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The relations connecting perturbations specific for acoustic and entropy modes in an accel-
erated fluid or in a fluid affected by constant mass force, are derived. They allow to decom-
pose the total vector of perturbations and the overall energy into acoustic and non-acoustic
parts uniquely at any instant. In order to do this, three quantities are required, for example
total perturbations in entropy, pressure and velocity. The evaluations are made in regard to
the content of acoustic and non-acoustic parts of the total energy excluding its kinetic part.
In some cases, exact relations may be derived.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The dynamics of fluids affected by external forces is a very complex problem in general. External forces make the back-
ground of waves propagation non-uniform, with background density, temperature and pressure depending on spatial coor-
dinates. That essentially complicates the definition of linear motions (perturbations of infinitely small magnitude) taking
place in such non-uniform media. Types of wave motion correspond to the roots of dispersion equation. Even in the simplest
case of flow in one dimension, the dispersion relations may be introduced over all wave-length range only if the background
pressure and density depend exponentially on the coordinate, see e.g. [1–3]. The number of dispersion equation roots, or
branches of possible types of motion (modes), equals the number of governing equations. In one dimension, there are three
types of motion: two acoustic branches and, if the thermal conduction of a fluid is ignored, the stationary (entropy, non-
wave) mode with zero frequency. In the flows going out of one dimension, the buoyancy waves appear [1,2]. The possibility
to distinguish modes analytically and to predict their dynamics, is of importance in the Earth meteorology [1–3] and the Sun
atmosphere dynamics applications [4,5], all the more so the numerical treatment is time-consumed and requires large com-
puter power. It may be resolved by means of linear operators uniquely separating different modes in the linear one-dimen-
sional flow of the initially isothermal atmosphere affected by constant gravity force [5,6]. At this stage, the relationships
between perturbations in upwards and downwards propagating acoustic waves were established [5]. We call as polarization
relations the relationships between fluctuations of physical variables specific for any mode.

We will consider exponentially stratified volumes of an ideal gas with the background constant temperature, affected by
constant mass force or moving with constant acceleration, though in one dimension results may be generalized on the case
of stable spatial distribution of unperturbed temperature [7]. This study deals with some mathematical aspects of the theory
of acoustic-gravity wave generation and propagation. We concentrate on the evaluation of fraction of every mode in the total
energy. This problem is of importance in many applications, it clarifies what part of the total energy belongs to acoustics,
. All rights reserved.
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what kind of perturbations would input mostly in entropy, non-wave energy (Section 4). The evaluations may be done at any
instant, moreover, the proportions of different modes in the total energy do not depend on time, so conclusions about the
initial fluctuation may be done at the later stages. The special choice of the initial fluctuation in order to produce some kind
of mode, becomes possible.

2. Conservation equations and dispersion relations

The equations governing fluid in the absence of the first, second viscosity and thermal conduction manifest conservation
of momentum, energy and mass. They determine dynamics of all possible types of motion which may take place in a fluid
and are generally nonlinear. We start from the linearized conservation equations in terms of variations of pressure and den-
sity, p0 and q0 from hydrodynamically stable stationary functions p;q, which are not longer constants in accelerated fluid or
in a fluid affected by mass force. The mean flow is absent, so that its velocity equals zero, V

!ðx; y; zÞ � ~0.
@V
!

@t
¼ �r
!

p0

q
þ a!q0

q
;

@p0

@t
¼ �V
!� r!p

� �
� cp r!� V

!� �
;

@q0

@t
¼ �V
!� r!q

� �
� q r! � V

!� �
:

ð1Þ
The density of a mass force is denoted by a!. The acceleration in the direction of axis OZ a!¼ ð0;0;�gÞ may represent the
mass force like gravity ðaz ¼ �gÞ. The flow of an ideal gas is considered, which internal energy e in terms of pressure and
density takes the form
e ¼ p
ðc� 1Þq ; ð2Þ
where c ¼ Cp=Cv denotes the specific heats ratio. Eq. (1) describe gas motion of infinitely small magnitude. The stationary
pressure and density in the case of ax ¼ 0; ay ¼ 0; az � �a follow from the zero order equality,
dpðzÞ
dz
¼ �aqðzÞ: ð3Þ
The quantities supporting constant temperature T0 of the background, provide constant internal energy as well. That allows
to establish them:
pðzÞ ¼ p0 expð�z=HÞ ¼ q0aH expð�z=HÞ; qðzÞ ¼ q0 expð�z=HÞ; H ¼ T0ðCp � CvÞ
a

