
1 INTRODUCTION  

Fibre reinforced polymer (FRP) is a composite mate-
rial that consists of high modulus fibres (typically 
they are glass, boron or graphite fibres) embedded in 
a polymer matrix (epoxy, resin or polyamide), see 
e.g. Jones (1999). As a result of a significant pro-
gress in manufacturing technologies in the second 
half of the 20th century FRP composites became a 
promising class of engineering materials.  

A typical FRP composite is a lightweight material 
being extremely strong in the direction of fibres and 
remaining considerably weaker in all off-fibre direc-
tions. To gain the full advantage of such composite 
one can consider a multi-layer structure (a laminate) 
constructed by bonding together a number of unidi-
rectional fibre reinforced composite layers (laminas) 
with a varying orientation of fibre reinforcement in 
different layers. A resulted laminated FRP compos-
ite panel can be considered as an optimal structure 
with effective utilization of composite material di-
rectional properties (c.f. Vasiliev & Morozov 2001). 

Due to their high strength-to-weight and stiffness-
to- weight ratios laminated FRP composites are at-
tractive solutions for applications in advanced light-
weight structures, mostly in the aerospace industry, 
but also in the manufacturing of automobiles, sailing 
boats or pressure vessels. Such light-weight thin-
walled structures can be extremely sensitive to buck-
ling; therefore a proper examination of their behav-
iour should include a stability analysis, usually per-
formed as a geometrically non-linear large 
deformation analysis.  

When comparing mechanical characteristics of 
typical FRP composites with those of standard struc-
tural materials like steel or aluminium (see general-
ized strain-stress graphs in Fig. 1), it can be noticed, 

regardless a lower density of the former one, that 
while the FRP composites are superior in the 
strength, they have lower stiffness then steel. As a 
consequence, one can expect that elastic deforma-
tions of thin-walled structures made of laminated 
FRP composites will be larger than deformations of 
equivalent steel thin-walled structures at the same 
level of loading. On the other hand, due to the char-
acter of the strain-stress relation being almost linear, 
for a long time a linear elastic material model has 
been considered as fairly justified representation for 
the behaviour of FRP composites. As a consequence, 
the predominant approach utilized in examining of a 
performance of laminated FRP composites within 
the range of large deformations was geometrically 
non-linear but materially linear analysis (c.f. Kim & 
Voyiadjis 1999, Kreja 2011).  

 

 
 
Figure 1. Generalized strain-stress relations in uniaxial tension. 
 
The term “non-linear FEA” is routinely associated 
with the Finite Element Method (FEM) solution of 
large deformation problems (geometrically non-
linear) or of an inelastic problem (materially non-
linear). At present, after over 50 years of a vigorous 
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development (cf. Clough 2004), the FEM can be 
considered without any doubt, as the most powerful 
tool in computational structural analysis (cf. Givoli 
2001). It is worthy to notice here also a quite long 
history of the FEA of plates and shells (cf. MacNeal 
1998, Chróścielewski, Gilewski & Kreja 2011), as 
well as FEM applications in the numerical analysis 
of composite panels (cf. Carerra 2002, Kreja 2011). 

2 SCOPUS QUERY  
 
During almost a half century of a development a 
number of published scientific papers dealing with a 
non-linear FEA of plates and shells considerably ex-
ceeded the level of perception of an average re-
searcher. Quite fortunately, thanks to a strong pro-
gress of information technologies in the recent 
decade, now we can get a lot of information just at 
our fingertips by using search query services avail-
able in the internet. One of them, Scopus is adver-
tised (cf. http://www.info.sciverse.com/scopus) as 
“the world’s largest abstract and citation database of 
peer-reviewed literature with smart tools that track, 
analyse and visualize research”, with one important 
additional remark “citations received since 1996”. 
To prepare a literature enquiry for publications re-
lated to the subject given in the title of the present 
work the author decided to perform an “Advanced 
Search” within Scopus looking for relevant words 
and phrases within titles, abstracts and key-words, 
by using a query in the form  
TITLE-ABS-KEY (string)  (1) 
with string being an appropriate Boolean expression. 

