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Multichannel Self-optimizing Narrowband

Interference Canceller
Michał Meller and Maciej Niedźwiecki, Member, IEEE

Abstract—The problem of cancellation of a nonstationary
sinusoidal interference, acting at the output of an unknown mul-
tivariable linear stable plant, is considered. No reference signal
is assumed to be available. The proposed feedback controller is a
nontrivial extension of the SONIC (self-optimizing narrowband
interference canceller) algorithm, developed earlier for single-
input, single-output plants. The algorithm consists of two loops:
the inner, control loop, which predicts and cancels disturbance,
and the outer, self-optimization loop, which automatically adjusts
the gain matrix so as to optimize the overall system performance.
The proposed scheme is capable of adapting to slow changes in
disturbance characteristics, measurement noise characteristics,
and plant characteristics. It is shown that in the important bench-
mark case – for disturbances with random-walk-type amplitude
changes – the designed closed-loop control system converges
locally in mean to the optimal one.

Index Terms—active noise and vibration control, time-varying
processes, adaptive signal processing

I. INTRODUCTION

NARROWBAND interferences (acoustic noise and/or vi-

bration) usually originate from rotation of an engine,

compressor, fan, or propeller. In the range of small frequencies

(below 1 kHz) such interferences are difficult to eliminate

using passive methods, but can be efficiently removed us-

ing active noise control (ANC) techniques, i.e., by means

of destructive interference. Multichannel ANC systems are

becoming increasingly popular as they allow one to create

larger (and spatially diversified) quiet zones compared to

single-channel systems, albeit at the expense of higher equip-

ment cost and increased computational requirements. Typical

commercial applications of such systems include reduction

of propeller-induced interior noise in aircrafts [1], [2], [3],

or suppression of engine-induced vibrations in automotive

vehicles [4], [5], [6], among many others.

Most of the existing multichannel solutions are based on

the classical filtered-X least mean squares (FXLMS) approach

[7], [8] or its modifications obtained by replacing the LMS

adaptive filters with faster converging ones, such as recursive

least squares (RLS) [9] or affine projection (AP) [10] –

for comparison of different variants see e.g. [11]. In all

cases mentioned above impulse response coefficients of all

secondary paths, linking actuators with sensors, are supposed

to be constant and known. In practice this means that the

controlled acoustic/vibration field should be identified prior to
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starting the ANC algorithm, and that it should be re-estimated

each time the spatial configuration of the system (positions

of actuators and sensors) changes. To exert full control over

the system in the presence of nonstationarities, on-line plant

identification is required. To avoid closed-loop identifiability

problems, a special random perturbation technique is often

used [12]. Unfortunately, since auxiliary noise disturbs op-

eration of the ANC system, identifiability is restored at the

expense of unnecessary performance degradation.

Another, conceptually different, solution to the multivari-

able narrowband disturbance rejection problem, based on the

“phase-locked” loop structure, was presented in [13]. However,

in order to use this technique characteristics of the controlled

plant (complex gains at given frequencies) need to be known

a priori.

An entirely new approach to narrowband disturbance can-

celing was recently proposed in [14], [15] (for complex-valued

disturbances) and in [16] (for real-valued disturbances). The

developed scheme, called SONIC (self-optimizing narrow-

band interference canceller), combines the coefficient fixing

technique, used to “robustify” self-tuning minimum-variance

regulators [17], [18], [19], with automatic gain tuning. It can

be used to control nonstationary plants subject to nonstationary

narrowband disturbances and compares favorably, both in

terms of cancellation quality and computational complex-

ity, with the FXLMS scheme. In this study a multivariate

version of SONIC is proposed and analyzed. Additionally,

an extended, frequency-adaptive version of the algorithm is

briefly sketched, allowing one to cope with quasi-periodic

disturbances.

II. PROBLEM STATEMENT

Consider the problem of cancellation of an n-dimensional

complex-valued narrowband disturbance

d(t) = α(t)ejω0t (1)

where t = . . . ,−1, 0, 1, . . . is a discrete, normalized time,

ω0 ∈ [−π, π) is a known angular frequency, and α(t) =
[α1(t), . . . , αn(t)]

T denotes the unknown time-varying vector

of complex-valued “amplitudes”, acting at the output of a

multidimensional stable plant governed by

y(t) = Lp(q
−1)u(t− 1) + d(t) + v(t) (2)

where y(t) is the n-dimensional output signal, u(t) is the

n-dimensional input (cancellation) signal, v(t) is an n-
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Fig. 1. Block diagram of the disturbance rejection system.

dimensional wideband noise, and

Lp(q
−1) =




L11(q
−1) . . . L1n(q

−1)
...

. . .
...

Ln1(q
−1) . . . Lnn(q

−1)




denotes the n× n-dimensional transfer function (q−1 denotes

the backward shift operator) which will be further assumed

unknown and possibly time-varying.

In acoustic active noise control systems, Lij(q
−1), 1 ≤

i, j ≤ n, are transfer functions of the so-called secondary

paths, linking each of the n actuators (canceling loudspeakers)

with each of n sensors (error microphones). Note that the

number of actuators is assumed to be equal to the number of

sensors, which is usually referred to as the fully determined

case.

We will look for a feedback controller allowing for can-

cellation, or near cancellation, of the sinusoidal disturbance,

i.e., controller generating the signal u(t) that minimizes the

system output in the mean-squared sense – in the control

literature such devices are usually termed minimum-variance

(MV) regulators. It will be not assumed that a reference signal,

correlated with the disturbance, is available. For this reason the

designed system, depicted in Fig. 1, will be a purely feedback

canceller, not incorporating any feedforward compensation

loop.

III. CONTROL OF A KNOWN PLANT

We will look for a steady-state MV regulator, i.e., for a

control rule which guarantees that

lim
t→∞

E[y(t)yH(t)] −→ min .

We will start from a very simple controller that requires full

prior knowledge of the plant and disturbance. Then we will

gradually step back from restrictive assumptions to make our

design work under more realistic conditions.

