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Abstract

In this contribution we describe the multichannel extension to the
nonrelativistic J-matrix method, and present differential cross sections
for scattering of slow electrons from Argon atoms. Nonrelativistic phase
shifts, then the S-matrix and the cross sections have been calculated using
newly developed Fortran code, JMATRIX-MULTI. We applied the model
Hartree-Fock potential as the scattering potential, which was truncated
in the oscillatory basis functions.

1 Introduction

The J-matrix method is an algebraic method in quantum scattering theory.
It is based on fact that the radial kinetic energy operator is tridiagonal in
some suitable bases, so the physical scattering problem is replaced by well-
defined model which is solved exactly. Non-relativistic version of the method
was introduced in 1974 by Heller and Yamani [1], [2] and developed by Yamani
and Fishman [3] in 1975. Relativistic version was introduced by Horodecki [4]
and extended by Alhaidari et al [5]. Theoretical basis of the method is described
in section 2.

The main task of the present work was to use the multichannel extension of
the method to atomic calculations. The non-relativistic phase shifts obtained
by the J-matrix method method are used to calculate inelastic differential cross
sections of electron scattering by argon in its ground state at a few selected
energies.
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2 Theoretical method

2.1 The J-matrix method of scattering

In this section we give only a short review of the J-matrix theory of scatter-
ing, but it should be sufficient for understanding the main idea of the method.
Detailed description of the method can be found in publications [1] – [6].

Our task is to find an approximate solution of the scattering problem on
the radial potential V = V (r) vanishing faster than the Coulomb one. Let us
replace this scattering potential by a truncated potential operator:

V N = P †
NV PN (1)

with the generalized projection operator

PN =

N−1∑
n=0

∣∣ϕl
n

〉 〈
ϕl
n

∣∣ . (2)

Then, using expansion of the solution of the new problem in the basis {ϕl
n},

one can find that tangent of approximated phase shift is given by the formula

tan δN = −
slN−1(k) + gN−1,N−1(E)JN,N−1(k)s

l
N (k)

clN−1(k) + gN−1,N−1(E)JN,N−1(k)clN (k)
, (3)

where sln and cln are coefficients of sine-like and cosine-like solutions of the
following equation (

H0 −
k2

2

) ∞∑
n=0

ul
nϕ

l
n(λr) = Ωuϕ̄

l
n(λr), (4)

where H0 − k2

2 ≡ −1
2

d2

dr2 + l(l+1)
2r2 − k2

2 is the radial kinetic energy operator;

u = s, c; Ωs = 0; Ωc = − k
2sl0

. k ≡
√

2ME
h̄2 is the wave number related to the

energy E and mass M of the projectile.
Basis set {ϕ̄l

n} is biorthonormal to set {ϕl
n} with respect to unitary scalar

product, i.e.
〈
ϕ̄l
m|ϕl

n

〉
= δmn, where δmn is, as usual, Kronecker delta.

JN,N−1 is an element of the following matrix

Jmn ≡
〈
ϕl
m

∣∣H0 −
k2

2

∣∣ϕl
n

〉
≡

≡
〈
ϕl
m

∣∣− 1

2

d2

dr2
+

l(l + 1)

2r2
− k2

2

∣∣ϕl
n

〉
. (5)

In some suitable bases, such as Gaussian, Laguerre (biorthonormal) or the com-
plete oscillator set, the above matrix is tridiagonal (and is called Jacobi or
J-matrix). This enables us to find coefficients sln and cln, using three-term re-
cursion relation between them and the J-matrix (see [2] for details). The explicit
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Laguerre basis

ϕl
n (λr)l+1 exp

(
−λr

2

)
L
(2l+1)
n (λr)

ϕ̄l
n

n!
λ2Γ(n+2l+2)

1
rϕ

l
n(λr)

sln
2lΓ(l+1)n!(sin θ)l+1

Γ(n+2l+2) C
(l+1)
n (cos θ)

cln
−2lΓ(l+ 1

2 )n!√
πΓ(n+2l+2)(sin θ)l 2F1

(
−n− 2l − 1, n+ 1, 1

2 − l; sin2
(
θ
2

))
, sin θ ≡ kλ−1

k2λ−2+ 1
4

Gaussian basis

ϕl
n (λr)l+1 exp

(
−λ2r2

2

)
L
(l+ 1

2 )
n (λ2r2)

ϕ̄l
n

2n!
λ2Γ(n+l+ 3

2 )
ϕl
n(λr)

sln

√
2πn!(−1)n

Γ(n+l+ 3
2 )

exp
(
−η2

2

)
ηl+1L

(l+ 1
2 )

n (η2)

cln

√
2
πΓ(l+ 1

2 )(−1)nn!

