveforms
propagating over free space or bounded volumes [5]. That
is why many studies are devoted to the shock waves in
resonators [6, 7].

Non-equilibrium molecular physics developed quickly due
to the laser revolution in physics and chemistry. Di-
atomic gases with vibrationally excited degrees of free-
dom, non-isothermal plasma, chemically active fluids, and
suspensions of microparticles in a gas are examples of
non-equilibrium media [8, 9]. The high-frequency sound
velocity in the non-equilibrium fluids is smaller than the
low-frequency one, that reflects their anomalous acous-
tic dispersion [10, 11]. The bulk viscosity takes negative
values making a non-equilibrium fluid acoustically active.
Studies made in the last few decades focused mainly on
the non-linear hydrodynamics of non-equilibrium media
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[12-14]. Attention was also paid to the resonant interac-
tion of waves in relaxing gases [15].

If the sound energy is to be transmitted over long dis-
tances, the only way to do it effectively, is to use waveg-
uides. The theory of wavequides is well developed, in-
cluding those over which nonlinear waves propagate, and
those of long scale, such as atmospheric waveguides,
where a wave propagates over stratified or layered back-
ground [16]. As far as the author knows, weakly nonlinear
propagation of sound in a wavequide which is filled with
a non-equilibrium gas, is a new subject of study. As well
as in the case of resonators containing a newtonian fluid,
the planar waves, incident and reflected, do not interact in
the leading order in the volume of a wavequide if they are
periodic and zero on average (Sec. 2). The acoustic field
in a rectangular waveguide, is considered before and after
formation of discontinuities. The generic parameter which
describes equilibrium or non-equilibrium processes in a
gas, B, is negative in the equilibrium and positive in the
non-equilibrium regimes. Discontinuity is always formed
in the non-equilibrium regime. Despite enlargement of
sound magnitude, the nonlinear attenuation on the front of
the saw-tooth wave occurs, and both these opposite phe-
nomena lead to stabilization of the peak magnitude of the
shock wave which tends to some positive value in depen-
dence on B (Sec. 2). In the equilibrium regime, discontinu-
ity may not form at all. If that happens, the peak pressure
of the shock wave quickly drops to zero. The non-linear
generation of non-acoustic modes, such as the entropy
mode, is anomalous in the non-equilibrium regime and
yields in acoustic cooling instead of heating (Sec. 3). In
the subsections below, two different non-equilibrium gases
are considered; the first with excited vibrational degrees
of a molecule’s freedom, and the second with exothermic
chemical reactions. Despite the different mechanisms of
non-equilibrium, they may be described by the generic
parameter mentioned above, B, which makes it possible
to describe the wave field in the both cases by means of
the same equations.

1.1. Gases with excited vibrational degrees of
molecule’s freedom

The first example of a fluid where equilibrium or non-
equilibrium thermodynamic processes take place, is a gas
whose steady state is maintained by pumping energy into
the vibrational degrees of the molecule’s freedom by power
| withdrawal from the translational vibrational energy ¢
per unit mass has the form [8]:

de  €— ()

— = /. 1
dt T + M

The equilibrium value of the vibrational energy at given
temperature T is denoted by &.4(T), and 7(p, T) marks
the vibrational relaxation time. The quantity &.4(7T) in
the case of a system of harmonic oscillators, equals:

hQ
m (exp(hQ/kgT) — 1)’

(2)

€eq(T) =

where m is the mass of a molecule, hQ) is the magnitude
of the vibrational quantum, and kg is the Boltzmann con-
stant. Eq. (2) is valid over the temperatures, where one
can neglect anharmonic effects, i.e., below the characteris-
tic temperatures, which are fairly high for most molecules
[8, 9]. The quantity

_(V_1)2T0 Cv 5_5&72

B:
2¢3 T ©? dT )/,

)

is positive in the non-equilibrium regime of excitation of
internal degrees of molecule’s freedom, and negative in
the equilibrium regime. It is the quantity evaluated at
unperturbed pg, To; y is the specific heat ratio in an ideal
gas, c is the speed of sound of infinitely small magnitude
in an ideal gas, and C, = de.q/dT. The non-equilibrium
excitation is possible in principle, due to negative dt/dT.
The relaxation time in the most important cases may be
thought of as a function of temperature accordingly to
Landau and Teller with some positive constants A and B,
7(T) = Aexp(BT~"7) [8, 17). There exists the threshold
quantity of pumping magnitude /, starting from which the
excitation is irreversible, since € — g,y = /1.