A. Stabilizing Controller

Suppose that the controlled plant is time-invariant, and

that its transfer function Lp(q
−1) is known. Since the dis-

turbance is a narrowband signal, the cancellation signal must

also be narrowband, with angular frequency ω0 and complex

amplitude chosen so as to enable destructive interference at

the plant’s output. In a case like this equation (2) can be

approximately written down in the form

y(t) ∼= Kpu(t− 1) + d(t) + v(t) (3)

where

Kp = Lp(e
−jω0), det(Kp) 6= 0

denotes the nonsingular matrix of plant gains at the frequency

ω0.

Should the disturbances be measurable and known ahead of

time, the MV controller could be expressed in the form

u(t) = −K−1
p d(t+ 1) . (4)

When d(t+1) is unknown, it can be replaced in (4) with the

one-step-ahead prediction, evaluated recursively by a simple

gradient algorithm. This leads to the following control rule

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) +My(t)] (5)

u(t) = −K−1
p d̂(t+ 1|t) (6)

where

M =




µ11 . . . µ1n

...
. . .

...

µn1 . . . µnn




denotes a matrix of complex-valued adaptation gains µij ,

chosen so as to guarantee stability of the closed loop system.

To arrive at stability conditions, the time-varying amplitude

in (1) will be rewritten in the form

α(t) = α(t− 1) + e(t)

where e(t) denotes the one-step amplitude change. Using this

notation, one can rewrite d(t) in the form

d(t) = ejω0d(t− 1) + ẽ(t) (7)

where ẽ(t) = ejω0te(t). Denote by c(t) = d(t) − d̂(t|t − 1)
the cancellation error. After combining (3) with (6) and (7),

one arrives at

y(t) = c(t) + v(t)

c(t) = ejω0(I−M)c(t− 1)−Mṽ(t− 1) + ẽ(t) (8)

where ṽ(t) = ejω0v(t).
It is clear from (8) that when the processes {v(t)} and

{e(t)} are bounded in the mean-squared sense, so is the output

signal, provided that

M ∈ Ωs : |λi(I−M)| < 1, i = 1, . . . , n

where λi(·) denotes the ith eigenvalue of the respective matrix.

B. Optimal Controller

In this section it will be examined how the canceller (6)

performs in the presence of random-walk (RW) amplitude

drift, arising when the sequence of amplitude changes {e(t)}
forms white noise. This will serve two purposes. First, the

tracking analysis under RW-type variations is an important

estimation and control benchmark [20], [21]. Even though

the RW model is not very realistic, it is quite demanding, as

the resulting amplitude trajectories are not bounded. Second,
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the RW case is usually analytically tractable, which means

that one can derive closed-form expressions characterizing the

system’s performance, and compare them with the analogous

expressions obtained for the optimal controller. This allows

one to examine the statistical efficiency of the proposed

solution, i.e., to evaluate it in absolute, rather than in relative,

terms.

To arrive at analytical results, the following assumptions

will be made:

(A1) {v(t)} is a zero-mean circular white sequence with

covariance matrix V.

(A2) {e(t)}, independent of {v(t)}, is a zero-mean circular

white sequence with covariance matrix E.

First, the Cramér-Rao-type lower tracking bound, which limits

from below the cancellation efficiency, will be derived. In

order to do this, consider the open-loop problem of finding the

optimal, in the mean-squared sense, one-step-ahead predictor

of d(t) obeying (7), based on noisy measurements

s(t) = y(t)|u(t)≡0 = d(t) + v(t). (9)

Note that under (A2) the sequence {ẽ(t)}, appearing in (7),

is circular white with covariance matrix E.

Regarding (7) as a state equation of a dynamic system, and

(9) as its output (measurement) equation, prediction of d(t)
can be viewed as an estimation problem in the state space. The

optimal, in the mean-squared sense, one-step-ahead predictor

of d(t) has the well-known form

d̂(t+ 1|t) = E[d(t+ 1)|S(t)] (10)

where S(t) = {s(i), i ≤ t} denotes the observation history

available at instant t. Under Gaussian assumptions

((A3) The sequences {v(t)} and {e(t)} are normally dis-

tributed: v(t) ∼ CN (0,V), e(t) ∼ CN (0,E)

the conditional mean estimate (10) can be computed recur-

sively using the celebrated Kalman filter

ε(t) = s(t)− d̂(t|t− 1)

G(t) = P(t|t− 1)[P(t|t− 1) +V]−1

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) +G(t)ε(t)]

P(t+ 1|t) = [I−G(t)]P(t|t − 1) +E (11)

where G(t) and P(t|t−1) denote the n×n Kalman gain and

posterior covariance matrices, respectively.

The steady-state version of this algorithm can be written

down in the form

ε(t) = s(t)− d̂(t|t− 1)

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) +G∞ε(t)] (12)

where G∞ ∈ Ωs denotes the steady-state gain matrix

G∞ = lim
t→∞

G(t) = P∞[P∞ +V]−1 (13)

and P∞ = limt→∞ P(t) is the positive definite solution of

the Riccati equation

P∞[P∞ +V]−1P∞ −E = O (14)

where O denotes the zero matrix (in the sequel A > O will

mean that the matrix A is positive definite).

Note that the disturbance estimation part of the control

rule (6) resembles that of a steady-state Kalman filter (12).

For any stabilizing gain M ∈ Ωs, denote by C∞(M) =
limt→∞ E[c(t)cH(t)] the covariance matrix of the correspond-

ing steady-state cancellation error. It will be shown that the

best performance of the closed-loop interference cancelling

system can be obtained by setting M = G∞.

Corollary 1

Under assumptions (A1)–(A3) it holds that

inf
M∈Ωs

C∞(M) = P∞ .

The minimum is obtained for M = G∞.

Proof - see Appendix I.

IV. CONTROL OF AN UNKNOWN PLANT

So far it has been assumed that the “true” gain Kp of the

plant is known. Suppose now that the “idealized” control rule

(4) is replaced with

u(t) = −K−1
n d̂(t+ 1|t) (15)

where Kn, det(Kn) 6= 0, is the nominal (assumed) plant gain

at the frequency ω0, generally different from the true gain Kp.