Γ(n+l+ 3
2 )

exp
(
−η2

2

)
η−l

1F1

(
−n− l − 1

2 ,
1
2 − l; η2

)
, η ≡ k

λ

Oscillator basis

ϕl
n r(−1)n

√
2n!λ3

Γ(n+l+3/2) (λr)
l
exp

(
−λ2r2

2

)
L
(l+1/2)
n

(
λ2r2

)
sln

√
πn!

λkΓ(n+l+ 3
2 )

(
k
λ

)l+1
exp

(
− k2

2λ2 )
)
L
(l+ 1

2 )
n

(
k2

λ2

)
cln

−1l

Γ(−l+ 1
2 )

√
πn!

λkΓ(n+l+ 3
2 )

(
k
λ

)−l
exp

(
− k2

2λ2 )
)

1F1

(
−n− l − 1

2 ,
1
2 − l, k2

λ2

)
Table 1: Elements of Laguerre, Gaussian (biorthonormal) and oscillator (com-
plete) basis set and elements of expansion of sine-like and cosine-like solutions.

L
(α)
n and C

(α)
n are Laguerre and Gegenbauer polynomials, respectively; 2F1 and

1F1 are hypergeometric functions, λ > 0 is a scaling parameter (λ ̸= 0.5).

forms of these coefficients as well as elements of basis sets are collected in Ta-
ble 1.

In above formulas, N is the number of base functions ϕl
n used to truncate

scattering potential, gN−1,N−1(E) is a matrix element of the inverse of the trun-

cated operator P †
N

(
H0 + V N − k2

2

)
PN , restricted to the N -dimensional space,

where it doesn’t vanish. In short, this matrix can be viewed as the matrix
approximating the Green function.

For N → ∞, what is connected with reduction of inaccuracy in approxi-
mating of the scattering potential, tan δN should converge to the exact value
tan δ, and, simultaneously, approximate δN should approach the exact scattering
phase, δ.

Once we have calculated the phase shifts for different angular momenta l, we
are ready to employ partial-wave analysis, and calculate non-relativistic cross
sections. Formulas for the cross sections can be found elsewhere, i.e. in [8].
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3 Multichannel extension

3.1 Elements of the S-matrix

The elements of the S-matrix (which allows for calculations of cross sections for
different channel configurations) are given as follows [7]:

Sαβ(E) = TNα
δαβ −

√√√√J
(α)
Nα−1,Nα

J
(β)
Nβ−1,Nβ

Rα

Rβ
× (6)

√
TNα−1 − TNα

√√√√D
(+)
αβ (E)

∆(+)(E)

√
TNβ−1 − TNβ

, (7)

where α and β denotes initial and final channels, respectively. If we put α = β,
we can obtain [7]:

Sαβ(E) = TNα
− (TNα−1 − TNα

)

√√√√D
(+)
αβ (E)

∆(+)(E)
. (8)

In the above equations

∆(+)(E) =

∣∣∣∣∣∣∣∣
(1− Y1,1) −Y1,2 . . . −Y1,M

−Y2,1 (1− Y2,2) . . . −Y2,M

. . . . . . . . . . . .
−YM,1 −YM,2 . . . (1− YM,M )

∣∣∣∣∣∣∣∣,
and

D
(+)
αβ (E) =

∣∣∣∣∣∣∣∣∣∣
0 δα,1 δα,2 . . . δα,M

δ1,β
δ2,β ∆(+)(E)
. . .
δM,β

∣∣∣∣∣∣∣∣∣∣
,

where, in turn,

Yαβ = −g
(α,β)
Nα−1,Nβ−1J

(β)
Nβ−1,Nβ

R+
Nβ

. (9)

