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In this paper we investigate properties of several randomness generation protocols in the device-independent
framework. Using Bell-type inequalities it is possible to certify that the numbers generated by an untrusted device
are indeed random. We present a selection of certificates which guarantee two bits of randomness for each run
of the experiment in the noiseless case and require the parties to share a maximally entangled state. To compare
them we study their efficiency in the presence of white noise. We find that for different amounts of noise different
operators are optimal for certifying most randomness. Therefore, the vendor of the device should use different
protocols depending on the amount of noise expected to occur. Another of our results that we find particularly
interesting is that using a single Bell operator as a figure of merit is rarely optimal.
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I. INTRODUCTION

One of the most striking properties of quantum mechanics
is that it is intrinsically random. Moreover, if there exist only
slightly random processes, then also ones of arbitrary high
randomness do [1,2].

Random number generation is an important issue in
computer science. Random numbers have many applications
in such topics as cryptography, authentication [3], gambling,
and system modeling.

Most of the random number generators (RNGs) are based
on purely algebraical manipulation on initial seed. Since the
series of numbers produced by such generators are created in
a deterministic manner, these RNGs are called pseudorandom
number generators (PRNGs). There also exist RNGs basing
on some chaotic classical physical processes, such as electric
or atmospheric noise or on estimating the entropy of hardware
interrupts (for example, in /dev/random RNG on Linux
systems). To make sure that a given source of numbers is
reliable, some statistical tests may be applied [4]. Still, these
tests can never give a guarantee that the numbers were indeed
trustworthy, that is they cannot be predicted by an adversary.

In this situation it is natural to try to use properties of
quantum mechanics in order to generate entirely random
sequences of numbers. There was effort making use of such
quantum processes like nuclear decay (for example, HotBits
[5]) or photons hitting a semitransparent mirror (for example,
id Quantique RNGs [6]). However, when using one of the
commercially available quantum random number generators
(QRNGs) we still have to trust the vendor of the device.

Therefore, much effort has been made in quantum infor-
mation theory to attain a reliability while not trusting the
device and even not knowing how it works. Such an approach,
introduced in [7], is called device independent. Instead of
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investigating the internal working of the device, in some cases
it is sufficient to perform tests on its outputs.

Recently, the violation of certain Bell inequalities as a
certificate of randomness for series from RNG has been
used within the device-independent approach [8–11]. These
protocols were randomness expanders, as they use some initial
amount of randomness to obtain more of it. In [8,9] as a
certificate of randomness the violation of the CHSH Bell
inequality [12] was used, while in [10] the GHZ correlations
were used instead.

A. Purpose of this paper

Suppose there is a honest vendor that wants to produce
and sell QRNGs. His problem is the lack of trust among his
potential customers. Since he does not want to cheat his clients,
he can make the design of his device open. But still some
parties may distrust that the device is construed in declared
manner.

The laws of quantum mechanics give him a way to
convince his customers that they do not need to know the
internal working of the device to be sure that they get secure
randomness. Using some form of Bell inequalities, they may
check, after some statistical tests, that the device produces a
certain amount of randomness, regardless of the way it has
been constructed. Therefore, our honest vendor can propose
that his customers use the protocol described in [9]. However,
he still needs to decide which Bell inequality to use as
a certificate.1 This device will consist of three parts: two
measurement apparatuses and a source of entangled states.
The vendor’s technology limits the quality (purity) of the
states that his source can produce. Let’s assume that they are
Werner states ρw = p|ψ−〉〈ψ−| + (1 − p)14 , that is singlets
with admixture of white noise. The question that we try to

1The choice of the certificate is his only choice. Therefore, in the
whole paper we identify a certificate with a protocol and use these
two terms interchangeably.
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answer in this paper is the following: which certificate allows
one to guarantee the most randomness for the given quality of
the source measured by p? Using it will allow our vendor to
maximally exploit the source he has.