Denote by

B = KpK
−1
n =




β11 . . . β1n

...
. . .

...

βn1 . . . βnn




the matrix of complex-valued modeling errors. Combining (3)

with (5) and (15), one arrives at the following generalized

version of (8)

y(t) = c(t) + v(t) (16)

c(t) = ejω0(I−BM)c(t− 1)−BMṽ(t− 1) + ẽ(t) (17)

where

c(t) = d(t)−Bd̂(t|t− 1)

denotes cancellation error.

Note that equation (17) is almost identical with equation (8),

the only difference being that the matrix M is now replaced

with BM. This has important practical implications as it

means that by making the proper choice of the adaptation gain

M, one can not only “undo” modeling errors, but also optimize

the overall system performance. In the RW case this can be

achieved by setting M = Mopt = B−1G∞. Under such a

choice the covariance matrix of the steady-state mean-squared

cancellation error will reach its smallest possible value P∞ –

in spite of adopting an incorrect plant gain in (15)! Since the

matrix B is unknown, an automatic gain adjustment procedure

will be designed. As will be shown later, this procedure yields

the estimates M̂(t) that converge locally in mean to Mopt,

exactly as desired.
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A. Self-optimizing Controller

The quantity M̂(t) will be adjusted recursively by minimiz-

ing the following measure of fit

Ryy(0;M) = E[y(t;M)yH(t;M)]

where {y(t;M)} denotes a stationary process that “settles

down” in the closed-loop system for a constant value of M

such that BM ∈ Ωs.

Since it holds that [cf. (16)] Ryy(0;M) = C∞(M) +V,

minimization of Ryy(0;M) is equivalent to minimization

of the covariance matrix of the steady-state mean-squared

cancellation error. A simple stochastic gradient algorithm will

be designed, of the form

M̂(t) = M̂(t− 1) + α∆M(t) (18)

where α denotes a small positive constant, and ∆M(t) is

chosen so as to guarantee that1

Ryy(0; M̂+∆M) ≤ Ryy(0; M̂). (19)

While derivation of the gain tuning algorithm given in [14]

was based on Wirtinger calculus, in the present study another

analytic technique, known as directional derivatives, will be

used [22].

Directional derivatives are related to Gâteaux differentials.

Let X,Y ∈ Cm×n be complex-valued matrices. The first-

order directional derivatives of functions f(X) : Cm×n → C,

g(X) : Cm×n → Ck and H(X) : Cm×n → Ck×l at X in the

direction Y are defined as

d→

Y
f(X) =

d

dǫ

∣∣∣∣
ǫ=0

f(X+ ǫY) ∈ C

d→

Y
g(X) =

d

dǫ

∣∣∣∣
ǫ=0

g(X+ ǫY) ∈ Ck

d→

Y
H(X) =

d

dǫ

∣∣∣∣
ǫ=0

H(X+ ǫY) ∈ Ck×l

(assuming that all functions are differentiable with respect to

ǫ). Unlike much more popular gradients, directional derivatives

do not expand dimensions – directional derivatives of scalar,

vector-valued and matrix-valued functions on matrix do-

main are scalar, vector-valued and matrix-valued, respectively.

The analogous gradient operators have two-dimensional (ma-

trix), three-dimensional (cubix) and four-dimensional (quatrix)

representations, respectively, which considerably complicates

analysis.

1) Gradient Update: To find the “right” direction ∆M, the

first-order Taylor series expansion of Ryy(0;M) about M will

be used:

Ryy(0;M+∆M) ∼= Ryy(0;M)

+ E
{
d −→

∆M

[
y(t;M)yH(t;M)

]}
. (20)

1From here on, ∆ will always denote an increment of the accompanying
matrix (∆M, ∆X, etc.), i.e., it will not be used as a stand-alone quantity.

Note that

d −→

∆M

[
y(t;M)yH(t;M)

]
= d −→

∆M
y(t;M)yH(t;M)

+ y(t;M)
[
d −→

∆M
y(t;M)

]H
.

(21)

Furthermore, since

y(t;M) = ejω0(I−BM)y(t− 1;M) + ẽ(t)

+ v(t)− ejω0v(t − 1) (22)

one obtains

d −→

∆M
y(t;M) = ejω0

[
(I−BM)d −→

∆M
y(t − 1;M)

− B∆My(t− 1;M)
]
. (23)

Since the directional derivative of y(t) depends on the model-

ing error B, the recursive formula (23) cannot be used without

modification. In the univariate case this problem was dealt

with by means of applying the substitution β = cµ/µ, where

β and µ denote the one-dimensional counterparts of B and

M, respectively, and cµ is a positive constant – for more

comments on this choice see [14]. In the multivariate case

the same “trick” will be used by postulating that (see remark

below)

B = cµM
−1. (24)

Using this substitution, one obtains the modified version of

(23)

d −→

∆M
y(t;M) = ejω0

[
(1− cµ)d −→

∆M
y(t − 1;M)

− cµM
−1∆My(t− 1;M)

]
. (25)

Let z̃(t;M) be the quantity defined implicitly by

d −→

∆M
y(t;M) = M−1∆Mz̃(t;M) . (26)

According to (20), one should choose ∆M in such a way that

d −→

∆M

[
y(t;M)yH(t;M)

]
≤ O. (27)

After combining (21) with (26), one obtains

d −→

∆M

[
y(t;M)yH(t;M)

]
= M−1∆Mz̃(t;M)yH(t;M)

+ y(t;M)z̃H(t;M)∆MHM−H. (28)

Therefore, in order to fulfill (27), one should set

∆M = −My(t)z̃H(t)P (29)

where P is an arbitrary positive definite matrix.

