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Abstract: The non-linear propagation of an acoustic beam in a rectangular waveguide is considered. The medium
of sound propagation, is a gas where thermodynamically non-equilibrium processes take place: such as
exothermic chemical reactions or excitation of vibrational degrees of a molecule’s freedom. The incident
and reflected compounds of the acoustic field do not interact in the leading order in the case of periodic
weakly nonlinear sound with zero mean value of velocity. The acoustic heating or cooling in a waveguide
is discussed.
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1. Introduction

As a rule, sound waves propagate over bounded vol-umes. Many studies are devoted to resonators of differentshapes, above all, those filled with newtonian fluids [1, 2].Kaner et. al. introduced the analytical method of differentscales to describe the acoustic field in one-dimensionalresonators [3]. This method uses slow dependence of theshape of the progressive wave on nonlinearity and atten-uation, and its fast dependence on the retarded time. Inthis way, it becomes possible to consider the wave fieldin a resonator as a sum of non-interacting planar waves,which travel in opposite directions if they are periodic and
∗E-mail: anpe@mif.pg.gda.pl

their mean values are zero [4]. It has been established,that nonlinearity leads to discontinuities in the waveformspropagating over free space or bounded volumes [5]. Thatis why many studies are devoted to the shock waves inresonators [6, 7].Non-equilibrium molecular physics developed quickly dueto the laser revolution in physics and chemistry. Di-atomic gases with vibrationally excited degrees of free-dom, non-isothermal plasma, chemically active fluids, andsuspensions of microparticles in a gas are examples ofnon-equilibrium media [8, 9]. The high-frequency soundvelocity in the non-equilibrium fluids is smaller than thelow-frequency one, that reflects their anomalous acous-tic dispersion [10, 11]. The bulk viscosity takes negativevalues making a non-equilibrium fluid acoustically active.Studies made in the last few decades focused mainly onthe non-linear hydrodynamics of non-equilibrium media
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[12–14]. Attention was also paid to the resonant interac-tion of waves in relaxing gases [15].If the sound energy is to be transmitted over long dis-tances, the only way to do it effectively, is to use waveg-uides. The theory of waveguides is well developed, in-cluding those over which nonlinear waves propagate, andthose of long scale, such as atmospheric waveguides,where a wave propagates over stratified or layered back-ground [16]. As far as the author knows, weakly nonlinearpropagation of sound in a waveguide which is filled witha non-equilibrium gas, is a new subject of study. As wellas in the case of resonators containing a newtonian fluid,the planar waves, incident and reflected, do not interact inthe leading order in the volume of a waveguide if they areperiodic and zero on average (Sec. 2). The acoustic fieldin a rectangular waveguide, is considered before and afterformation of discontinuities. The generic parameter whichdescribes equilibrium or non-equilibrium processes in agas, B, is negative in the equilibrium and positive in thenon-equilibrium regimes. Discontinuity is always formedin the non-equilibrium regime. Despite enlargement ofsound magnitude, the nonlinear attenuation on the front ofthe saw-tooth wave occurs, and both these opposite phe-nomena lead to stabilization of the peak magnitude of theshock wave which tends to some positive value in depen-dence on B (Sec. 2). In the equilibrium regime, discontinu-ity may not form at all. If that happens, the peak pressureof the shock wave quickly drops to zero. The non-lineargeneration of non-acoustic modes, such as the entropymode, is anomalous in the non-equilibrium regime andyields in acoustic cooling instead of heating (Sec. 3). Inthe subsections below, two different non-equilibrium gasesare considered; the first with excited vibrational degreesof a molecule’s freedom, and the second with exothermicchemical reactions. Despite the different mechanisms ofnon-equilibrium, they may be described by the genericparameter mentioned above, B, which makes it possibleto describe the wave field in the both cases by means ofthe same equations.
1.1. Gases with excited vibrational degrees of
molecule’s freedom