1.2. Gases in which exothermic chemical re-
action occur

For this kind of processes in a gas,

Qoy = 1)(Qp + (v = 1)0O1)

B= 2¢2m

(4)

is the quantity evaluated at unperturbed pq, Ty, Yo, where
Y denotes mass fraction of a reagent A* in A* — B*
exothermic reactions; Q is the heat produced in a medium
per one molecule due to a chemical reaction, Qy =
O(To, po. Yo) [18]. The dimensionless quantities Qr, Q,
are conditioned by dependence of the heat produced due
to a chemical reaction on temperature and density of the
mixture:

,o,,—ﬂ(@ )

ar ) T0.p0.Y0 - Q \ dp ) T0.p0.Y0 .

381



http://mostwiedzy.pl

Acoustic field and the entropy mode induced by it in a waveguide filled with some non-equilibrium gases

Downloaded from mostwiedzy.pl

AN\ MOST

o

Figure 1. The geometry of a waveguide and sound beam path in it.

2. Potential and the wave perturba-
tions in a waveguide

The non-linear equation which describes velocity poten-
tial in gases where the non-equilibrium relaxation takes
place, in the leading order is

2
a—(P—CZA(p—ZCBa—(f:—ZV(p( a"’) (y— 1)A<pa"’

Jt

(6)
This wave equation in ¢ differs from the well-known equa-
tion describing lossless flows by the term including param-
eter B, which reflects attenuation (if B < 0) or amplifi-
cation of sound in a medium [19]. Some approximations
should be introduced to obtain simplified wave equations
that are more amenable to analysis, since even in the case
of a lossless perfect gas, no analytical solutions are avail-
able for unsteady flow apart from those for planar waves.
These approximations are introduced next. We will con-
sider the velocity potential in a waveguide consisting of
two parts,

k k
=t— x4+ 2y, T=ypt),
oi(T wX+wy ut)

k k
=t—2x— "2y, T =upt), 7
(2 o WY ut) (7)

where p is a generic small parameter that characterizes
the smallness of both nonlinearity and attenuation (or am-
plification), k, k, are components of the wave vector, and
w = c/k? + kZ. Fig. 1 illustrates the geometry of a flow.
Our primary objective is to derive model equations valid
at order p? in a wavequide. Eq. (6) with account for (7)
may be rewritten in the leading order as follows,

2 2
2u( O, O )—2cB(aq)1+a(pz)=

61107' 01207' 01’1 012

_ v+ (09 g 09, g 01 O Og2 Oy
¢ \dn ot On 0tF Oy 02 O, 0T

Ak (0@ 02p, 0, By
w2 oty 072 0T, 0T}

(8)

Returning to the variable t and averaging all terms over
periods in 7, (the first equation in the set which follows)
and in 7 (the second one), allows to subdivide equations
governing @(1q, t) and @a(12, 1):

Fo_ g0 __v+109p Fo
Jdty 0t oy 2¢2 0y 017’

2 2
6¢2_CB%:_V+1%8¢;. )
8126t 812 2(,‘2 aTz 612

After integration, they take the form

a(P1 B _ y + ‘] aﬂ 2
at 4 4c2 \or |
dgo v+ [0 2
cBg hac I 10
ot 2="a ( 0T, (10)

Eqs(10) are valid if ¢ is a periodic function of 7, and
¢, is a periodic function of 1,. Since uy, = uy1 + Uyn =

ky
76(% + ¢2) =2 (% 4 %) and uy = uyq +uyp =

ox w \" O
5} k, [0 d
((mai:(m) = Zg (a—(ﬁj — afzz ) the periodicity of poten-

tials means that the averaged over periods components of
velocity equal zero. Hence, the waves determined by op-
positely directed transversal components of the wave vec-
tor, do not interact in the volume of waveguide. Equations
describing parts of the velocity vector, follow from Egs (9):