Summarizing all steps of our derivation, and setting P = I

for simplicity, one arrives at the following gradient algorithm

for updating the weight matrix

z̃(t) = ejω0 [(1 − cµ)z̃(t− 1)− cµy(t − 1)]

M̂(t) = M̂(t− 1)
[
I− αy(t)z̃H(t)

]
(30)

where the first recursion was obtained by rewriting (25) in

terms of z̃(t).
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Remark: Substitution (24) is the “controversial” part of

our derivation. Does one have the right to introduce such

modifications? To answer this question, one should realize

that the gain update algorithm is operated in a closed loop.

It is known that feedback, under certain circumstances, can

correct design errors. A good example of exploiting such

self-correction capabilities of adaptive feedback controllers is

the coefficient fixing technique, used to robustify self-tuning

minimum-variance regulators. Coefficient fixing means that,

for controller design purposes, one of the system coefficients

is deliberately set to an (almost) arbitrary value and not

estimated. In spite of this obviously erroneous assumption (the

adopted value of the fixed coefficient generally differs from the

true value), the closed-loop control system can be shown to

converge locally in mean to the optimal one, which means that

the design error is compensated by feedback [17], [18], [19].

The substitution (24) is hardly intuitive and therefore its

feasibility cannot be judged a priori. But our main point here

is that any way of coping with unknown modeling errors is

feasible, provided that it guarantees mean convergence of gain

estimates to their optimal values. In [14] it was shown that

this is the case for the univariate version of SONIC. In the

next section we will prove that the same holds true for its

multivariate version

2) Normalized Updates: In addition to (30), two normal-

ized versions of the gain update can be used: the trace

algorithm

r̃(t) = ρr̃(t− 1) + |z̃(t)|2

M̂(t) = M̂(t− 1)

[
I−

y(t)z̃H(t)

r̃(t)

]
(31)

and, the computationally more involved, directional algorithm

[obtained by taking P = R̃−1 in (29)]

R̃(t) = ρR̃(t− 1) + z̃(t)z̃H(t)

M̂(t) = M̂(t− 1)
[
I− y(t)z̃H(t)R̃−1(t)

]
. (32)

The adjective “trace” refers to the fact that the normalizing

factor r̃(t) in (31) is equal to tr{R̃(t)}, where R̃(t) denotes

the normalizing matrix in (32). In both cases ρ, 0 < ρ < 1,

denotes the forgetting constant determining the effective length

of the local averaging window. The recommended values of ρ
are those from the interval [0.999,0.9999].

Normalization makes the algorithms (31) and (32) scale

invariant. Suppose that the gradient algorithm (30) is run on

a scaled data sequence {y′(t)}, y′(t) = δy(t), δ 6= 0. Then,

to obtain results identical with the original ones, the stepsize

α should be replaced with α/δ2. Both normalized algorithms

are free of this ambiguity. Directional normalization provides

more careful scaling than trace normalization as it takes into

account the relative “strength” of different measurements.

Note that the matrix P̃(t) = R̃−1(t) can be computed

recursively

P̃(t) =
1

ρ

[
P̃(t− 1)−

P̃(t− 1)z̃(t)z̃H(t)P̃(t− 1)

ρ+ z̃H(t)P̃(t− 1)z̃(t)

]
. (33)

It will be shown that in the univariate case (n = 1) both

normalized updates are approximately equivalent to those

incorporated in the SONIC controller:

z(t) = ejω0

[
(1− cµ)z(t− 1)−

cµ
µ̂(t− 1)

y(t− 1)

]

r(t) = ρr(t − 1) + |z(t)|2

µ̂(t) = µ̂(t− 1)−
y(t)z∗(t)

r(t)
(34)

where µ denotes a complex-valued scalar gain.

To show equivalence, note that the scalar counterpart of both

normalized updates can be written down in the form

z̃(t) = ejω0 [(1− cµ)z̃(t− 1)− cµy(t− 1)]

r̃(t) = ρr̃(t− 1) + |z̃(t)|2

µ̂(t) = µ̂(t− 1)

[
1−

y(t)z̃∗(t)

r̃(t)

]
. (35)

When µ̂(t) and r̃(t) change slowly compared to z̃(t), i.e.,

µ̂(t) ∼= µ̂(t− 1) ∼= µ (which takes place for ρ close to 1), one

can apply the following substitutions

z̃(t) = µz(t), r̃(t) = |µ|2r(t)

which convert (35) into (34).

B. Mean Convergence Analysis

For simplicity, consider gradient updates (30). It will be

shown that under (A1)–(A2) the estimates M̂(t) converge

(locally) in mean to the optimal solution Mopt = B−1G∞.

It is known that the tracking behavior of constant-gain

(finite-memory) estimation algorithms, such as (37), can be

studied by examining the properties of the associated ordinary

differential equations (ODEs) [23], [24]. Denote by {y(t;M)}
and {z̃(t;M)} the stationary processes observed in the closed-

loop system for a constant value of M : BM ∈ Ωs. For

sufficiently small values of α, the estimates M̂(t) wander

around M0 – the stable equilibrium point of ODE associated

with (30)

Ṁ = F(M) (36)

where

F(M) = −M E
[
y(t;M)z̃H(t;M)

]
.

It can be shown that

Theorem 1

Under assumptions (A1)–(A2) it holds that M0 = Mopt is

a unique stable equilibrium point of ODE (36). The minimum

is attained for M = G∞.

Proof - see Appendix II.

The same result can be proved for normalized updates (31)

and (32), respectively.

C. Multivariate SONIC

Combining all earlier results, the trace (recommended) ver-

sion of the multivariate SONIC algorithm can be summarized
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as follows

z̃(t) = ejω0 [(1− cµ)z̃(t− 1)− cµy(t− 1)]

r̃(t) = ρr̃(t− 1) + |z̃(t)|2

M̂(t) = M̂(t− 1)

[
I−

y(t)z̃H(t)

r̃(t)

]

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) + M̂(t)y(t)]

u(t) = −K−1
n d̂(t+ 1|t). (37)

SONIC consists of two loops: the inner, cancellation loop

[the last two recursions of (37)], which predicts and cancels

disturbance, and the outer, self-optimization loop [the first

two recursions of (37)], which automatically adjusts the gain

matrix so as to optimize the overall system performance.