One should realize that the value of the response 
obtained in such search strongly depends on the 
quality of the question; therefore, a proper selection 
of phrases included in the string plays here a crucial 
role. Hence, while looking for publications related to 
non-linear analysis, the author defined the search 
area by using 
string = SNL = nonlinear OR "non-linear" OR "non linear" OR 
stability OR buckling OR "large deflection" OR "large 
deformation" OR "large displacement" OR “large rotation” OR 
“moderate rotation” OR “finite rotation” (2) 
To limit the search to the area of plate and shell 
structures one should apply: 
string = SP = shell OR plate OR panel (3) 
Similarly, an appropriate search query for the FEA 
or FEM related literature should include 
string = SFE = "finite element" OR FEM OR FEA OR "discrete 
element" OR “Direct Stiffness Method” (4) 
One has to remember, that in 1960s and even in 
1970s the name “Finite Element Method” was not so 
obvious for some authors dealing with FEA. 

The research area related to composite FRP struc-
tures can be described by 
string = SFRP = FRP OR "fiber reinforce" OR "fibre reinforce" 
OR laminate OR composite (5) 
With the variables defined above, one can formulate 
an appropriate query to perform searching for all 
peer-reviewed papers dealing with non-linear FEA 
of composite FRP panels (NLFEFRPP) published 
until 2012: 
TITLE-ABS-KEY (SNL AND SP AND SFE AND SFRP) AND 
EXCLUDE(PUBYEAR, 2013) (6) 
as well as for all peer-reviewed papers dealing with 
non-linear FEA of plates and shells (NLFEP) pub-
lished until 2012: 
TITLE-ABS-KEY (SNL AND SP AND SFE) AND 
EXCLUDE(PUBYEAR, 2013) (7) 

It is quite interesting to observe (cf. Fig. 2) that 
the subset of peer-reviewed papers dealing with 
NLFEFRPP became a substantial share of the peer-
reviewed papers dealing with NLFEP – with the 
maximum reaching 39% in 1993 and the average 
level above 25%.  

 
Figure 2. Annual numbers of peer-reviewed publications on 
NLFEFRPP among all peer-reviewed publications on NLFEP. 
 
One should be aware of a limited precision of the 
achieved response – e.g. according to Scopus the 
most cited publication after 1995 within results of 
the search inquiry as described by (6) was paper 
Dvorkin & Bathe (1984), being one of millstones in 
the history of the development of shell finite ele-
ments, which, however, has nothing to do with com-
posite FRP panels.  
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With just few additional operations available in 
Scopus one can compose the Top 10 ranking of the 
most recognized Authors writing about NLFEFRPP, 
as given in Table 1. 
 
Table 1. Most Recognized Authors in NLFEFRPP. ______________________________________________ 
       Number   Number   Average  
Author      of     of    citations 

citations*  papers    per paper ______________________________________________ 
J.N. Reddy     926    58     16.0 
T. Kant      420    29     14.5 
C. Mei      372    61       6.1 
M. Ganapathi    221    22     10.0 
J. H. Starnes    206    28       7.4 
A. K. Noor     196    31       6.3 
C. S. Hong     192    21       9.1 
Z. Gürdal     188    27       7.0 
A. N. Palazotto   187    56       3.3 
D. R. Ambur    132    28       4.7 _____________________________________________ 
*  Since 1996 and excluding self-citations of all authors. 

 
Looking at the numbers showed in Table 1 one can 
notice, that Prof. J. N. Reddy from Texas A&M 
University with the total number of 926 citations is 
an unchallenged leader in this competition. In his 
oldest paper in that inventory (Reddy 1981) we can 
find a review on FEA of composite panels including 
large deflections and large amplitude vibrations. In 
the two most cited papers of J. N. Reddy in the topic 
of NLFEFRPP (Reddy 1989, Phan & Reddy 1985) 
the range of non-linearity was limited to von Kár-
mán theory. However, in the next papers co-
authored by J. N. Reddy the range of non-linear FEA 
of composite panels was extended to Moderate Rota-
tions (cf. Kreja et al. 1997) and also to Finite Rota-
tions (Arciniega & Reddy 2007). It is worth to re-
mind that the subject of NLFEFRPP was included in 
the General Lecture given by Prof. Reddy during the 
SSTA2009 (Reddy et al. 2010).  