The first example of a fluid where equilibrium or non-equilibrium thermodynamic processes take place, is a gaswhose steady state is maintained by pumping energy intothe vibrational degrees of the molecule’s freedom by power
I withdrawal from the translational vibrational energy εper unit mass has the form [8]:

dε
dt = −ε − εeq(T )

τ + I. (1)

The equilibrium value of the vibrational energy at giventemperature T is denoted by εeq(T ), and τ(ρ, T ) marksthe vibrational relaxation time. The quantity εeq(T ) inthe case of a system of harmonic oscillators, equals:
εeq(T ) = h̄Ω

m (exp(h̄Ω/kBT )− 1) , (2)
where m is the mass of a molecule, h̄Ω is the magnitudeof the vibrational quantum, and kB is the Boltzmann con-stant. Eq. (2) is valid over the temperatures, where onecan neglect anharmonic effects, i.e., below the characteris-tic temperatures, which are fairly high for most molecules[8, 9]. The quantity

B = − (γ − 1)2T02c3
(
Cv
τ + ε − εeq

τ2 dτ
dT

)
0 (3)

is positive in the non-equilibrium regime of excitation ofinternal degrees of molecule’s freedom, and negative inthe equilibrium regime. It is the quantity evaluated atunperturbed p0, T0; γ is the specific heat ratio in an idealgas, c is the speed of sound of infinitely small magnitudein an ideal gas, and Cv = dεeq/dT . The non-equilibriumexcitation is possible in principle, due to negative dτ/dT .The relaxation time in the most important cases may bethought of as a function of temperature accordingly toLandau and Teller with some positive constants Ã and B̃,
τ(T ) = Ã exp(B̃T−1/3) [8, 17]. There exists the thresholdquantity of pumping magnitude I , starting from which theexcitation is irreversible, since ε − εeq ≈ Iτ .
1.2. Gases in which exothermic chemical re-
action occur
For this kind of processes in a gas,

B = Q0(γ − 1)(Qρ + (γ − 1)QT )2c2m (4)
is the quantity evaluated at unperturbed p0, T0, Y0, where
Y denotes mass fraction of a reagent A∗ in A∗ → B∗exothermic reactions; Q is the heat produced in a mediumper one molecule due to a chemical reaction, Q0 =
Q(T0, ρ0, Y0) [18]. The dimensionless quantities QT , Qρare conditioned by dependence of the heat produced dueto a chemical reaction on temperature and density of themixture:
QT = T0

Q0
(
∂Q
∂T

)
T0,ρ0 ,Y0 , Qρ = ρ0

Q0
(
∂Q
∂ρ

)
T0,ρ0,Y0 . (5)
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Figure 1. The geometry of a waveguide and sound beam path in it.

2. Potential and the wave perturba-
tions in a waveguide
The non-linear equation which describes velocity poten-tial in gases where the non-equilibrium relaxation takesplace, in the leading order is
∂2φ
∂t2 −c2∆φ−2cB∂φ∂t = −2∇φ(∇∂φ

∂t

)
−(γ−1)∆φ∂φ∂t .(6)This wave equation in φ differs from the well-known equa-tion describing lossless flows by the term including param-eter B, which reflects attenuation (if B < 0) or amplifi-cation of sound in a medium [19]. Some approximationsshould be introduced to obtain simplified wave equationsthat are more amenable to analysis, since even in the caseof a lossless perfect gas, no analytical solutions are avail-able for unsteady flow apart from those for planar waves.These approximations are introduced next. We will con-sider the velocity potential in a waveguide consisting oftwo parts,

φ1(τ1 = t − kx
ω x + ky

ω y, T = µt),
φ2(τ2 = t − kx

ω x −
ky
ω y, T = µt), (7)

where µ is a generic small parameter that characterizesthe smallness of both nonlinearity and attenuation (or am-plification), kx , ky are components of the wave vector, and
ω = c

√
k2
x + k2

y . Fig. 1 illustrates the geometry of a flow.Our primary objective is to derive model equations validat order µ2 in a waveguide. Eq. (6) with account for (7)may be rewritten in the leading order as follows,
2µ( ∂2φ1