Even though multivariate SONIC resembles its univariate

counterpart, some of its details (such as the multiplicative,

rather than additive, gain updates) are hardly deducible from

the single input - single output solution presented in [14].

D. Selection of Design Parameters

The influence of design parameters cµ and ρ on tracking

properties of SONIC were studied in [14] for cisoids with

random amplitude drift. It was shown there (see Section VI-E

in [14]) that the closer that 1− ρ becomes to 0, the longer it

takes for the algorithm to readjust the adaptation gain µ̂(t)
when the operating conditions change (plant, noise and/or

interference). On the other hand, small values of (1−ρ)/cµ are

required to make the steady-state fluctuations of µ̂(t) around

µopt small. Finally, the value of cµ, 0 < cµ < 1, should be

trimmed to the rate of plant/disturbance variation – the faster

the changes, the larger the recommended values of cµ. The

following rules of thumb, which extend to the multivariable

case, seem to work pretty well in practice:

• Choose cµ in the range [0.005/fs, 0.1/fs], where fs
denotes sampling frequency expressed in kHz.

• Choose ρ such that 1− ρ ≪ cµ.

Under 1 kHz sampling our default choice is: cµ = 0.01
and ρ = 0.999. As long as the conditions specified above

are fulfilled, cancellation performance of SONIC does not

critically depend on the selection of cµ and ρ. The algorithm’s

mean transient response to large abrupt plant and/or distur-

bance changes last for several (usually less than 10) periods

T0 = 2π/ω0 of the sinusoidal interference. When the changes

are less significant, the length of the transient phase is usually

much shorter, often taking values smaller than T0.

Although the operating range for SONIC is usually limited

to the bandwidth [0, 500 Hz] (where passive methods fail to

work), the algorithm can be safely used in the extended (kHz)

frequency range, provided that the sampling frequency fs is

chosen appropriately. Note that the recommended parameter

settings depend on fs.

E. Comparison with the Adaptive FXLMS Algorithm

All advantages of SONIC compared to adaptive FXLMS

(i.e., FXLMS with on-line plant identification), pointed out

in [14] and [15], carry on to the multivariate case. For the

readers’ convenience they will be briefly summarized below.

1) Parsimony. When the FXLMS approach is taken, each

secondary path is usually modelled as a finite impulse response

(FIR) system of order M

Li1i2(q
−1) =

M∑

m=1

li1i2m q−m, 1 ≤ i1, i2 ≤ n.

To maintain stability and satisfactory performance of the

closed loop system, M must be sufficiently large, typically in

excess of 100 under 1 kHz sampling (for higher sampling rates,

the value of M must be proportionally increased). Large values

of M are unavoidable when canceling wideband disturbances

(in a feedforward compensation configuration), simply because

the frequency response of the plant must be modelled over

the entire frequency band (−π, π]. For sinusoidal disturbances

the situation is different – all that is needed for steady-state

cancellation purposes, is an estimate of the plant’s gain at

the frequency ω0: k̂i1i2p =
∑M

m=1 l̂
i1i2
m e−jmω0 . This means

that, in the case considered, the FIR representation adopted for

FXLMS is grossly overparameterized – it requires estimation

of n2M parameters instead of 2n2 parameters (SONIC). This

lack of parsimony results in a slower response of FXLMS

to plant and/or disturbance changes, as well as in some

degradation of its steady state performance.

2) Identifiability. When identification/tracking of secondary

paths is carried out on-line, i.e., in a closed loop, linear feed-

back may cause identifiability problems: parameter estimates

may not converge to their true values, if they converge at all.

To restore identifiability, a low-intensity random perturbation

(dither) can be added to the input signal [12]. Unfortunately,

injection of such an auxiliary noise disturbs operation of the

canceling system and causes deterioration of its performance.

Note that SONIC is free of this drawback – due to gain

fixing, M̂(t) converges in mean to its optimal value without

additional excitation.

3) Computational complexity. Computational burden as-

sociated with the adaptive FXLMS algorithm is equal to

n2(6M + 12) real multiply/add operations per time update

for regular LMS, and increases to n2(8M + 13) operations

when the normalized LMS (NLMS) recursions are used – see

[14].

The computational complexity of the gradient SONIC algo-

rithm (37) is equal to 16n2+14n real multiply/add operations

per time update. When the trace algorithm (31) is used,

instead of the gradient one, the computational burden increases

slightly to 16n2 + 16n + 2 real multiply/add operations and

2 real division operations per time update. Finally, in the

computationally most expensive version, incorporating direc-

tional normalization (32), SONIC requires 22n2 + 16n + 2
real multiply/add operations and 2n real division operations

per time update. Therefore, for a single sinusoidal disturbance

and for realistic values of M (M ≥ 100), SONIC, compared

to FXLMS, offers huge computational savings (it is at least

30 times less demanding).

When more than one harmonic component is to be elimi-

nated, the computational complexity of SONIC grows linearly
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with the number of harmonics (see Section V-B), while the

complexity of FXLMS grows at a slower rate (because the

order M of the identified plant model does not need to be

increased). In spite of this, when the number of attenuated

harmonics is smaller than 30, SONIC remains computationally

more attractive than FXLMS.

4) Self-optimization. SONIC automatically adjusts its gain

matrix M so as to minimize the mean-squared cancellation er-

ror. Even though several extended FXLMS schemes, equipped

with mechanisms for on-line adjustment of LMS step-sizes,

were proposed in the literature (see e.g. [25] and the referenses

therein), we have found out that in the presence of sinusoidal

disturbances they do not perform satisfactorily [14].

A more detailed comparison of SONIC and FXLMS, in-

cluding the results of simulation experiments, can be found in

[14] and [15].