All Bell inequalities considered in this paper are maximally
violated with pure singlet states. In the noisy case values
attainable by Bell operators2 are multiplied by p.

In this paper we first make a short inspection of min-entropy
and Bell inequalities. Then we present six operators that in a
noiseless situation may certify two bits of randomness. Three
of them are based on known Bell inequalities: Braunstein-
Caves family [13], CHSH [12], and T 3 [11]. After that we
describe a method we used to find other certificates. Then we
give the three most interesting examples found this way. Using
semidefinite programming we compare the robustness of the
presented certificates. Finally, we investigate the potential of
using CHSH inequality to improve presented protocols.

B. Min-entropy

One commonly used measure of randomness is min-entropy
[14], denoted H∞. For given discrete probability distribution
P = p1, . . . ,pn it is defined as

H∞(P ) ≡ − log2

[
max

i
(pi)

]
. (1.1)

Note that min-entropy is directly related to the guessing
probability of the value of a particular variable with distribu-
tion P with strategy when one guesses the most probable result.
In the context of guessing cryptographic keys, min-entropy is
a measure of the difficulty of guessing the easiest single key
in a given distribution of keys [3].

Having some string of characters from a source with
given min-entropy per character it is possible to extract
its randomness, that is create a shorter string with higher
min-entropy per character [15–17]. We use min-entropy as
the measure of the efficiency of the protocol throughout the
paper.

C. NPA method

The key role in our numerical calculations plays the
so-called NPA method. It was introduced and developed in
Refs. [18,19]. This method brings out an infinite hierarchy
of conditions that is satisfied by any set of quantum corre-
lations. Each level of this hierarchy may be mapped to a
semidefinite optimization problem. Such a problem may be
efficiently solved numerically using the primal-dual interior
point algorithm [20–22].

The idea of this method is as follows. We consider a set of
projective measurement operators of Alice {�a

A}, and similarly
for Bob. Because the measurements of Alice and Bob are
separated, operators of Alice commute with operators of Bob.
If the probability distribution P (A,B|a,b) can be realized
under the laws of quantum mechanics, then there must exist

2We are assuming that Bell operators are linear functions of
correlations, which is more restricted than the general case where
the Bell operator is a linear combination of probabilities. All Bell
operators used in this paper meet this condition.

a pure state |�〉 that, for all settings a and b and outcomes A

and B, satisfies P (A,B|a,b) = 〈�|�a
A�b

B |�〉.
Since we do not have any assumption about the dimension

of the state |�〉, considering only von Neumann measurements
and a pure state is not restrictive. This is because any POVM
can be considered as a projective measurement in a space of
larger dimension.

Let S be a certain subset of the set of all sequences of
measurement operators of Alice and Bob. Let Oi,Oj ∈ S.
Now, taking these operators as indices, we may construct the
following matrix:

�Oi,Oj
≡ 〈�|O†

i Oj |�〉. (1.2)

In particular, ��a
A,�b

B
= P (A,B|a,b).

It may be shown [18,19] that the � matrix is positively
semidefinite. From this, we have some relaxation of the
conditions on the probability distribution P (A,B|a,b) that
are allowed by quantum mechanics. Instead of assuming that
the state |�〉 and the proper measurement operators exist, we
check if it is possible to construct such a positively semidefinite
matrix �.

The larger set S we choose, the more restrictive is the
relaxation. In [19] it was shown that the hierarchy of such
relaxations converges to quantum mechanics. Hierarchy of
level Q2 means that the set S consists of all sequences of
measurement operators of length 2, whereas in level Q1+AB ,
S is a set of all sequences of length 1 and sequences with one
operator of Alice and one of Bob. Obviously Q2 gives larger
S than Q1+AB .

Applying this method to find lower bounds on min-entropy
has become a standard [9,11,23]. The honest vendor of the
device should expect that its users will apply this hierarchy to
test his product.