∂τ1∂T + ∂2φ2
∂τ2∂T

)
− 2cB(∂φ1

∂τ1 + ∂φ2
∂τ2

) =

− γ + 1
c2

(
∂φ1
∂τ1

∂2φ1
∂τ21 + ∂φ2

∂τ2
∂2φ2
∂τ22 + ∂φ1

∂τ1
∂2φ2
∂τ22 + ∂φ2

∂τ2
∂2φ1
∂τ21

)+
+ 4k2

y

ω2
(
∂φ1
∂τ1

∂2φ2
∂τ22 + ∂φ2

∂τ2
∂2φ1
∂τ21

)
. (8)

Returning to the variable t and averaging all terms overperiods in τ2 (the first equation in the set which follows)and in τ1 (the second one), allows to subdivide equationsgoverning φ1(τ1, t) and φ2(τ2, t):
∂2φ1
∂τ1∂t − cB

∂φ1
∂τ1 = −γ + 12c2 ∂φ1

∂τ1
∂2φ1
∂τ21 ,

∂2φ2
∂τ2∂t − cB

∂φ2
∂τ2 = −γ + 12c2 ∂φ2

∂τ2
∂2φ2
∂τ22 . (9)

After integration, they take the form
∂φ1
∂t − cBφ1 = −γ + 14c2

(
∂φ1
∂τ1

)2
,

∂φ2
∂t − cBφ2 = −γ + 14c2

(
∂φ2
∂τ2

)2
. (10)

Eqs(10) are valid if φ1 is a periodic function of τ1, and
φ2 is a periodic function of τ2. Since ux = ux,1 + ux,2 =
∂(φ1 + φ2)

∂x = −kxω
(
∂φ1
∂τ1 + ∂φ2

∂τ2
), and uy = uy,1 + uy,2 =

∂(φ1 + φ2)
∂y = ky

ω

(
∂φ1
∂τ1 −

∂φ2
∂τ2

), the periodicity of poten-tials means that the averaged over periods components ofvelocity equal zero. Hence, the waves determined by op-positely directed transversal components of the wave vec-tor, do not interact in the volume of waveguide. Equationsdescribing parts of the velocity vector, follow from Eqs (9):
∂ux,1
∂t − cBux,1 = γ + 12c2 ω

kx
ux,1 ∂ux,1∂τ1 ,

∂ux,2
∂t − cBux,2 = γ + 12c2 ω

kx
ux,2 ∂ux,2∂τ2 , (11)

∂uy,1
∂t − cBuy,1 = −γ + 12c2 ω

ky
uy,1 ∂uy,1∂τ1 ,

∂uy,2
∂t − cBuy,2 = γ + 12c2 ω

ky
uy,2 ∂uy,2∂τ2 . (12)

The equations which describe the acoustic pressure,
p′ = p1 + p2 ≈ −ρ0

(
∂φ1
∂τ1 + ∂φ2

∂τ2
)
, (13)

are
∂p1
∂t −cBp1 = γ + 12c2ρ0 p1 ∂p1

∂τ1 ,
∂p2
∂t −cBp2 = γ + 12c2ρ0 p2 ∂p2

∂τ2 .(14)
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The solutions of Eqs (11), and (14) may include discon-tinuities, because the form of potential (7) agrees witha saw-tooth wave moving with speed c, if its magnitudeslowly varies with time. That is valid for symmetric weaklyattenuating (or rising) pulses for which the condition ofzero mean values of all components of velocity is alsotrue. In the new variables
τ = ωt, η1 = ωτ1, η2 = ωτ2,
X = ωx

c , Y = ωy
c , Kx = ckx

ω , Ky = cky
ω , (15)

b = cB
ω , ~U = ~u exp(−bτ)

Mc ,

P = ρ′ exp(−bτ)
Mc2ρ0 , θ = exp(bτ)− 1,

where M is the acoustic Mach number, Eqs (11), and (14)take the form
∂Ux,1
∂θ − G