V. COMMENTS AND EXTENSIONS

A. Frequency-adaptive Algorithm

Extending SONIC to the case of unknown, and possibly

time-varying, frequency is straightforward. A frequency esti-

mation block can be added and, using the certainty equivalence

principle, one can replace the constant-known frequency ω0

with its estimated value. Suppose that an extra (scalar) refer-

ence signal s(t) is available from the detection sensor, local-

ized close to the source of sound/vibration, and unaffected by

the control signal u(t). Then the frequency-adaptive extended

SONIC (xSONIC) algorithm can be designed as follows [26]:

z̃(t) = ejω̂(t|t−1) [(1− cµ)z̃(t− 1)− cµy(t− 1)]

r̃(t) = ρr̃(t− 1) + |z̃(t)|2

M̂(t) = M̂(t− 1)

[
I−

y(t)z̃H(t)

r̃(t)

]

d̂(t+ 1|t) = ejω̂(t|t−1)[d̂(t|t− 1) + M̂(t)y(t)]

ω̂(t+ 1|t) = g[S(t)]

u(t) = −K−1
n d̂(t+ 1|t) (38)

where ω̂(t + 1|t) denotes the one-step-ahead instantaneous

frequency predictor based on the history of the reference

signal: S(t) = {s(i), i ≤ t}.

The frequency estimation routine g[·] can be either para-

metric, i.e., model-based (different variants of adaptive notch

filters), or nonparametric, i.e., based on decomposition of the

signal space (FFT, MUSIC, ESPRIT etc.) When the reference

signal is not available, frequency estimation can be based on

examination of a selected error signal, preferably the one with

the highest SNR – see [26] for more details on the frequency-

adaptive case.

B. Multiple Frequencies

When disturbance consists of many sinusoidal components,

one can use the parallelized version of the proposed algorithm.

A separate block of the form (37) or (38) is required for each

signal component - for more details see [27]. When the number

of frequency components is unknown, one can estimate it

using the method proposed in [28].

C. Initialization and Safety Measures

All results presented in the previous section characterize

local properties of the cancellation algorithm, which means

that the gain estimates may, but not necessarily have to,

converge to the desired values. To guarantee mean convergence

of M̂ to the optimal value M0 = Mopt, the initial estimate

M̂(0) must belong to the domain of attraction of M0, further

denoted by Ω0. Vaguely speaking, the domain Ω0 ∈ Ωs

“shrinks” as the modeling error grows. Hence, to minimize the

risk of divergence during initialization of the algorithm, one

can set Kn to K̂p – the estimated gain matrix, obtained as a

result of an open-loop identification experiment. During such

experiment, actuators are sequentially activated (one at a time)

to generate a probing signal of the form ui(t) = sinω0t. Then,

based on steady-state responses collected by all sensors, one

can estimate the ith column of the matrix Kp using classical

frequency-domain identification tools, such as the method

of empirical transfer function estimation (ETFE) described

in [29]. According to (8), when Kn = Kp, i.e., B = I,

stabitity of the closed-loop system can be guaranteed by setting

M = µI, where µ ∈ (0, 2). Following this observation we

recommend using M̂(0) = µ0I, where µ0 ≪ 1 denotes a

small positive constant.

All fixes described above are needed only in the initial

control phase, to smoothly start operation of the closed-loop

system. After successful initialization, SONIC is capable of

adapting on-line to slow changes in disturbance (E), measure-

ment noise (V), and system (Kp) characteristics.

Similar to the univariate case, to avoid erratic behavior of

the canceller in the startup phase, or in the presence of rapid

disturbance and/or plant changes, some safety measures are

advisable, such as limitation of the “magnitude” and one-step

rate of change of M̂(t) – see [14] for more details.

VI. SIMULATION RESULTS

A. Mean Convergence

To check the asymptotic mean convergence properties of

the proposed rejection scheme, several simulations were per-

formed under different conditions:

1) For two choices of the plant: for a dynamic system

y(t) = Lp(q
−1)u(t− 1) + d(t) + v(t)

with impulse response depicted in Fig. 2 (established ex-

perimentally using data from a real acoustic encounter),

and for its static counterpart

y(t) = Lp(e
−jω0)u(t− 1) + d(t) + v(t).

In both cases

V = 0.03

[
1 0.3j

−0.3j 1

]
. (39)

2) For four choices of amplitude modulation intensity:

E = σ2
e

[
1 0.5
0.5 2

]

where σ2
e ∈ {3 · 10−7, 10−6, 3 · 10−6, 10−5}.
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Fig. 2. Impulse response of the plant used in all simulations.

The trace version of the algorithm was used with ρ =
0.9998 and cµ = 0.005. While the assumed plant model was

equal to the true one, Kn = Kp, the algorithm was initialized

with

M̂(0) =

[
0.001 0
0 0.001

]
ejπ/4 . (40)

This means that, initially, a significant phase bias was present

in M̂(t).
Due to the presence of a nonstationary disturbance (note

that magnitudes of d(t) grow unbounded), all results were

obtained by combining ensemble averaging (50 realizations

of {e(t)} and {v(t)}) and time averaging (100000 samples,

initial 50000 samples were discarded to ensure that steady

state was reached). The frequency of the disturbance was in

all cases equal to ω0 = π/2.

The results are gathered in Table 1. Since it is more

meaningful to check the eigenvalues of the gain matrix M,

rather than the elements of M, Table 1 shows mean values of

λ1(M) and λ2(M), respectively.

In case of a static plant, almost perfect agreement of theory

and simulations can be observed. Although some discrepancies

occur for the dynamic plant, they are within acceptable limits.

Most importantly, the phase is estimated with only small biases

which guarantees stability of the closed loop system.

B. Transient Behavior

Transient behavior of the proposed scheme for the dynamic

plant is depicted in Fig. 3. This time, the trace algorithm was

used with ρ = 0.999, cµ = 0.005, M̂(0) was given by (40),

and σ2
e = 10−5. Additionally, to avoid rough start, during the

initial 2000 sampling periods, the quantity z̃(t) was evaluated,

but M̂(t) was kept at its initial value and not estimated. The

adaptation lock was released at t = 2001.