: ð4Þ
It is convenient to introduce the quantity u instead of perturbation in density,
u0 ¼ p0 � c
p
q

q0: ð5Þ
The quantity
e ¼ 1
2

Z
dv qV

!2 þ p02

cp
þ u02

cðc� 1Þp

� �
ð6Þ
is invariant, where
v ¼ f�1 < x; y <1;0 6 z 6 hg; ð7Þ
and h may be infinity. It readily follows from Eqs. (1)–(6), that
@e
@t
¼ �

Z
dvr!� ðp0 V!Þ ¼ �

I
rðvÞ

p0 V
!

d~r ¼ 0; ð8Þ
where r is a surface circumscriptive the volume v. The invariance of e manifests the conservation of the total energy of gas. It
includes kinetic, barotropic and thermal parts. For e to be invariant, there is a certain freedom of establishing of boundary
conditions at z ¼ 0 and z ¼ h : Vzðz ¼ 0Þ ¼ Vzðz ¼ hÞ ¼ 0; p0 is any smooth function (impermeability condition across the
boundaries), or, for example, Vzðz ¼ 0Þ ¼ 0; p0ðz ¼ hÞ ¼ 0. Let us use the new set of variables,
P ¼ p0 � expðz=2HÞ; U ¼ u0 � expðz=2HÞ; ~U ¼ ~V � expð�z=2HÞ: ð9Þ
Eq. (1) may be rearranged into the following set,
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@Ux

@t
¼ � 1

q0

@P
@x
;

@Uy

@t
¼ � 1

q0

@P
@y
;

@Uz

@t
¼ 1

q0

c� 2
2cH

� @

@z

� �
P þ U

cHq0
;

@P
@t
¼ �caHq0

@Ux

@x
þ @Uy

@y
þ @Uz

@z

� �
� aq0

c� 2
2

Uz;

@U
@t
¼ � c� 1ð Þq0aUz;

ð10Þ
which determines the spectral problem
@

@t
Wð~r; tÞ ¼ L

@

@x
;
@

@y
;
@

@z

� �
Wð~r; tÞ; ð11Þ
where
W ¼ ðUx;Uy;Uz; P;UÞ; ð12Þ
~r ¼ ðx; y; zÞ and L is the matrix operator including the spatial partial derivatives. The matrix formulation is equivalent to one
from [6] but our choice of variables is useful for further consideration, including the energy form, scalar product and hence,
the orthogonality of the eigenvectors of operator L. The condition of algebraic solvability of Eq. (10) may be established by
the Fourier transformation using the basis functions expðikxxþ ikyyþ ikzzÞ; Wð~r; tÞ ¼

R1
�1
R1
�1
R1
�1 expð�ixt þ ikxxþ ikyy

þikzzÞwðkx; ky; kzÞdkxdkydkz þ cc,
DetjjixI� lðkx; ky; kzÞjj ¼ 0; ð13Þ
where I is the unit matrix, l represents the matrix operator L in the space of Fourier transforms. There are four wave modes,
determined by Eq. (13), which we will denote by indices 1,2,3,4, and the entropy mode, marked by 0. The dispersion relations
are well-known, they have been derived earlier (see for example [1]) but we re-derive them from (10) and write down for a
reader convenience:
x0 ¼ 0: ð14Þ

x1;2 ¼ �
ffiffiffiffiffiffiffiffiffi
caH

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z þ
1

4H2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z þ
1

4H2

� �2

� 4ðc� 1Þ
c2H2 ðk2

x þ k2
yÞ

svuut
;

x3;4 ¼ �
ffiffiffiffiffiffiffiffiffi
caH

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z þ
1

4H2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z þ
1

4H2

� �2

� 4ðc� 1Þ
c2H2 ðk2

x þ k2
yÞ

svuut
:

The entropy mode essentially participates in a gas energy transfer. Propagation of intense sound in a thermoviscous fluid
makes this mode enlarge due to losses in acoustic energy, and it is not longer stationary in the nonlinear flow. This nonlinear
effect is known as acoustic heating. It is intensively studied in nonlinear acoustics in connection to technical and biomedical
applications [8,9]. An intensity of acoustic heating is proportional to the overall absorption of a fluid, including the thermal
one. Without account of the entropy mode as one of the primary types of a fluid motion, neither proper subdivision of modes,
nor description of overall motion is possible.