II. RANDOMNESS CERTIFICATION PROTOCOLS

In this paper we investigate the applicability for randomness
certification of selected Bell operators, described below. Since
we are working in a device-independent scenario, it is worth
noticing that we have no insight into the workings of the device.
We do not know how Alice’s and Bob’s measurements are
carried out; results may even have outcomes predetermined
by the constructor of the apparatus. The only thing we have
access to are outcomes that Alice and Bob get.

We assume that Alice’s and Bob’s devices are separated
during the measurements. This assumption is essential, since
only in this case the violation of Bell inequality has any
meaning.3 The separation may be, for example, spacelike, if
we assume that the signal may not travel between Alice’s and
Bob’s part before the results are collected.

If we want the randomness not only to be fair (for example,
for gambling and system modeling purposes), but also to be
confidential (for example, for cryptography or authentication),
we also have to assume that the untrusted device does not

3In fact, this is a way to assert in the device-independent scenario
that Alice’s and Bob’s measurements may be treated algebraically as
commuting.
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communicate with the world outside. Without this assumption,
even the fair RNG may send the results to the adversary.

We will measure the randomness of a given pair of settings
using min-entropy. For each pair (a,b) of choices of Alice’s
and Bob’s measurement settings, there exist a distribution
P (A,B|a,b) of pairs of outcomes. Min-entropy of the pair
of (a,b) is the min-entropy of the distribution P (A,B|a,b).

The general scheme is as follows. We consider a Bell
operator (a set of Bell operators). Next we choose a pair of
settings: a for Alice and b for Bob. Then we assume that the
operator (operators) has (have) certain value (values). Under
this assumption, we use the numerical method described above
to evaluate what is the minimal value of the min-entropy of
the distribution P (A,B|a,b).

In the following we assume that all measurements give
results +1 or −1.

We denote by A+,A− Alice’s projector on results +1
and −1, respectively, and similarly B+,B− for Bob. Since
outcomes are binary we have A+ + A− = 1, and the same
for Bob’s projectors. Then C(a,b) = 4 × A+B+ − 2 ×
A+ − 2 × B+ + 1 is the correlation operator. We denote
by Cor(a,b) ≡ P (A = 1,B = 1|a,b) + P (A = −1,B =
−1|a,b) − P (A = 1,B = −1|a,b) − P (A = −1,B = 1|a,b)
the correlations between the binary results obtained by Alice
when she chooses measurement a with Bob’s results with
measurement settings set to b. If ρ is the state describing the
whole device (including Alice’s and Bob’s parts, which may
be entangled), then Tr[ρC(a,b)] = Cor(a,b) and Cor(a,b)
may be estimated by collecting statistics of subsequent
measurement results.

The measurement settings and the device have to be inde-
pendent. One of the ways to assure that is to choose these set-
tings randomly. Since in such a situation initial randomness is
needed, protocols described below are randomness expanders.

From a theoretical point of view it is important to mention
the possibility that, from a fundamental point of view, both
measurement choices and results are predetermined. This
loophole in Bell inequalities is called superdeterminism and
makes all effort towards generation of randomness pointless.

Below we present six different randomness certification
protocols. The first of them is based on a well-known
Braunstein-Caves Bell inequality. The second one makes use
of a pair of Bell operators, which are a decomposition of CHSH
inequality. The third one consists of three Bell inequalities,
with two of them being CHSH. Three remaining protocols
make use of other Bell inequalities described below.

A. Braunstein-Caves inequalities

In [13] a family of chained Bell inequalities was introduced.
The members of this family are parametrized by a natural
number n � 2. The parameter gives the number of binary
measurement settings for two parties. Operators from this
family consist of chains of operators of correlation between
subsequent measurement settings of Alice and Bob.