It well known, that J. N. Reddy is a highly re-
nowned author of scientific publications devoted to 
composite panels – by using the search query com-
posed as  
TITLE-ABS-KEY (SP AND SFRP) AND 
EXCLUDE(PUBYEAR, 2013) (8) 
one can find in Scopus 189 papers co-authored by 
J. N. Reddy, with an impressive citation score equal 
to 5593. Then, it is quite clear, that the research de-
voted to NLFEFRPP constitutes just a small fraction 
of the research activity of J. N. Reddy related to 
composite FRP panels.  

A similar author’s profile can be associated with 
Prof. Tarun Kant from Bombay’s IIT – his 29 publi-
cations on NLFEFRPP represent just a small part of 
his research oeuvre. Among his most significant 
works dealing with NLFEFRPP are a frequently 
cited review paper (Mallikarjunaa & Kant 1993) and 
an acknowledged report on thermal buckling of 
composite panels (Kant & Babu 2000).  

Prof. Chuh Mei from the Old Dominion Univer-
sity is known mainly for his works on the nonlinear 
flutter (cf. Zhou et al. 1994) and thermal buckling 
(cf. Shi et al. 1999) of composite panels.  

Publications of M. Ganapathi from Mahindra Sat-
yam Aerospace Engineering in Bangalore treat 
mostly on transient NLFEFRPP (cf. Ganapathi & 
Varadan 1995, Singha & Ganapathi 2004) within the 
range of von Kármán theory.  

James H. Starnes Jr., from NASA Langley Re-
search Center, was an internationally renowned re-
searcher with expertise in the field of aerospace 
structures – among his most respected publications 
on NLFEFRPP one would consider a much appreci-
ated review on shell stability (Arbocz & Starnes Jr. 
2002) and many reports on buckling and imperfec-
tion sensitivity of composite panels (see e.g. Hil-
burger & Starnes Jr. 2002). In many of his papers 
the results of non-linear FEA of shells (obtained 
mainly with the program STAGS) were compared 
with the experimental results what made those pub-
lications especially valuable for the followers.  

Prof. Ahmed K. Noor belongs to the group of the 
most eminent Authors writing about multi-layered 
plates and shells; his achievements related to 
NLFEFRPP are also significant - in his early paper 
in that field (Noor 1975) he indicated that transverse 
shear deformation should be taken under considera-
tion in a proper buckling analysis of composite 
plates. Among the most appreciated papers of 
A. K. Noor one should include Noor (1986), where 
the application of global-local strategies in 
NLFEFRPP was discussed, as well as, Noor et al. 
(2000) presenting the influence analysis of variabil-
ity of composite material properties on the non-
linear response of composite structures. 

Prof. Chang Sun Hong from Korea Advanced In-
stitute of Science & Technology has an impressive 
output on composite structures applications in Aero-
space Engineering; to his most influential works on 
NLFEFRPP one would include Jun & Hong (1988) 
and Kweon & Hong (1994), both treating on buck-
ling analysis of composite cylindrical shells per-
formed with degenerated FEs.  

Prof. Zafer Gürdal is internationally recognized as 
an expert in designing and optimizing of composite 
materials. While working at Virginia Tech and Delft 
University of Technology he co-authored also a 
number of papers on NLFEFRPP; among them were 
Lee et al. (1995) on buckling of composite laminates 
with delamination studied with layer-wise FE model 
and Lopes et al. (2007) about non-linear damage 
analysis of variable-stiffness composite panels. The 
latter deserves a particular attention because FEA of 
the variable-stiffness composites (containing plies 
with spatially varying fibre orientations deliberately 
tailored to improve the structural efficiency of a 
composite) represents a current and computationally 
challenging problem. 
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Professor Anthony N. Palazotto from Air Force 
Institute of Technology is a recognized expert in 
Aerospace Engineering. In a series of papers on 
NLFEFRPP published in early 1990s, Palazotto 
promoted the Simplified Large Rotation (SLR) for-
mulation for laminated shells modelled within the 
third-order shear deformation theory (cf. Tsai et. al 
1991). Later Pai & Palazotto (1995) presented a co-
rotational formulation accounting for large rotations 
and change of fibre directions during deformation of 
a laminate. However, one of the most cited papers of 
A. N. Palazotto concerned FEA of low-velocity im-
pact on composite sandwich plates within the range 
of von Kármán non-linear theory but including fail-
ure detection and damage progression investigations 
(Palazotto et al. 2000). 