Vectors of perturbations W form the Hilbert space L2ðvÞ with the standard scalar product; particularly, for Wn ðn ¼ 0;
. . . 4Þ, correspondent to the eigenvalues ixn, it is
Wn;Wmh i ¼
Z

dv q0 U
!

n � U
!�

m þ
PnP�m
caHq0

þ UnU
�
m

cðc� 1ÞaHq0

� �
: ð15Þ
Therefore, the quantity E is invariant,
E ¼
Z

dv q0jU
!j2 þ P2

caHq0
þ U2

cðc� 1ÞaHq0

 !
; ð16Þ
where U
!

, P and U represent a sum of specific perturbations,
U
!¼

X4

n¼0

U
!

n; P ¼
X4

n¼0

Pn;U ¼
X4

n¼0

Un: ð17Þ
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The set Wn ðn ¼ 0; . . . 4Þ form a complete set of eigenvectors. That is true for the self-adjoint boundary conditions. It may be
readily established, that iL is symmetric in L2ðvÞ ð0 6 n;m 6 4Þ:
iLWn;Wmh i � Wm; iLWnh i ¼ i
I

rðvÞ
P�n U
!

m þ P�m U
!

n

� �
d~r: ð18Þ
The most important physically condition of impermeability at the upper and lower boundaries, z = 0 and z = h, is self-adjoint:
for example Uzðz ¼ 0Þ ¼ Uzðz ¼ hÞ ¼ 0. The choice of boundary conditions guarantees the orthogonality of eigenvectors as a
direct corollary of Hermicity of the operator L in respect to the scalar product (15). The second and third kind (homogeneous)
conditions are also admissible.
3. Decomposition of a perturbation into acoustic and entropy modes in one-dimensional flow

In the one-dimensional flow along axis OZðUx ¼ Uy � 0; kx ¼ ky � 0Þ, the dispersion relations (14) determine three
modes, or, in the other words, possible motions of a gas. Two of them are acoustic, describing sound of opposite direction
of propagation (above the cutoff frequency), and the last one is the stationary (or entropy) mode. One should remember
about the cutoff frequency in more advanced three-dimensional theory, which experimental evidence and applications is
still under discussion (see, for example [10]). In the absence of mass force or acceleration, the entropy mode is isobaric.
Eq. (14) are readily simplified:
x0 ¼ 0;x1 ¼
ffiffiffiffiffiffiffiffiffi
caH

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z þ
1

4H2

s
; x2 ¼ �

ffiffiffiffiffiffiffiffiffi
caH

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z þ
1

4H2

s
: ð19Þ
Eq. (10) take the form
@Uz

@t
¼ 1

q0

c� 2
2cH

� @

@z

� �
P þ U

cHq0
;

@P
@t
¼ �caHq0

@Uz

@z

� �
� aq0

c� 2
2

Uz;

@U
@t
¼ � c� 1ð Þq0aUz; ð20Þ
which yield in the invariant relation connecting P(z, t) and U(z, t) in both acoustic branches, Pa ¼ 1
c�1

c�2
2 þ cH @

@z

� �
Ua, and the link

for the stationary entropy mode, U0 ¼ � c�2
2 þ cH @

@z

� �
P0. Index a denote summary acoustic modes. The completeness of the set

of eigenvectors allow to represent the total vector of perturbations as a sum of acoustic and entropy vectors at any instant,
Wðz;tÞ¼
Uz