The general formula for nth Braunstein-Caves operator is

BCn = C(1,1) + C(1,2) + C(2,2) + C(2,3) + C(3,3)

+C(3,4) + · · · + C(n − 1,n − 1) + C(n − 1,n)

+C(n,n) − C(n,1). (2.1)

The maximal value obtainable in quantum mechanics
for nth Braunstein-Caves inequality is 2n cos( π

2n
) [24]. In

particular,

BC3 = C(1,1) + C(1,2) + C(2,2) + C(2,3)

+C(3,3) − C(3,1) (2.2)

is limited by 6 cos(π
6 ) ≈ 5.19. This value may be attained with

singlet state and measurements projecting on vectors on the
Bloch sphere of the form cos( θ

2 )|0〉 + sin( θ
2 )|1〉 with angles π

6 ,
3π
6 , and 5π

6 for subsequent measurements of Alice, and angles
0, π

3 , and 2π
3 for Bob.

If we consider the source’s quality measured by p, then the
maximal value is multiplied by p.

We check the min-entropy guaranteed by the violation of
Braunstein-Caves inequality for the following three cases: (i)
for n = 3 for the min-entropy of first setting for Alice and third
setting for Bob,4 (ii) for n = 5 of settings (1,4),5 and (iii) for
n = 7 of settings (1,5).

The optimal angles for BC5 are 0, π
5 , 2

5π , 3
5π , and 4

5π for
Alice, and π

10 , 3
10π , π

2 , 7
10π , and 9

10π for Bob. In the case of
BC7 the optimal angles for measurements of Alice are 0, π

7 ,
2
7π , 3

7π , 4
7π , 5

7π , and 6
7π , and for Bob π

14 , 3
14π , 5

14π , π
2 , 9

14π ,
11
14π , and 13

14π .

B. E0 and E1

In this case instead of taking only a single operator
corresponding to some Bell inequality, we use more than one
for randomness certification.

A single CHSH operator may be decomposed into other
Bell operators. Let us consider the following two operators:

E0 = C(1,1) + C(1,2), (2.3a)

E1 = C(2,1) − C(2,2). (2.3b)

From Uffink’s inequality [25] it follows that the maximal
values of Eqs. (2.3) lie on a circle of radius 2. Taking into
account symmetries of these operators, their maximal values
obtainable in quantum mechanics may be parametrized in the
following manner:

E0,max(φ) = 2 cos(φ), (2.4a)

E1,max(φ) = 2 sin(φ), (2.4b)

for any φ ∈ [0, π
2 ]. The optimal angles for Alice’s measure-

ments are 0 and π
2 . φ parametrizes the optimal angles for

Bob, which are φ and −φ. The maximal quantum value of the
sum of Eqs. (2.3) is equal to 2[cos(φ) + sin(φ)]. The classical
limit for the sum of values of these operators is 2. Thus for
φ ∈ {0, π

2 } classical and quantum limits are equal.
Similarly like for previously described Bell operators, if

the noise p occurs, then the limiting values (2.4) have to be
multiplied by this value.

Below we will examine the min-entropy for a measurement
settings pair (2,1) as a function of φ for maximal values

4Similar results would be obtained for these pairs of settings: (2,1)
and (3,2).

5Similar results are for pairs (2,5), (3,1), (4,2), and (5,3).
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of the operators (2.3) for different values of noise. Then
we will find the optimal angle φ as a function of noise.
To certify the randomness we assume that simultaneously
E0 � 2p cos(φ) and E1 � 2p sin(φ). This way we have a
family of conditions on the pair of Bell operators (2.3),
parametrized by a continuous variable φ.

Let us note that this certificate requires both Alice’s
and Bob’s parts of the device to have only two possible
measurement settings. It is the smallest requirement among
all presented protocols.