Observe that the response to phase errors is quicker than to

magnitude errors. Similar difference in sensitivity to different

kinds of errors was observed for the univariate SONIC.

σ2
e λ

opt
1

λ
opt
2

|λ1| |λ2| Arg λ1 Arg λ2

3 · 10−7 0.0027 0.0050 0.0028 0.0052 1.25◦ 0.17◦

1 · 10−6 0.0050 0.0092 0.0052 0.0093 -0.48◦ 0.25◦

3 · 10−6 0.0087 0.0158 0.0088 0.0161 -0.78◦ -0.04◦

1 · 10−5 0.0158 0.0287 0.0159 0.0289 0.22◦ 0.13◦

σ2
e λ

opt
1 λ

opt
2 |λ1| |λ2| Arg λ1 Arg λ2

3 · 10−7 0.0027 0.0050 0.0032 0.0059 5.23◦ 2.54◦

1 · 10−6 0.0050 0.0092 0.0056 0.0108 4.28◦ 2.74◦

3 · 10−6 0.0087 0.0158 0.0099 0.0188 3.19◦ 2.60◦

1 · 10−5 0.0158 0.0287 0.0184 0.0345 4.30◦ 3.89◦

TABLE I
MEAN CONVERGENCE RESULTS FOR THE STATIC PLANT (UPPER TABLE)

AND DYNAMIC PLANT (LOWER TABLE).
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Fig. 3. Transient behavior of the proposed scheme. Two upper figures –
results of a typical simulation. Two lower figures – average of 50 simulations.

C. Comparison with FXLMS

Suppose that the transfer function of the plant Lp(q
−1)

does not change with time, and that the true gain matrix

Kp = Lp(e
−jω0) is known, e.g. it was established based on

the results of an open-loop identification experiment. In this

simple case cancellation of the narrowband disturbance can be
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achieved using the following FXLMS algorithm

Rf(t) = Kpr(t− 1)

w(t) = w(t− 1) + ηRH
f (t)y(t)

u(t) = −w(t)r(t) (41)

where w(t) denotes the vector of control gains, r(t) = ejω0t

denotes the artificially generated reference signal, Rf(t) ∼=
Lp(q

−1)r(t) is the filtered reference signal matrix, and η > 0
denotes the adaptation step-size of the LMS algorithm.

Table II shows comparison of the mean-squared cancellation

performance of SONIC and the performance of the optimally

tuned FXLMS algorithm (41). The simulated plant as well

as all SONIC settings were identical with those described in

Section VI A above. The optimal values of η were searched

numerically in the interval [0.01, 0.00025] with a step equal

to 0.00025. The optimal step-size depends on which channel

is optimized – the quantity ηopt1 , shown in Table II, denotes

the value that minimizes the mean-squared cancellation error

observed at the first system output (MSE1), and ηopt2 – the one

that minimizes cancellation error at the second output (MSE2).

Note that, in the channels that are optimized, the well-

tuned FXLMS controller yields similar results as SONIC

(in order to simultaneously optimize performance in both

channels, the scalar gain η should be replaced with a matrix

gain). However, unlike SONIC – which has self-optimization

and self-correction capabilities – FXLMS may work rather

poorly under nonstationary operating conditions. Suppose, for

example, that the gain matrix Kp slowly varies with time. In a

case like this, the constant-known gain Kp can be replaced in

(41) with its current estimate K̂p(t) obtained by means of on-

line plant identification. To avoid nonidentifiability problems,

which occur when identification is carried out in a closed

loop, it is usually recommended to add to the input signal

an artificially generated white noise perturbation [12]. Even

though for wideband disturbances such an auxiliary noise

technique usually works satisfactorily, it fails in the presence

of narrowband disturbances because the estimated plant gains

are strongly biased at the frequency ω0 (which is the frequency

of our interest). This frequency selective bias effect is caused

by the fact that identification is carried in a closed loop and

hence the estimation results are affected by the notch filtering

action of the FXLMS controller.

To demonstrate this effect, the frequency response of the

(time-invariant) simulated plant was estimated by means of

fitting 4 FIR models of order M = 512. Identification was

performed in a closed loop using the auxiliary noise technique,

in the case where2 σ2
e = 3 · 10−7 and η = 0.0005. Even

though the variance of the auxiliary noise σ2
a = 0.0025 was

pretty high, compared to the measurement noise variance, the

FIR-based estimates of the plant’s frequency response were

strongly biased at the frequency ω0 – see Fig. 4. When the

auxiliary noise was switched off and the plant gain in (41)

was frozen at its last closed-loop estimate, the mean-squared

canceling errors increased from MSE1 = 1·10−4 and MSE2 =
2.45 ·10−4 (see Table II) to MSE1 = 8.13 ·10−4 and MSE2 =

2Similar effect was observed for the other settings shown in Table II.

0.45 0.5 0.55
−10

−5

0

5

10

L 11
(e

−
jω

)

ω [× π]

Fig. 4. Closed-loop estimates (solid line) of the plant’s frequency response
L11(e−jω) (broken line). The sharp notch appears at the frequency of the
cancelled narrowband disturbance.

0 2 4 6 8 10
1.5

1.6

1.7

1.8

1.9

Time [x104]
ω

 (
t)

Fig. 5. Frequency trajectory for γ = 10−5 .

1.49·10−3, respectively, i.e., they grew approximately 8 times.

In the presence of auxiliary noise, i.e., in the on-line tuning

mode, system performance deteriorated even further.

D. Cancellation of Disturbances with Time-varying Frequency

In this experiment, the instantaneous frequency of the

disturbance was governed by

ω(t) =
ω1 + ω2

2
+

ω2 − ω1

2
cos[2γt/(ω2 − ω1)]

where ω1 = π/2 and ω2 = 6π/10. A fragment of the

frequency trajectory obtained for γ = 10−5 is depicted in

Fig. 5. Assuming 1 kHz sampling, for such a value of γ the

frequency varies between 250 Hz and 300 Hz with the largest

rate of variation approximately equal to 1.6 Hz/s.