P

U

264
375¼W1ðz;tÞþW2ðz;tÞþW3ðz;tÞ�Waðz;tÞþW0ðz;tÞ¼

Ua;z

1
c�1

c�2
2 þcH @

@z

� �
Ua

Ua

2664
3775þ

0
P0

�c�2
2 þcH @

@z

� �
P0

2664
3775: ð21Þ
Some relations between eigenvectors Fourier components of have been derived in [4]. Vectors Waðz; tÞ and W0ðz; tÞ are
orthogonal in accordance to the metric (15),
hWa;W0i ¼
Z h

0
q0Ua;zU0;z þ

PaP0

caHq0
þ UaU0

cðc� 1ÞaHq0

� �
dz: ð22Þ
Taking a sum 2Uþ c� 2� 2cH @
@z

� �
P and using Eq. (21), one readily reduces all entropy terms in the left-hand side of the

ordinary differential equation of the second order,
1� 4H2 @
2

@z2

 !
Uaðz; tÞ ¼

2ðc� 1Þ
c2 2Uðz; tÞ þ c� 2� 2cH

@

@z

� �
Pðz; tÞ

� �
� Dðz; tÞ: ð23Þ
It is valid at any instant. The solution of (23) takes the form
Uaðz; tÞ ¼ C1 expð�z=2HÞ þ C2 expðz=2HÞ

þ 1
4H

expð�z=2HÞ
Z z

0
expðz0=2HÞDðz0; tÞdx� expðz=2HÞ

Z z

0
expð�x=2HÞDðz0; tÞdz

� �
; ð24Þ
where C1, C2 denote any real constants. It determines Paðz; tÞ in accordance to Eq. (21), ad P0ðzÞ ¼ Pðz; tÞ � Paðz; tÞ;
U0ðzÞ ¼ Uðz; tÞ �Uaðz; tÞ. That makes possible to conclude about composition of total perturbations in pressure and entropy,
and hence of that in the energy. The instant subdivision of perturbations and corresponding energy reproduces the results
obtained by means of temporal averaging over the sound period in the case of periodic in time perturbations (see [8]) but it is
much more universal because allows to describe precise temporal dynamics of non-periodic perturbations. It allows to
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separate energies of different sound branches. Obviously, the most significant difference can appear when pulses or series of
pulses are considered.

4. Examples

4.1. Composition of the total field of exclusively entropy or acoustic parts

The conclusion follow immediately from the relations (21) and completeness of the set of eigenvectors. If
Uðz;0Þ ¼ � c� 2
2
þ cH

d
dz

� �
Pðz;0Þ; Uzðz;0Þ ¼ 0; ð25Þ
the total field is represented exclusively by the entropy mode. We write down these equalities in the zero time. It is of impor-
tance, that there are valid at any instant if they are valid at some instant, for example, at t = 0. In order to conclude about
velocity of the acoustic mode, the knowledge of relation linking it with Ua is required. It follows from the conservation sys-
tem (10), but takes complex integro-differential form described by some integro-differential operator K. Anyway, the rela-
tions are asymmetric, U1;zðz;0Þ ¼ KU1ðz;0Þ; U2;zðz;0Þ ¼ �KU2ðz;0Þ. It may be concluded from these equalities and Eq. (21),
that if U1ðz;0Þ ¼ �U2ðz;0Þ and P1ðz;0Þ ¼ �P2ðz;0Þ, that is,
Pðz;0Þ ¼ 1
c� 1

c� 2
2
þ cH

d
dz

� �
Uðz;0Þ; ð26Þ
the total field is represented by the entropy mode and acoustic field with non-zero initial velocity Uzðz;0Þ ¼ U1;zðz;0Þþ
U2;zðz;0Þ (hence, the non-zero kinetic energy) and zero initial perturbations Pðz;0Þ and Uðz;0Þ. To make approximate evalu-
ations of K, one may restrict by large wavenumbers kz, Hkz � 1 [7]. That makes possible to expand acoustic eigenvalues in
the Taylor series and to obtain finally relations for every acoustic branch,
Uz;1ðz;0Þ ¼ �
gc2

8q0ðc� 1ÞðcaHÞ3=2

Z z

0
U1ðz0;0Þdz0; Uz;2ðz;0Þ ¼

gc2

8q0ðc� 1ÞðcaHÞ3=2

Z z

0
U2ðz0;0Þdz0: ð27Þ
The simple conclusion from Eq. (27) is that if
R z

0 ðU1ðz0;0Þ þU2ðz0;0ÞÞdz0 ¼ 0, the part of kinetic energy in the total one is zero.