C. T3 with an additional condition

Let us consider a scenario in which Alice has four possible
measurement settings and Bob has three, each having two pos-
sible outcomes. In [11] the following Bell operator was used:

T3 = C(1,1) + C(2,1) + C(3,1) + C(4,1)

+C(1,2) + C(2,2) − C(3,2) − C(4,2)

+C(1,3) − C(2,3) + C(3,3) − C(4,3). (2.5)

Now let us take two additional Bell operators, which are
identical to CHSH with certain choices of settings:

CHSH1 = C(1,1) + C(3,1) + C(1,2) − C(3,2), (2.6a)

CHSH2 = C(2,1) + C(4,1) + C(2,2) − C(4,2). (2.6b)

The maximal value of Eq. (2.5) that may be obtained in
quantum mechanics is 4 × √

3 ≈ 6.928, and for Eq. (2.6) is
2 × √

2 ≈ 2.82, the same as for the standard CHSH.
The value 4 × √

3 for the single operator T 3 is obtained by
operator (2.5) for measurements that projects on the vectors
given in [26]. The NPA method confirms that this is the
maximal possible value. The optimal angles of measurements
for the protocol (with three operators) depends on the assumed
noise parameter p.

If we impose on the device a condition that both oper-
ators (2.6) achieve the value of at least 0 � C � 2 × √

2,
then the maximal value of (2.5) is a function of C, T3,max =
T3,max(C). We require the device to obtain this maximal value.
In the case when we cope with noise or imperfections of the
device, where 0 < p < 1, then we have to multiply all (2.5)
and (2.6) by p.

Assuming these conditions we will check the lower bound
on the min-entropy, as a function of C with maximal possible
value of (2.5), for Alice’s setting 1 and Bob’s 3.

TABLE I. Number of Bell inequalities that have been randomly
chosen depending on the min-entropy they certify under noise
p = 0.95.

min-entropy 0–0.05 0.05–0.1 0.1–0.15 0.15–0.2
Bell inequalities 12 853 689 722 696
min-entropy 0.2–0.25 0.25–0.3 0.3–0.35 0.35–0.4
Bell inequalities 939 907 850 1324
min-entropy 0.4–0.45 0.45–0.5 0.5–0.55 0.55–0.6
Bell inequalities 1176 839 1062 678
min-entropy 0.6–0.65 0.65–0.7 0.7–0.75 0.75–0.8
Bell inequalities 493 155 91 15

TABLE II. Randomness certified by the CHSH inequality for
different noises. The global randomness is the min-entropy of a pair
of bits, where one is the outcome of Alice, and the second is the
outcome of Bob. The local randomness is the min-entropy of the
outcome of one of the parties.

p Global Local

0.999 99 1.217 57 0.990 90
0.999 1.122 31 0.911 55
0.95 0.584 11 0.472 34
0.9 0.377 57 0.307 18
0.8 0.135 10 0.113 62

D. Certificates obtained randomly

The three previous cases were chosen by us because they
rely, at least to some extent, on known Bell inequalities. In
order to learn more about Bell operators certifying randomness
we have used some randomized method of finding them.

Most of the known interesting operators are in the form∑
i,j

αi,jC(i,j ), (2.7)

where α ∈ {−1,0,1}, i enumerates Alice’s settings, and j

Bob’s settings.
We have considered operators that have this form with

four settings for Alice and three settings for Bob. In this case
there is around half a million different operators and we have
randomly chosen a representative sample of around 25 000
for further studies. Then, for each choice we have computed
min-entropy with noise parameter p = 0.95 using semidefinite
programming (the method is described in more detail in
Sec. IV with results). The histogram presenting the number
of operators that certify given randomness is shown in Table I.

The most interesting operators are the ones which certify
the most randomness. Among tested operators 41 certified
more than 0.72 bits of randomness under high noise. These
operators form four distinct groups that have identical maximal
value and randomness certification properties. The first of these
groups (with nine drawn instances) of them are revealed to be
isomorphic6 to BC3 described in Sec. II A. The remaining three
groups are described in Secs. II D1 (with six instances drawn)
and II D2 (with 15 and 11 instances drawn, respectively).

6Up to the following two operations. First is a reordering of
measurement settings, and second is a change of signs of results
for one setting of one party.