In 1990s Dr. Damodar R. Ambur used to publish 
with his earlier mentioned colleague from NASA 
Langley Research Center, Dr. James H. Starnes Jr.; 
however, portfolio of research papers co-authored by 
D. R. Ambur is also quite impressive. His main ac-
tivities within NLFEFRPP concerned the buckling 
of stiffened composite panels (cf. Jaunky et al. 1996) 
as well as progressive damage analysis (cf. Ambur et 
al. 2004). 

It is quite symptomatic that the majority (eight out 
of ten) of the Authors listed in Table 1 represent the 
field of Aerospace Engineering - after all, the aero-
space industry has been for a long period the main 
consumer of modern composite materials providing 
high strength at low self-weight. Nevertheless, the 
subject of NLFEFRPP attracted also many re-
searches with roots in other engineering disciplines 
like Mechanical or Civil Engineering, represented in 
our list by J. N. Reddy and T. Kant, respectively. 

The presented above ranking of the Top Ten Most 
Recognized Authors in NLFEFRPP has been pre-
pared based on the citation statistics given by Sco-
pus; however, even such procedure does not guaran-
tee a totally objective assessment because the search 
results were considerably influenced by a somewhat 
arbitrary choice of the search query. It is quite obvi-
ous, that with a slightly different formulation of the 
question, one could obtain another response. On the 
other hand, probably every one researcher involved 
in NLFEFRPP has his own list of the most cele-
brated authors. After over 20 years of an exploration 
of this research area the Author of the current report 
also could find good reasons to formulate his own 
list of the most favourable writers in NLFEFRPP, 
however, instead, a quite different point of view has 
been adopted in a survey presented in the next chap-
ter, which focused not on the Authors but on inspir-
ing papers, assuming, that they could be quite possi-
bly published by Authors with fairly moderate 
personal publication records in NLFEFRPP. 

3 PERSONAL VIEW  
 

The significance of an every paper dealing with 
FEA deeply depends on the value of numerical re-
sults it contains. To the best knowledge of the author 
of this report, the first FE solution to a non-linear 
problem for FRP composite panel was presented by 
L.A. Schmit Jr. and G.R. Monforton at the 10th 
AIAA/ASME Conference in April 1969 and pub-
lished some months later in Schmit Jr. & Monforton 
(1970). It is interesting to notice that mentioned pa-
per is generally devoted to the non-linear FEA of 
sandwich panels with laminated faces; however, in-
side we can find also two examples of thin FRP 
composite laminated rectangular plates simply sup-
ported on all four sides and subjected to in plane 
compression in one direction. The analysed lami-
nated plate was treated as an equivalent single layer 
(ESL) orthotropic plate; the FE model was consis-
tent with the Kirchhoff-Love theory of thin 
shells/plates and the non-linear formulation based on 
the Marguerre–von Kármán shallow shell equations. 
A rather good agreement with the results of an ex-
perimental buckling test was indicated.  

One can observe that the tactic proposed by 
Schmit Jr. & Monforton (1970) became a predomi-
nant methodology at early stage of a development of 
NLFEFRPP – most of contemporary computational 
models based on the ESL approach and the classical 
lamination theory (CLT). In the ESL model the en-
tire laminate is represented by a single-layer panel 
with macro-mechanical properties estimated as a 
weighted average of the mechanical properties of 
each lamina. Accordingly, CLT represents the ESL 
concept used in conjunction with the classical 
Kirchhoff-Love theory of thin shells/plates. Among 
the most recognized papers on NLFEFRPP with 
CLT approach one should include the publication 
Saigal et al. (1986) where a non-linear FE formula-
tion based on the Marguerre–von Kármán shallow 
shell equations was applied to solve eight examples 
of large deformation analysis of composite panels. 
One of those examples, a hinged cylindrical FRP 
composite laminated shell under central point load 
became a very popular benchmark test for geometric 
non-linear analysis of composite shells (cf. Section 
4.1).  