duy 1 cBu. . = y+1 “, Ouy s
ot T2 kM o
Ouy y+1lw duy
3 cBu,, = S k—uXZTT2 , (11
Ouys vtlw duy
3t —cBuy, = S0 k Uy ar,
duy y+1w ou, o
a; = Buyy ==+ % yz—a;_’z. (12)
The equations which describe the acoustic pressure,
, g1 09,
= N — — +—, 13
p'=pi+p: p"(au + 95 (13)
are
op1 y+1 dpi dp2 y+1 aPz
ot PV T 225, P on ot PP T a2, ((19%
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The solutions of Egs (11), and (14) may include discon-
tinuities, because the form of potential (7) agrees with
a saw-tooth wave moving with speed ¢, if its magnitude
slowly varies with time. That is valid for symmetric weakly
attenuating (or rising) pulses for which the condition of
zero mean values of all components of velocity is also
true. In the new variables

T=wt, M =wTh, N =WwT,

k, k
X=X vy ¢ ,Ky:ny, (15)
c c w w

cB - dexp(—b1)
b=", U=-—2"0
w Mc

P’ exp(—b1)
P:szo, 9:exp(b‘r)—1,

where M is the acoustic Mach number, Eqgs (11), and (14)
take the form

Uy G, 09Uy _ o 09Uy G 0Up _
0 K, “om O 90 K, “Yom
16

Uy G, Uy _ Wy G, Uy, _
0 K, " on 06 K, “Pam

9P 9P P, P,

1 _kp =0, =ZZ2_KP,—2=0 (17
90 Y on; 90 2o, (17)
where G = w Note that Ky, K, should be less

than unit, and that their ratio is K,/K, = tana. The
solutions of Eqs (16), and (17) before formation of discon-
tinuities, are [19]

U= Uga+ U= 2i j"(”“*)(Si”(Z”;) - stn(nm2))

’

n=1

Uy=Upi + Uy = ZZ Ja(nagy)(=sin(nm) + Sln(nnz)),

p— noy
(18)
P=p 4P, =2y no)sin(m) +sin(nm))
n=1 no
Go Go
Ux:?xr Uy:?y, o= Go. (19)

The boundary condition at the planes y = 0 and y = L
are given by equalities

Upa(X, Y = 0,) 4 Upa(X, ¥ = 0,1) = Upa(X, ¥ = Z=, 1)+

+ Upa(X, Y =25 1) =0. (20)

The width of a wavequide equals the integer number of
transversal wave lengths, L = nA,. That, in fact, deter-
mines the spectrum of vertical components of wavenumbers
ky. Fig. 2 shows the vertical velocity in a wavequide be-
fore formation of a discontinuity in the non-equilibrium
regime. In calculations of (18), only ten first summands
were taken into account.

The dimensionless time of shock formation for the ver-
tical profile of initially sinusoidal velocity, is T =

G

and U, take the form of the saw-tooth shapes consisting

1 K
3 n |1+ —y) For enough large times, g, > 7/2, Uy,

of straight-line parts,

T .
. — — <
Uy T+ GOIK, f—r<ny<m,
¥ .
Ur,=—"——— if—n< . 21
b2 1+ GOIK, f—n<n<mn (21)

Parts of acoustic pressure Py and P, take the form of the
saw-tooth waves, if 0 > 7/2:

T .
Py =- f—m < ,
1 15 Co § <<
(] .
Py=——2— if—n< . 22
> T Co f—n<n<m (22)

In a non-equilibrium gas, the peak magnitude of any saw-
tooth waveform does not tend to zero when time increases.
Enlargement of sound intensity is suppressed by nonlinear
attenuation on the front of a saw-tooth wave. The peak
magnitude of the dimensionless vertical velocity in the
incident and reflected waves is G/K,, and that of acoustic
pressure is G. In the equilibrium regime, they quickly tend
to zero. In an equilibrium gas, discontinuity in the profile

of vertical velocity does not form at all if Ky < —1, that
is, for large enough attenuation. The peak dimensionless
magnitude of the vertical velocity at the same times as
in the Fig. 3, for b = —0.01 (that is, in the equilibrium
regime) and K, = 0.2, equals 0.08 at T = 27,,, and
0.001 at T = 2074, respectively. T, is the value
calculated for b = 0.01. For b = —0.01 and K, = 0.8,
discontinuity does not form at all.

3. Acoustic heating

The excess density belonging to the non-wave entropy
mode in the field of non-interacting incident and reflected
wave, is governed by the following equation [20]:

apent _ l aTent

- = bM*(y — 1) exp(2b1) | P + P?
5 =T e = BMy = Nex(2br) (P P3).