4.2. Energy release

The first example considers pure heating of a gas which may occur at any instant, for definiteness at t = 0,
Pðz; t ¼ 0Þ ¼ Uðz; t ¼ 0Þ ¼ HðzÞ: ð28Þ
Eq. (23) with account for (28) yields
1þ 2H
d
dz

� �
Uaðz;0Þ ¼

2ðc� 1Þ
c

HðzÞ; ð29Þ
with solution
Uaðz;0Þ ¼
c� 1
cH

expð�z=2HÞ
Z z

0
expðz0=2HÞHðz0Þdz0: ð30Þ
Introducing the function eHðzÞ;HðzÞ ¼ expð�z=2HÞ d
dz ðexpðz=2HÞ eHðzÞÞ; one readily obtains
Uaðz;0Þ ¼
c� 1

c
eHðzÞ; Paðz;0Þ ¼

c� 2
2c

eHðzÞ þ H
d
dz
eHðzÞ; U0ðz;0Þ ¼ U�Ua

¼ 2� c
2c

eHðzÞ þ H
d
dz
eHðzÞ; P0ðz;0Þ ¼ P � Pa ¼

1
c
eHðzÞ: ð31Þ
In accordance to Eq. (22), if eHð0Þ ¼ eHð1Þ ¼ 0,
hWa;W0i ¼
1

caHq0

Z 1

0
PaP0 þ

UaU0

ðc� 1Þ

� �
dz ¼ 1

c2aq0

eHðzÞ				1
0
¼ 0: ð32Þ
The total energy of sound mode, with exception of its kinetic part, equals product of c � 1 and energy of the entropy mode,
Ra¼
1

caHq0

Z 1

0
P2

aþ
U2

a

ðc�1Þ

 !
dz¼ H

caq0

Z 1

0

d
dz
eHðzÞ� �2

dzþ 1
caHq0

Z 1

0

c�1
c2 þ

c�2
2c

� �2
 ! eH2ðzÞdz¼ðc�1ÞR0: ð33Þ
4.3. Energy release with mass injection

The second example describes the initial mass injection,
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Pðz; t ¼ 0Þ ¼ Uðz; t ¼ 0Þ
1� c

¼ HðzÞ: ð34Þ
In this case, Eq. (34) with account for (23) yields
1� 2H
d
dz

� �
Uaðz; 0Þ ¼ �

2ðc� 1Þ
c

HðzÞ; ð35Þ
with solution
Uaðz;0Þ ¼
c� 1
cH

expðz=2HÞ
Z z

0
expð�z0=2HÞHðz0Þdz0: ð36Þ
As well as in the previous subsection, we introduce the function eHðzÞ; HðzÞ ¼ expðz=2HÞ d
dz ðexpð�z=2HÞ eHðzÞÞ; and use Eq.

(21) to obtain at t = 0
Uaðz;0Þ ¼
c� 1

c
eHðzÞ; Paðz;0Þ ¼

c� 2
2c

eHðzÞ þ H
d
dz
eHðzÞ; U0 ¼ U�Ua

¼ ðc� 1Þðc� 2Þ
2c

eHðzÞ þ Hð1� cÞ d
dz
eHðzÞ; P0 ¼ P � P0 ¼

1� c
c

eHðzÞ: ð37Þ
The acoustic and entropy vectors of perturbations are orthogonal. The acoustic and entropy initial energies take the form
Ra ¼
H

caq0

Z 1

0

d
dz
eHðzÞ� �2

dzþ 1
caHq0

Z 1

0

1
4
eH2ðzÞdz ¼ 1

c� 1
R0: ð38Þ
Their ratio in this case equals ðc� 1Þ�1. Mathematically, the decomposition is possible due to orthogonality of the correspon-
dent subspaces with respect to scalar product choice (15), and because the energy functional (16) is quadratic. Physically, the
decomposition (by measurements) is possible because one specific perturbation determines all other perturbations in the
mode at any time. The formalism of relations (17) defines the invertible map in 1, 2, 3 dimensions.