TABLE III. Comparison of min-entropies certified by T 3 (2.5)
alone and with two additional CHSH conditions (Sec. II C).

p T 3 T 3C

0.999 99 1.3294 1.7871
0.999 1.2171 1.4101
0.95 0.558 73 0.5931
0.9 0.195 15 0.3072
0.8 0 0.1136
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TABLE IV. Certificate II D1 with additional CHSH condition
compared to the original one.

p Original II D1 Improved II D1

0.999 99 1.9764 1.9764
0.999 1.7751 1.7751
0.95 0.7775 0.780 24
0.9 0.4365 0.454 43
0.8 0.0468 0.1342

1. Modified CHSH

Now let us consider the following Bell operator which is
similar to one used in [27]. We call it modified CHSH because
it is a CHSH operator with one additional correlation function.

Let us take an operator of the following form:

C(1,2) + C(1,3) + C(2,1) + C(2,2) − C(2,3). (2.8)

Under quantum mechanics its value is limited to 1 + 2 × √
2.

The maximal value is obtained with angles 0 and π
2 for Alice,

and π
2 , π

4 , and −π
4 for Bob. Four terms of this operator form a

CHSH operator.
The protocol requires the device to reach the maximal value

of this operator (multiplied by p in a case with noise). Further
in the paper we will examine the min-entropy with a pair of
settings (1,1).

2. Other inequalities

Let us consider the following Bell inequalities:

I1 = C(1,2) − C(1,3) − C(2,1) − C(2,2)

+C(3,1) + C(3,3) + C(4,1)

� 1 + 6 cos

(
π

6

)
≈ 6.19 (2.9)

and

I2 = −C(1,2) + C(1,3) + C(2,1) + C(2,2) + C(2,3)

+C(3,2) − C(3,3) + C(4,1) + C(4,2) + C(4,3)

� 2 + 4 ×
√

2 ≈ 7.66. (2.10)
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FIG. 1. Lower bounds on min-entropies for protocols described
in Sec. II A (based on Braunstein-Caves inequalities) as a function of
noise.
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FIG. 2. Lower bound on min-entropy for protocol described in
Sec. II B (E0 with E1) as a function of φ [see Eq. (2.4)] for different
noises.

The optimal angles for measurements for operator (2.9) are
0, 4

3π , 2
3π , π

2 and π
2 , π

6 , 5
6π , for Alice and Bob, respectively.

These are the optimal measurement angles for operator (2.10),
for Alice: 0, π

2 , π , and π
2 ; and for Bob: π

2 , 3
4π , and π

4 .
These two were taken as examples from wider groups

of inequalities that use four measurement settings of Alice
and three of Bob, and consist of seven, respectively ten,
correlations. Inequalities in both of these groups have the same
efficiency in generating min-entropy with noise. Inequalities
from the first group are similar to these from the Braunstein-
Caves family. The pair of measurement settings for which the
min-entropy will be investigated is (1,1).

The same as in protocols based on Braunstein-Caves in-
equalities (II A) and modified CHSH (II D1), random number
generation protocols using these inequalities require the device
to reach the maximal value of appropriate operator (multiplied
by p in the case of noise).

III. IMPROVING CERTIFICATES
WITH THE CHSH INEQUALITY

Although the CHSH inequality is not able to certify two bits
of randomness even for p = 1, it is quite efficient for p � 0.9.
In fact in this case it is able to guarantee more randomness than
most of the two bit protocols. The robustness of this inequality

TABLE V. Optimal angle between E0 and E1 depending on noise.

p φ

0.999 999 9 0.0252
0.999 999 0.0452
0.999 99 0.0811
0.9999 0.1460
0.999 0.2638
0.99 0.4562
0.95 0.6179
0.9 0.6948
0.85 0.7357
0.8 0.7617
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FIG. 3. Lower bound on min-entropy for protocol described in
Sec. II C (T 3C) as a function of C (see text) for different noises.

in means of the certified min-entropy depending on the noise
parameter is shown in Table II. We refer to the randomness of
one bit of outcome of one of the parties as a local randomness.
The global randomness is the one that is contained in a pair
of bits, where one is the outcome of Alice and the other is the
outcome of Bob.