The function g is dependent on the selected basis, so we need to find the
eigensystem of the full Hamiltonian to calculate this function. For oscillatory
basis set we obtain:

g
(α,β)
Nα−1,Nβ−1(E) =

Nc∑
µ=1

Λ
(α)
Nα−1,µΛ

(β)
Nβ−1,µ

Eµ − E
, (10)

where Eµ are the eigenvalues of the full Hamiltonian, and(
Λ
(1)
0,µ

,Λ
(1)
1,µ

, . . . ,Λ
(1)

N1−1,µ
,Λ

(2)
0,µ

, . . . ,Λ
(2)

N2−1,µ
, . . . ,Λ

(M)
0,µ

, . . . ,Λ
(M)

NM−1,µ

)
is the eigenvector.
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J-matrix elements are written in the form (in oscillatory basis):

Jn,n = (2n+ l + 3/2)(λ2/2)− (E − Eα),

Jn,n−1 =
√
n(n+ l + 1/2)(λ2/2).

Let’s now define:

un = −Jn,n/Jn,n−1, vn = −Jn,n−1/Jn,n+1, (11)

so the coefficients R±
N (E) and TN−1(E) are given as

R±
n+1 = un +

vn

R±
n

(n ≥ 1),

Tn = T0

 n∏
j+1

R−
j

R+
j

 .

They are given in recurrence form, with initial terms:

R±
1 = (c1 ± is1)/(c0 ± is0), T0 = (c0 − is1)/(c0 + is0). (12)

3.2 Hartree-Fock potential for Argon

The general formula for scattering potential is as follows [9]:

V (r) = −Ze2r−1Zp/Z. (13)

For Argon, the index m = 2, with screening factor:

Zp/Z =

2∑
i

aγi exp
−aλir +r

m∑
j

bγj exp
−bλjr, (14)

where:

� r is a distance from atom,

� Zp is a effective atomic number for HF potential,

� Z is atomic number

�
aγi,

aλi,
bγj i bλj are given in Table 2.

4 Results and discussion

To test the multichannel extension of the J-matrix method, we have applied
the derived multichannel formulas to the case of one-channel scattering, for
two selected energies of incident electron. Results are presented on Fig. 1
and Fig. 2. All the calculations have been performed by using the newly
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constant value
aλ1 2.0636
aλ2 32.485
bλ1 4.853
bλ2 19.772
aγ1 1− aγ2 = 1.3740
aγ2 −0.3740
bγ1 −4.2960
bγ2 −8.916

Table 2: Constants for HF potential for Argon [9].
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Figure 1: Differential cross sections versus scattering angle. Solid line: current
results, full squares: experimental results of Gibson et al [11], dashed line:
McEachran and Stauffer [12] (relativistic polarized-orbital method), dotted line:
Syty and Sienkiewicz [13] (CI-MCDF).
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Figure 2: Differential cross sections versus scattering angle. Solid line: cur-
rent results, full circles: experimental results of Mielewska [14], empty triangles:
experimental results of Furst et al [15], dashed line: Plenkiewicz et al [16] (pseu-
dopotential approach), dotted line: Syty and Sienkiewicz [13] (CI-MCDF).

developed JMATRIX-MULTI program [10]. It allows for multichannel calcula-
tions of numerical phase shifts for a wide range of energies, then uses standard
partial-waves analysis to calculate cross sections. Program implements both
non-relativistic and relativistic J-matrix method and is suitable to study the
non-relativistic limit in relativistic calculations.

Our test results show both the limitations and advantages of the multichan-
nel J-matrix method. The main computational problem is to achieve the proper
convergence of the phase shifts – it is connected with increasing of the numerical
errors while increasing the basis sets used to truncate the scattering potential.
Bearing in mind these convergence problems, the results are in a surprisingly
well agreement with other theoretical and experimental data. It was because we
have used relatively large basis set (N = 2000) to minimize the computational
errors.

The main advantage of the method is that we are able to calculate phase
shifts and cross sections for wide energy range, with relatively small computa-
tional effort. This is because we need to truncate the scattering potental only
once, and this is the most time-consuming part of the J-matrix calculations.
This is a very important progress comparing e.g. to the multiconfiguration
Hartree(Dirac)-Fock method, where calculations for each different energy of in-
cident electrons require large-scale, thus time-consuming calculations (detailed
study is given i.e. in [17]).
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