Kx
Ux,1 ∂Ux,1∂η1 = 0, ∂Ux,2

∂θ − G
Kx
Ux,2 ∂Ux,2∂η2 = 0,(16)

∂Uy,1
∂θ + G

Ky
Uy,1 ∂Uy,1∂η1 = 0, ∂Uy,2

∂θ − G
Ky
Uy,2 ∂Uy,2∂η2 = 0,

∂P1
∂θ − KP1 ∂P1

∂η1 = 0, ∂P2
∂θ − KP2 ∂P2

∂η2 = 0, (17)
where G = (γ + 1)M2b . Note that Ky, Kx should be lessthan unit, and that their ratio is Ky/Kx = tanα . Thesolutions of Eqs (16), and (17) before formation of discon-tinuities, are [19]
Ux = Ux,1 + Ux,2 = 2 ∞∑

n=1
Jn(nσx )(sin(nη1) + sin(nη2))

nσx
,

Uy = Uy,1 + Uy,2 = 2 ∞∑
n=1

Jn(nσy)(− sin(nη1) + sin(nη2))
nσy

,

(18)
P = P1 + P2 = 2 ∞∑

n=1
Jn(nσ )(sin(nη1) + sin(nη2))

nσ ,

σx = Gθ
Kx

, σy = Gθ
Ky

, σ = Gθ. (19)
The boundary condition at the planes y = 0 and y = Lare given by equalities
Uy,1(X, Y = 0, t) + Uy,2(X, Y = 0, t) = Uy,1(X, Y = 2nπ

Ky
, t)+

+ Uy,2(X, Y = 2nπ
Ky

, t) = 0. (20)
The width of a waveguide equals the integer number oftransversal wave lengths, L = nλy. That, in fact, deter-mines the spectrum of vertical components of wavenumbers
ky. Fig. 2 shows the vertical velocity in a waveguide be-fore formation of a discontinuity in the non-equilibriumregime. In calculations of (18), only ten first summandswere taken into account.The dimensionless time of shock formation for the ver-tical profile of initially sinusoidal velocity, is T =1
b ln(1 + Ky

G

). For enough large times, σy > π/2, Uy,1and Uy,2 take the form of the saw-tooth shapes consistingof straight-line parts,
Uy,1 = τ11 + Gθ/Ky

if− π ≤ τ1 < π,

Uy,2 = − τ21 + Gθ/Ky
if− π ≤ τ2 < π. (21)

Parts of acoustic pressure P1 and P2 take the form of thesaw-tooth waves, if σ > π/2:
P1 = − τ11 + Gθ if− π ≤ τ1 < π,

P2 = − τ21 + Gθ if− π ≤ τ2 < π. (22)
In a non-equilibrium gas, the peak magnitude of any saw-tooth waveform does not tend to zero when time increases.Enlargement of sound intensity is suppressed by nonlinearattenuation on the front of a saw-tooth wave. The peakmagnitude of the dimensionless vertical velocity in theincident and reflected waves is G/Ky, and that of acousticpressure is G. In the equilibrium regime, they quickly tendto zero. In an equilibrium gas, discontinuity in the profileof vertical velocity does not form at all if KyG ≤ −1, thatis, for large enough attenuation. The peak dimensionlessmagnitude of the vertical velocity at the same times asin the Fig. 3, for b = −0.01 (that is, in the equilibriumregime) and Ky = 0.2, equals 0.08 at T = 2Tsaw and0.001 at T = 20Tsaw , respectively. Tsaw is the valuecalculated for b = 0.01. For b = −0.01 and Ky = 0.8,discontinuity does not form at all.
3. Acoustic heating
The excess density belonging to the non-wave entropymode in the field of non-interacting incident and reflectedwave, is governed by the following equation [20]:
∂ρent
∂τ = − 1