In the CLT models the effects of transverse shear 
strains were neglected, what constituted a severe 
limitation of those formulations (cf. Noor 1975, 
Jones 1999). A NLFEFRPP formulation accounting 
for transverse shear strains presented by Reddy & 
Chandrashekhara (1985) can be classified as the 
First Order Shear Deformation (FOSD) model. 
Nonetheless, concurrently Phan & Reddy (1985) ap-
plied a higher-order shear deformation (HOSD) the-
ory to analyse buckling loads for laminated anisot-
ropic composite plates. A comprehensive synthesis 
of those models can be found in Reddy (1989), 
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where the universal (CLT, FOSD or TOSD) single-
layer model was confronted with the layer-wise ap-
proach and continuum-based shell model.  

The continuum-based model of laminated shells 
based on the application of degenerated shell ele-
ments which in 1980s became the predominant tac-
tics in FE shell analysis (cf. Belytschko 1986). In 
fact, such treatment corresponded to the application 
of the FOSD theory. Degenerated shell elements 
were applied by Jun & Hong (1988) and Kweon & 
Hong (1994) to investigate the buckling phenome-
non of FRP composite laminated cylindrical shells 
(cf. Section 4.2).  

Tsai et al. (1991) presented a comprehensive 
study on non-linear response of cylindrical shells 
made of a glass-epoxy composite with various stack-
ing sequences of a laminate. Their finite shell ele-
ments based on their own SLR TOSD theory of cy-
lindrical laminated shells with parabolic distribution 
of the transverse shear stress through the shell thick-
ness and linear strain-displacement relations for the 
transverse shear strains. However, as it was indi-
cated by Kreja & Schmidt (2006), the solutions 
given by Tsai et al. (1991) suffered also from the 
lack of a proper treatment of the rotational parame-
ters. The same SLR TOSD model was applied also 
by Chaplin & Palazotto (1996) to examine a buck-
ling of cylindrical graphite-epoxy composite panels 
under axial compression. The influence of different  
sizes of centrally located rectangular cut-outs was 
studied for various shell thickness. Some of the ex-
amples from Chaplin & Palazotto (1996) were re-
analysed with NX-Nastran by Sabik & Kreja (2011).  

As far as the author of the present article mas-
tered the subject the very first solution the of a finite 
rotation problem for FRP composite laminated pan-
els we owe to Prof. Yavuz Başar from the Bochum 
University. Although his personal record of publica-
tions related to NLFEFRPP (just four items) cannot 
challenge the numbers presented in Table 1, Prof. Y. 
Başar was a renowned expert in non-linear shell 
analysis and his papers influenced many researchers 
involved in large rotation FEA of laminated FRP 
composite panels. One has to mention here mainly 
the paper Başar et al. (1993) presenting various FE 
models for NLFEFRPP in the range of finite rota-
tions. Single-layer models (CLT, refined FOSD and 
TOSD) as well as layer-wise approach were consid-
ered in Başar et al. (1993) what explicitly corre-
sponded with the collection included in Reddy 
(1989). Moreover, Başar et al. (1993) re-analysed 
Reddy’s example of a simply supported asymmetric 
cross-plied laminated plate  under uniform pressure 
providing a correct solution to the problem, which 
became a reference results for many followers (cf. 
Section 4.3). 

To describe finite rotations of the shell director 
Başar et al. (1993) used two Euler angles; a similar 
concept was also applied by Wagner & Gruttmann 

(1994), Brank et al. (1995), and Kreja & Schmidt 
(2006). Başar et al. (2000) utilized a singularity free 
parameterisation of the rotations based on the Rodri-
guez rotation vector. Their formulation included 3 
rotational dofs (i.e. degrees of freedom), with the 
third being a drilling rotation; similar approach was 
implemented by Chróścielewski et al. (2011). A 
slight different approach was used by Kim & Voy-
iadjis (1999); however, their co-rotational formula-
tion also utilized 3 rotational dofs. Balah & Al-
Ghamedy (2002) who also used the Rodriguez vec-
tor introduced additional constraints to eliminate a 
drilling rotation. Review of FE models for a large 
rotation analysis of laminated shells should not ig-
nore the continuum based shell models where the 
behaviour of the shell-like construction is repre-
sented without any reference to rotational dofs. Such 
tactics was applied e.g. by Laschet & Jeusette 
(1990), Klinkel et al. (1999), Masud et al. (2000), 
Kulikov & Plotnikova (2003), Vu-Quoc & Tan 
(2003). The big advantage of that kind solution lies 
not only in a much less complicated treatment of fi-
nite rotations represented just by relative displace-
ments between the nodes at the top surface and the 
reference surface, but also in a more natural and ad-
justable description of layered structure of the com-
posite laminate including panels with ply drop-offs 
(cf. Klinkel et al. 1999, Vu-Quoc & Tan 2003)   