(23)
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Figure 2. Vertical velocity u,/(Mc) in a waveguide for different set

of parameters before formation of discontinuity. For M =
0.01, b = 0.01, y = 1.4, the dimensionless time of discon-
tinuity formation T equals 15if K, = 0.2and 51if K, = 0.8.

=0T, K,=0.2, M=0.01, b=0.01

=0T K,=0.8, M=0.01, b=0.01

b 10 00
=207y, K,=0.8, M=0.01, b=0.01

Figure 3. Vertical velocity uy/(Mc) in a waveguide for different set

of parameters in a saw-tooth wave. For M = 0.01, b =
0.01, y = 1.4, the dimensionless time of saw-tooth shape
formation T, equals 23 if K, = 0.2 and 72 if K, = 0.8.
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in the case of vibrationally excited gas, and

0pPent

— _ 2(y, _
£t = —bMP(y = 1) exp(2b7)

P, [T
25— /
0T J_ioxjwrskyylw

v+2)(

= bMP? exp(2br)7(y_1))f P; + P3)

in the case of chemically reacting gas [21]. The top
line denotes average over the sound period. Equa-
tions (23), and (24) are valid for periodic acoustic
pressures with zero mean values. Before forming of
discontinuity, the rate of heat release (it is propor-
tional to —dpe,:/0T) varies with time as bexp(—2bT),
aP, [T

0Ty —kexlwtkyylw

P, (™
_&/ P,dt, = 0.5. It depends on the sign
aTZ —kyxlw—kyylw

since P? = Pidt = P; =

of b: temperature of the medium of sound propagation
increases if b < 0 and decreases otherwise. Velocity, as-
sociated with the entropy mode, is zero and therefore does
not disturb the boundary conditions (20). In the case of
the saw-tooth wave, the acoustic heating is

O0Pent 2 b exp(2bT)
— =2M -1 2
ot V=30 Gepon 1y @)
in the chemically reacting gases, and
O0Pent 5> 2y =Ty +2) b exp(2bT)
— =2M
ot d 3y (1 + G(exp(bt) — 1)?)
(26)

in the gases with excited internal degrees of a molecule
freedom. In the non-equilibrium regime, propagation of
sound is followed by cooling of a medium.

4. Concluding remarks

In this study, the peculiarities of a weakly nonlinear pe-
riodic acoustic beam which propagates in a waveguide
filled with relaxing medium, which may be thermodynam-
ically non-equilibrium, are studied. If the mean value of
acoustic pressure is zero, the incident and reflected waves
do not interact in a volume of resonator in the leading
order. The periodic symmetric waves with discontinuities
also do not interact. That allows the evaluation of pertur-
bations in the sound field (pressure, velocity) for different

P, (™
Pidt + &/ P,dt,

)
+7"Y (PZ+P3)| =

aT2 kx| w—kyy/w

(24)

(

set of wavenumbers in a wavequide. Anomalous increase
in the sound amplitude as a beam propagates, along with
the nonlinear attenuation, result in the stabilizing of the
peak magnitude in the shock wave in a non-equilibrium
gas. Vice versa, in the equilibrium regime, the peak acous-
tic pressure rapidly decreases and discontinuity may not
form at all for large enough attenuation connected with
relaxation in a gas.

The nonlinear effects of sound in the non-equilibrium me-
dia also behave atypically. The theory of anomalous cool-
ing of the medium (in contradistinction to acoustic heat-
ing) and streaming (with streamlines inverted as compared
with direction of sound propagation) has been recently
developed in reference to aperiodic and periodic in time
sound beams, including beams with discontinuities in un-
bounded volumes of gases [21-23]. In waveguides, an
increase (or decrease) in the temperature of a gas does
not disturb the boundary conditions since velocity asso-
ciated with the entropy motion, is insignificant. Since the
squared speed sound is proportional to the background
temperature, the vertical wave number varies in course
of time. For constant angle of incidence a, the vertical
wave number k, changes in inverse ratio to c in order
to hold the sound frequency. Hence, it enlarges in the
non-equilibrium regime and gets smaller otherwise pro-
portionally to initial magnitude of acoustic pressure in
the incident wave and according to B.
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