T0
∂Tent
∂τ = bM2(γ − 1) exp(2bτ) (P21 + P22

)
,(23)
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Figure 2. Vertical velocity uy/(Mc) in a waveguide for different set
of parameters before formation of discontinuity. For M =0.01, b = 0.01, γ = 1.4, the dimensionless time of discon-
tinuity formation T equals 15 ifKy = 0.2 and 51 ifKy = 0.8.
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Figure 3. Vertical velocity uy/(Mc) in a waveguide for different set
of parameters in a saw-tooth wave. For M = 0.01, b =0.01, γ = 1.4, the dimensionless time of saw-tooth shape
formation Tsaw equals 23 if Ky = 0.2 and 72 if Ky = 0.8.384
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in the case of vibrationally excited gas, and

∂ρent
∂τ = −bM2(γ − 1) exp(2bτ) (2(∂P1

∂τ1
∫ τ1
−kx x/ω+kyy/ω P1dτ1 + ∂P2

∂τ2
∫ τ2
−kx x/ω−kyy/ω

P2dτ2
) + γ − 2

γ (P21 + P22 )) =
= bM2 exp(2bτ) (γ − 1)(γ + 2)

γ

(
P21 + P22 )) (24)

in the case of chemically reacting gas [21]. The topline denotes average over the sound period. Equa-tions (23), and (24) are valid for periodic acousticpressures with zero mean values. Before forming ofdiscontinuity, the rate of heat release (it is propor-tional to −∂ρent/∂τ) varies with time as b exp(−2bτ),since P21 = −∂P1
∂τ1

∫ τ1
−kx x/ω+kyy/ω P1dτ1 = P22 =

−∂P2
∂τ2

∫ τ2
−kx x/ω−kyy/ω

P2dτ2 = 0.5. It depends on the signof b: temperature of the medium of sound propagationincreases if b < 0 and decreases otherwise. Velocity, as-sociated with the entropy mode, is zero and therefore doesnot disturb the boundary conditions (20). In the case ofthe saw-tooth wave, the acoustic heating is
∂ρent
∂τ = 2M2π2(γ − 1) b exp(2bτ)3(1 + G(exp(bτ)− 1)2) (25)

in the chemically reacting gases, and
∂ρent
∂τ = 2M2π2 (γ − 1)(γ + 2)3γ b exp(2bτ)(1 + G(exp(bτ)− 1)2)(26)in the gases with excited internal degrees of a moleculefreedom. In the non-equilibrium regime, propagation ofsound is followed by cooling of a medium.

4. Concluding remarks
In this study, the peculiarities of a weakly nonlinear pe-riodic acoustic beam which propagates in a waveguidefilled with relaxing medium, which may be thermodynam-ically non-equilibrium, are studied. If the mean value ofacoustic pressure is zero, the incident and reflected wavesdo not interact in a volume of resonator in the leadingorder. The periodic symmetric waves with discontinuitiesalso do not interact. That allows the evaluation of pertur-bations in the sound field (pressure, velocity) for different

set of wavenumbers in a waveguide. Anomalous increasein the sound amplitude as a beam propagates, along withthe nonlinear attenuation, result in the stabilizing of thepeak magnitude in the shock wave in a non-equilibriumgas. Vice versa, in the equilibrium regime, the peak acous-tic pressure rapidly decreases and discontinuity may notform at all for large enough attenuation connected withrelaxation in a gas.The nonlinear effects of sound in the non-equilibrium me-dia also behave atypically. The theory of anomalous cool-ing of the medium (in contradistinction to acoustic heat-ing) and streaming (with streamlines inverted as comparedwith direction of sound propagation) has been recentlydeveloped in reference to aperiodic and periodic in timesound beams, including beams with discontinuities in un-bounded volumes of gases [21–23]. In waveguides, anincrease (or decrease) in the temperature of a gas doesnot disturb the boundary conditions since velocity asso-ciated with the entropy motion, is insignificant. Since thesquared speed sound is proportional to the backgroundtemperature, the vertical wave number varies in courseof time. For constant angle of incidence α , the verticalwave number ky changes in inverse ratio to c in orderto hold the sound frequency. Hence, it enlarges in thenon-equilibrium regime and gets smaller otherwise pro-portionally to initial magnitude of acoustic pressure inthe incident wave and according to B.
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