4 SELECTED EXAMPLES 

4.1 Hinged cylindrical panel under point load 
The laminated cylindrical panel under the centrally 
located transverse force as presented in Figure 3 is 
hinged at the straight edges AD and BC, whereas 
curved edges AB and CD remain free.  
 

 
 
Figure 3. Cylindrical panel under point load  
 
This problem originates from the family of isotropic 
cylindrical panels analysed by Sabir & Lock (1972) 
- the layered orthotropic variant was primarily pro-
posed by Saigal et al. (1986) as a composite lami-
nate of the thickness h=12.6 mm with the following 
material parameters: Ea = 3.3 kN/mm2, Eb = 
1.1 kN/mm2, Gab = Gac = Gbc = 0.66 kN/mm2 and 
νab = 0.25. Dimensions of the panel are taken as 
R = 2540 mm, L = 254 mm and β = 0.1.  
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This example was frequently used as a benchmark 
problem, see e.g. Laschet & Jeusette (1990), Brank 
et al. (1995), Lee & Kanok-Nukulchai (1998), Kim 
& Voyiadjis (1999), Sze et al. (2004), Kreja (2006). 
Another variant of the laminated panel with the 
thickness reduced by half (h = 6.3 mm) was ana-
lysed by Brank et al. (1995), Lee & Kanok-
Nukulchai (1998), Sze et al. (2004), Kreja (2006), 
Kim et al (2007), Han et al. (2008) and Li et al. 
(2011).  

Kreja (2006) considered also the cross-ply 
[0/90/0] panel of the thickness h = 3.15 mm and 
showed that even for such thin shell almost no dif-
ference could be observed between the results ob-
tained with the Refined von Kármán (RVK5), Mod-
erate Rotation (MRT5) or Large Rotation (LRT56) 
formulations. The corresponding results for the 
cross-ply [90/0/90] panel of the thickness h = 3.15 
mm are presented in Fig. 4. 
 

 
 
Figure 4. Central deflection for laminated panel 3.15 mm thick. 
 
It is interesting to re-examine also the case of the 
angle ply lay-up [-45/+45]. Since this problem is 
asymmetrical it is necessary to model the whole 
panel. Own results for the panel 12.6 mm thick is 
presented in Fig. 5 together with the reference solu-
tions of Saigal et al. (1986) and Laschet & Jeusette 
(1990). Here again, there are almost no differences 
between the results of the LRT56, MRT5 and the 
RVK5 analyses. All three our models give solutions 
that are very close to the response predicted by 
Laschet & Jeusette (1990); however, there is a visi-
ble disagreement with the reference solution given 
by Saigal et al. (1986). One should notice that Saigal 
et al. (1986) analysed just one-quarter of the shell, 
assuming biaxial symmetry, what was not right for 
the case of the angle-ply lamination. Kim & Voyiad-
jis (1999), who reported results very similar to those 
of Saigal et al. (1986) also performed calculations 
for one quarter of the shell. To allow for a more de-
tailed examination of the angle ply laminate, addi-
tional calculations were performed with the LRT56 

model for the whole panel and for one quarter of the 
shell assuming two different lay-ups [-45/+45] and 
[+45/-45].  
 

 
 
Figure 5. Central deflection for angle-ply panel, h = 12.6  mm. 
 

 
 
Figure 6. Additional study for angle-ply panel, h = 12.6  mm. 
 