5. Conclusions

The relations linking Uz with P and U in sound propagating in accelerated gas, or gas affected by the mass force, are inte-
gro-differential. The exact links of excess pressure, density and velocity in unbounded volumes of gas, are derived exactly
with regard to one-dimensional flow by one of the authors in [11,12]. The approximate relations in the case of short pertur-
bations (as compared to H) have been derived in [13]. In these studies, the projecting operators were derived, which being
applied on the total vector of perturbations, decompose the correspondent mode, acoustic or entropy, at any instant. The
projectors form the full orthogonal basis with properties:
P1 �P2 ¼ P1 �P3 ¼ . . . ¼ P3 �P2 ¼ 0; P2
1 ¼ P1; . . . P1 þP2 þP3 ¼ I; ð39Þ
where 0, I are zero and unit matrix operators. In general, the completeness of the decomposition (17) explains the impor-
tance of the zero-frequency mode in the evaluations of the overall energy and momentum [8,9].

The limit a! 0 and therefore H!1 may be easily traced. Note that the product aH remains constant (the last equality
from Eq. (4)), caH is squared sound of velocity in an ideal gas. In the case a = 0, u means the quantity proportional to per-
turbation in the entropy, u0 ¼ ðc� 1Þq0s0. It is identically zero in both acoustic branches and is not longer suitable to be a
reference quantity in them. Instead, perturbation in density may be chosen. The reason for which u0 was used in the case
non-zero a, is the simplicity of expression P in terms of U including partial derivative with respect to z but not integral
operators.

Two types of initial perturbations considered in Section 4 yield simple ratios of acoustic and entropy energies. Examples
do not consider kinetic part of the total energy which associates with acoustic modes. To evaluate it, the expression of
velocity in terms of acoustic pressure P or U is required. The relation is integro-differential and does not make possible
to conclude about part of kinetic energy in the total one in such simple manner as about parts of non-kinetic energy in
the examples. The relations for the first and second acoustic modes in terms of excess density, R ¼ q0 expð�z=2HÞ, are
determined by eigenvectors
W1ðz; tÞ ¼
Uz

U

R

264
375

1

¼

2caH
q0

R1
�1 dz0 @

@z0 � 1
2H

� �
Fðz0 � zÞ

að1� cÞ expðz=2HÞ
R1

z expð�z0=2HÞdz0

1

264
375R1ðz; tÞ;

W2ðz; tÞ ¼
� 2caH

q0

R1
�1 dz0 @

@z0 � 1
2H

� �
Fðz0 � zÞ

að1� cÞ expðz=2HÞ
R1

z expð�z0=2HÞdz0

1

264
375R2ðz; tÞ; ð40Þ
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where FðzÞ ¼
R1

0
sinðkzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ1=4H2
p dk ¼ 2

p I0ðz=2HÞ � L0ðz=2HÞð Þ (I0 and L0 denote the modified Bessel function of zeroth order and the

Struve function, respectively). These relations linking perturbations of density, pressure and velocity in unbounded space of a
gas, �1 < z <1, were obtained by one of the authors in [11,12].

This study is devoted to an ideal gas. It may be readily generalized in the case of a fluid different from an ideal gas, includ-
ing liquid, replacing c by c2q0=p0, where c denotes the sound velocity over the fluid without acceleration, and p0 denotes the
unperturbed internal pressure in it. The nonlinearity in conservation equations is not accounted for. The linear projecting is
helpful in studies of weakly nonlinear dynamics of a fluid and, in particular, in investigations of modes interaction there.
Applying of correspondent projector on the system of conservative equations directly (Eq. (10) supplemented by nonlinear
terms) allows to derive coupled dynamic equations for interacting modes. The example of that in unbounded volume of gas
was considered in [11,12]. The method elaborated by the authors is successful in the solution of some problems of fluids
flows in waveguides [14]. Let us mention that an interaction between waves and the mean flow (that also belongs to the
subspace of x = 0) is studied in [6].
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