Knowing this property some of the above certificates may
be improved if an additional condition for CHSH inequality is
imposed. This can be done only when the original certifying
operator includes CHSH, which is the case in (2.5) and (2.8).

In Table III certificate II C (T 3C) is compared with its
version taking into the account only the maximal violation
of (2.5) attainable for the given amount of noise.

CHSH inequality has also demonstrated its effectiveness
for improving certificate II D1 (modified CHSH). Combining
it with a condition C(1,2) + C(1,3) + C(2,2) − C(2,3) �
p2 × √

2 gives the results shown in Table IV.
This protocol for low noises is almost as efficient as II A

(BC3, which is the most efficient in this case), while requiring
fewer measurement settings. For high noises this protocol
is very close to II B (E0 with E1), while not requiring to
fit parameters for a particular p parameter. For intermediate
amounts of noise it’s the best one.

The CHSH operator appears also in (2.10), but in this case
imposing its violation does not help. The reason for this is the
fact that the operator (2.10) and CHSH cannot simultaneously
attain their maximal values. Thus when one of these operators
has a considerable value to certify the randomness, the other
one is too small to have a significant impact.

TABLE VI. Optimal value of parameter C for protocol II C (T 3C)
depending on noise.

p 0.999 999 0.999 99 0.9999 0.999

C

p
2.826 2.82 2.8 2.75

p 0.99 0.95 0.9 0.8
C

p
2.6 2.55 2.828 2.828
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FIG. 4. Lower bounds on min-entropies for protocols described
in Secs. II D1 (modified CHSH) and II D2 (other randomly generated
protocols) as a function of noise.

IV. RESULTS

The following results were obtained using level Q2 of the
NPA hierarchy; only results for Braunstein-Caves inequality
for n = 7 were calculated in level Q1+AB due to the high com-
puter’s memory consumption. Since the conditions of these
levels do not contain all the laws of quantum mechanics, when
computing min-entropy we get a lower bound of its value, so
all of the examined protocols may give even more randomness
than the presented data shows.7 In fact each of the levels of the
hierarchy corresponds to some set of polynomial conditions of
a finite degree. In all the cases we take into account the worst
case, that is maximize each of the probabilities of given output,
independently.

The results for the protocol II A, that uses Braunstein-Caves
operators as a function of noise, are shown in Fig. 1. For all
values of noise the simplest operator, BC3 [see (2.2)], gives
the highest min-entropy.

In Fig. 2 the results for protocol described in II B (E0 with
E1) are shown. For parameter φ equal to 0 and π

2 the min-
entropy is 0, since then the possible values of (2.3) in quantum
and classical cases are the same, so the device’s behavior may
be implemented classically giving no warranty on randomness.

7In other words, we assume less than quantum mechanics. In
particular, we do not assume no-signaling principle.

TABLE VII. Comparison of protocols BC3, BC5, BC7 (II A),
E0E1 (II B), and T 3C (II C) for different noises.

p BC3 BC5 BC7 E0E1
a T 3C

0.999 99 1.9769 1.9656 1.9537 1.7854 1.7871
0.999 1.7792 1.6841 1.5917 1.4013 1.4101
0.95 0.7885 0.5534 0.4258 0.6484 0.5931
0.9 0.4474 0.2342 0.1064 0.4163 0.3072
0.8 0.0709 0.0000 0.0000 0.1461 0.1136

aValues for optimal angle parameter.
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TABLE VIII. Comparison of protocols: improved II D1 (modified
CHSH) and II D2 (I1 and I2) for different noises.

p Modified CHSH I1 I2

0.999 99 1.9764 1.9753 1.9742
0.999 1.7751 1.7649 1.7558
0.95 0.780 24 0.7219 0.7262
0.9 0.454 43 0.3625 0.3959
0.8 0.1342 0.0000 0.0398

An important result is that the optimal angle between average
values of operators (2.3) depends on the noise parameter p.
This dependence is shown in Table V.