Looking at graphs presented in Fig. 6, one can ob-
serve that the same equilibrium paths were obtained 
for the both lay-ups ([-45/+45] and [+45/-45]), when 
the whole panel was represented in the FE model. 
On the other hand, the choice of the stacking se-
quence ([-45/+45] or [+45/-45]) was relevant when 
the reduced model of a one quarter with biaxial 
symmetry boundary conditions was used in calcula-
tions. Our results obtained for the whole panel agree 
quite well with the reference solution of Laschet & 
Jeusette (1990). However, when the reduced model 
was used for the stacking sequence [-45/+45] the ob-
tained response resembles that of Saigal et al. 
(1986).  

An analysis of the composite panel with the angle 
ply lay-up [-45/+45] and the thickness reduced to 6.3 
mm is associated with some additional difficulties 
due to the presence of bifurcation points on the equi-
librium path. In Fig. 7 one can find results of the 
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FEA performed for the whole panel – the symmetri-
cal response was obtained by fixing horizontal dis-
placements of the mid-point with additional con-
straints while the asymmetric response was enforced 
by applying an additional horizontal force 0.001 P as 
the load imperfection.  
 

 
 
Figure 7. Central deflection for angle-ply panel, h = 6.3  mm. 
 
Own results obtained for the FE model of the whole 
panel are noticeably different than the reference so-
lution of Lee & Kanok-Nukulchai (1998). However, 
Lee & Kanok-Nukulchai (1998) performed their cal-
culations for a reduced FE model consisting of one-
quarter of the shell with boundary conditions reflect-
ing biaxial symmetry. Quite surprisingly, such re-
duced model was applied also by Kim et al (2007), 
Han et al. (2008) and Li et al. (2011). Our additional 
computations performed with the LRT56 formula-
tion for one-quarter of the shell resulted in the equi-
librium path similar to that of Lee & Kanok-
Nukulchai (1998) when the angle ply lay-up was as-
sumed [-45/+45]; although, quite different response 
was obtained for the inverted lamina sequence 
[+45/-45] (cf. Fig. 7).  

4.2 Axial compression of composite cylindrical 
panel 

In the second example, a an axial compression of a 
16-layer composite cylindrical panel as presented in 
Fig. 8 is considered assuming that the straight edges 
AB and CD are simply supported with possibility to 
move along the generatrix, whereas the both curved 
edges are clamped. The lamination scheme can be 
described as [45/-452/45/04]S, the total thickness is 
h = 16×0.125 = 2 mm. Each lamina is made of car-
bon-epoxy composite with the following parameters: 
Ea = 130·106 kPa, Eb = 10·106 kPa, νab = 0.3 and 
Gab = Gac = Gbc = 5·106 kPa. Geometry of the panel is 

characterized by the radius R = 250 mm, the length 
L = 540 mm, the opening angle β = 1.6848 rad. 
 

 
 
Figure 8. Composite cylindrical panel under axial compression. 
 
The buckling behaviour of this composite cylindrical 
panel was analysed numerically e. g. by Jun & Hong 
(1988), Laschet & Jeusette (1990) and Kreja (2005). 
An interesting issue of this example is related to the 
loading conditions - two models were considered in 
present calculations: in the first approach (model 1) 
the panel was compressed by the axial load (pres-
sure) uniformly distributed on the curved AD edge 
of the panel; in the second version (model 2) a rigid 
movement of the whole edge AD was enforced. 
Since Jun & Hong (1988) published only the magni-
tude of the buckling load without any graphical 
presentation of the equilibrium path, their results are 
confronted with other solutions in Table 2.  

 
Table 2. Buckling load for compressed cylindrical panel ___________________________________________ 
Solution          Buckling load [kN] ___________________________________________ 
Laschet & Jeusette (1990)      137.8 
Jun & Hong (1988)         143.2 
LRT56 model 1          137.7 
LRT56 model 2          140.9 
Kreja (2005) – MSC Nastran LB    140.3 
Kreja (2005) – MSC Nastran NL    140.4 ___________________________________________ 

 
Jun & Hong (1988) analysed this example using a 
displacement control approach – they enforced a 
uniform increase of displacements at the edge AD. 
The same procedure was declared by Laschet & 
Jeusette (1990), however, their results are much 
closer to the LRT56 solution obtained for model 1 
than those of model 2. Nevertheless, a possible ex-
planation of a observable discrepancy between num-
bers given by Jun & Hong (1988) and Laschet & 
Jeusette (1990) can be associated with a slightly dif-
ferent boundary conditions applied by Laschet & 
Jeusette (1990), who used elements possessing only 
translational dofs. 

The graphs of the axial deflection vs. compression 
load for both models are given in Fig. 9 together 
with the reference solution of Laschet & Jeusette 
(1990).  
As one can see in the graphs presented in Fig. 9, 
Laschet & Jeusette (1990) reported a visibly stiffer 
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behaviour in the pre-buckling range than the re-
sponse obtained with both LRT56 models. Distinc-
tions related to a different interpretation of loading 
conditions in LRT56 models 1 and 2 are more evi-
dent in the post-buckling range, especially in graphs 
presenting the transverse deflection of the central 
point of the panel (cf. Fig. 10).  
 

 
 
Figure 9. Axial deflection of the compressed cylindrical panel. 
 
 

 
 
Figure 10. Transverse deflection of the compressed panel. 
 
While looking at the graphs given in Figures 9 and 
10, one can observe almost linear response of the 
structure in the pre-buckling range. This observation 
is consistent with a very good agreement between 
the results obtained with MSC-Nastran in a linear 
buckling (LB) analysis and non-linear (NL) incre-
mental analysis as reported by Kreja (2005) (cf. Ta-
ble 2). It can be also supported by negligible differ-
ences among values of the critical load calculated 
with the formulations RVK5, MRT5, and LRT56 - 
the influence of the applied FE mesh density was 
more significant here than the proper description of 
large rotations. 

4.3 Simply supported plate strip 

A simply supported asymmetric two layer laminated 
(0/90) panel under uniformly distributed transverse 
load, as shown in Figure 11 was analysed assuming 
E1 = 2.0 x 107 psi, E2 = 1.4 x 106 psi,  12 = 0.30, and 
G12 = G23 = G13 = 0.7 x 106 psi, together with 
a = 9.0 in, b = 1.5 in, and h = 0.04 in.  
 

 
 
Figure 11. Simply supported plate under uniform pressure. 
 
The graphs in Figure 12 show that the LRT56 results 
agree very well with the reference solution of Başar 
et al. (1993) who solved this problem using a fully 
non-linear formulation accounting for finite rota-
tions. On the other hand, the LRT56 solution is evi-
dently separated from the curves obtained for the 
models LRT5, MRT5 and RVK5. This observation 
stood behind a recommendation of this example as a 
proper benchmark example for large rotation analy-
sis of composite panels given by Kreja (2006) and 
followed e.g. by Kim et al. (2007) and Li at el. 
(2011). 
 

 
 
Figure 12. Central deflection of plate strip. 

5 CONCLUSIONS 

From the short survey presented above, one can real-
ise that the development of the geometrically non-
linear FEA of laminated FRP composite panels has 
already arrived at the very advanced level, therefore 
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a vital question can appear of likely future research 
directions that may be identified as scientifically in-
teresting and potentially beneficial for engineers.  

Undoubtedly, the problem of a reliable and effi-
cient prediction of the buckling loads for FRP com-
posite structures is among the most significant top-
ics. After Arbocz & Starnes Jr. (2002) one can 
expect here a growing contribution of stochastic sta-
bility analysis, where geometrical and material im-
perfections are taken into account by using random 
fields (cf. Broggi & Schuëller, 2011).  

As structural reliability is not limited just to a 
buckling but also includes examination of a struc-
tural strength, realistic material failure conditions 
should be considered for FRP composite panels, es-
pecially for those undergoing very large deforma-
tions. The searching for the trustworthy and robust 
failure criteria and methods of prediction of progres-
sive damage for composites have been still pursued 
(cf. Palazotto et al. 2000, Ambur et al. 2004, Lopes 
et al. 2007, Wagner 2010).  

Another crucial issue is related to a proper treat-
ment of the in-plane shear stiffness of a FRP com-
posite panel. Due to a non-linear relation between 
in-plane shear stress and in-plane shear strain (cf. 
Jones, 1998) it seems quite obvious that this matter 
can be treated as material non-linearity (cf. Hu et al. 
2006); however, Pai & Palazotto (1995) handled this 
problem exclusively within geometrical non-
linearity. One can expect that this problem will be 
further examined. 
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