Figure 3 shows the results for protocol described in II C
(T 3C). It is worth noticing that as parameter C approaches it
maximal value 2 × √

2, then the min-entropy tends to 1 (in the
case without noise). The min-entropy strongly depends on C.
This dependence is shown in Table VI.

Considering the bound on the value of the operator T 3
[(2.5), not shown in the figure], it is maximal for C =
2.309 411 6. For high noises (p < 0.95) min-entropy has local
minimum near this point.

Figure 4 contains the results for protocols using inequalities
described in II D1 (modified CHSH) and II D2 (other randomly
generated operators).

It can be seen that the protocol II A using Bell inequal-
ity (2.2) (BC3) gives the largest amount of randomness
comparing to other described protocols, when the noise
parameter p is larger than 0.9. Different operators from the
Braunstein-Caves family give less min-entropy for all amounts
of noise and require more settings for each party.8

For high noises (p ≈ 0.8) the largest min-entropy is ob-
tained using protocol II B (E0 with E1). The main disadvantage
of this protocol is the necessity to choose the angle parameter
individually for each noise.

The certificate II C (T 3C) shares with II B (E0 with E1) the
need for choosing its parameter (in this case C) for the given
noise. Similarly, it gives good results for high noises (p ≈ 0.8),
but not as good as II B. It also requires more measurement
settings.

Using modified CHSH (II D1) and certificates I1 and I2

(II D2) for smaller noises (p � 0.9), the amount of achieved
randomness is slightly smaller that the randomness from the
protocol BC3 [II A with Bell inequality (2.2)]. However,
protocol based on modified CHSH inequality requires less
measurement settings than BC3.

Protocols with more complicated Bell inequalities I1 and
I2 slightly differ depending on the amount of noise. For
p � 0.999 the inequality I1 (2.9) gives more randomness than
I2 (2.10), while for p � 0.999 I2 gives more randomness than
I1.

Comparison of all protocols described in this paper may be
found in Tables VII and VIII.

8It is important for a protocol to use not many measurement settings,
as they require more initial randomness for expansion.
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FIG. 5. Comparison of the three most efficient of investigated
protocols for 0.84 � p � 0.94.

V. CONCLUSIONS

In this paper we presented several certificates for ran-
domness generation protocols. We find that there is no
unequivocally most efficient one for all the amounts of noise.
On the other hand, some are clearly better than the others.

For low noises (p � 0.92) the most randomness may be ob-
tained using the certificate II A based on the Braunstein-Caves
inequality. This protocol requires three binary measurements
for Alice and for Bob and uses only one inequality.

In the case of intermediate noise (0.85 � p � 0.92) the
protocol II D1 with additional CHSH condition (III) certifies
most randomness. It requires two binary measurements for
Alice and three for Bob.

Protocol II B based on a pair of operators, E0 and E1, cer-
tifies most randomness among all the compared protocols for
high noises (p � 0.85). It requires two binary measurements
for both Alice and Bob and has a parameter φ that has to be
chosen for a particular noise p for optimal results.

A comparison of these three protocols is shown in Fig. 5.
The conclusion of this paper is that a honest vendor of

QRNGs should use one of these three protocols, depending
on the amount of noise he is expecting the device will have to
cope with.

The first interesting fact that our research has revealed is
that there is no single optimal certificate. But what is even
more remarkable is that the three best ones fall into three
distinct categories. Certificate II A is just a Bell operator, II D1
is a combination of two, and E0 and E1 are not even Bell
inequalities; furthermore, they have to be considered with
different weights. This proves that there is more than one place
to look for optimal certificates and although Bell inequality
violation is a necessary condition for device-independent
certification of randomness, it is not always a good measure
of it.
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