The frequency of the disturbance was estimated from a

reference signal s(t) using the following, improved version of

the frequency estimation algorithm presented in [30], which

combines frequency tracking with frequency rate tracking

ǫ(t) = s(t)− ŝ(t|t− 1)

ŝ(t+ 1|t) = ejω̂(t|t−1)[ŝ(t|t− 1) + 0.05ǫ(t)]

α̂(t) = α̂(t− 1) + 0.0002g(t)

ω̂(t+ 1|t) = ω̂(t|t− 1) + α̂(t) + 0.02g(t)

g(t) = Arg

[
ŝ(t+ 1|t)

ŝ(t|t− 1)ejω̂(t|t−1)

]
.

In the algorithm shown above α̂(t) is an estimate of the rate

of change α(t) = ω(t)− ω(t− 1).
The reference was contaminated by zero-mean circular

white Gaussian noise vs(t). The signal-to-noise ratio was equal

to 10 log10{|s(t)|
2/E[|vs(t)|2]} = 20 dB.
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FXLMS SONIC

σ2
e η

opt
1 MSE1 η

opt
2 MSE1 MSE1

MSE2 MSE2 MSE2

3 · 10−7 5.00 · 10−4 1.00 · 10−4 1.75 · 10−3 2.07 · 10−4 1.05 · 10−4

2.45 · 10−4 1.43 · 10−4 1.42 · 10−4

1 · 10−6 1.00 · 10−3 1.89 · 10−4 2.50 · 10−3 3.05 · 10−4 1.86 · 10−4

4.21 · 10−4 2.76 · 10−4 2.72 · 10−4

3 · 10−6 1.50 · 10−3 3.29 · 10−4 6.00 · 10−3 7.34 · 10−4 3.34 · 10−4

9.01 · 10−4 5.14 · 10−4 4.97 · 10−4

1 · 10−5 3.00 · 10−3 6.54 · 10−4 1.00 · 10−2 1.52 · 10−3 6.45 · 10−4

1.62 · 10−3 1.02 · 10−3 9.78 · 10−4

TABLE II
COMPARISON OF THE MEAN-SQUARED CANCELLATION PERFORMANCE OF THE OPTIMALLY TUNED FXLMS ALGORITHM WITH THE PERFORMANCE OF

SONIC.

10
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−4

10
−4

10
−3

10
−2

E
 |
c

1
(t

)|
2

10
−6

10
−5

10
−4

10
−4

10
−3

10
−2

γ

E
 |
c

2
(t

)|
2

Fig. 6. Comparison of mean-squared cancellation errors for time-varying fre-
quency and two choices of nominal plant model. Diamonds - full knowledge
of the plant. Circles - knowledge of the plant’s gain at a single frequency.

The amplitudes of disturbance components were constant

and equal to 1 (i.e., E = O), and the covariance matrix of

the wideband system noise v(t) was given by (39).

Fig. 6 shows comparison of steady-state mean-squared

cancellation errors for ρ = 0.999, cµ = 0.005 and for two

choices of the nominal model: Kn = Lp(e
−jω̂(t+1|t)) (which

results in B ≈ I) and Kn = Lp(e
−jπ/2) (which results in a

time varying modeling error). For γ < 10−5 the loss caused by

poor knowledge of the plant is marginal. For γ = 4 · 10−5 the

difference reaches 10 dB, but the cancellation performance is

still satisfactory (more than 20 dB). However, for even larger

values of γ occasional bursts were observed.

The error-compensating behavior of the proposed algorithm

for γ = 10−5 and the second choice of nominal model is

illustrated in Fig. 7. Again, the algorithm was initialized using

(40). The evolution of the eigenvalues of the matrix BM is

caused by rapid changes in modeling errors that occur when

a local resonance of the plant (typical of acoustic systems)

is crossed over – this effect is not caused by the proposed

algorithm.

VII. REAL-WORLD EXPERIMENT

A simple real-world experiment was arranged to check the

algorithm’s performance in a typical indoor acoustic environ-

ment. The active noise control system consisted of a signal

0 2 4 6 8 10
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A
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Fig. 7. Evolution of the eigenvalues of the matrix BM, caused by rapid
changes in modeling errors. Two upper figures – results of a typical simulation.
Two lower figures – average of 50 simulations.

processing unit (operating with a sampling frequency of 8

kHz), analog amplifiers, two loudspeakers and two micro-

phones placed next to the loudspeakers in an asymmetric con-

figuration (2 m and 1 m away, respectively). The disturbance

– a sinusoidal signal with frequency equal to 120 Hz – was

generated by a third, PC-controlled loudspeaker.

The applied control procedure was two-step: during the

first 0.5 s (4000 samples), the open-loop frequency estimation

was carried out using the algorithm described in [30]. After

this period, the noise cancellation algorithm was started with

Kn = I and M(0) = 0.05I. The following values of

adaptation parameters were adopted: cµ = 0.001, ρ = 0.9999.
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Fig. 8. Transient behavior of the proposed algorithm in a real-world
experiment.

Fig. 9. Power spectral density of the signal recorded by one of the error
microphones with (dotted line) and without (solid line) noise cancellation.

Fig. 8 shows the transient behavior of the error signal

recorded by the first microphone (the second signal looked

very similar). Note that initially the closed-loop system was

unstable, but the adaptation loop quickly coped with this

problem. Fig. 9 shows the power spectral densities of the

signal recorded by the first error microphone before and after

cancellation, respectively. The peak at 120 Hz was reduced by

30 dB, almost to the level of the noise floor. Once the initial

convergence period was over and SONIC started to operate

in the tracking mode, reactions to system changes were pretty

quick – changes in the location of error microphones did not

cause noticeable changes in the system performance.

VIII. CONCLUSIONS

The problem of cancellation of a narrowband disturbance

acting at the output of an unknown multivariate linear stable

plant was considered. The proposed scheme is an extension

of the recently introduced SONIC canceller and consists of

two loops. The inner, cancellation loop, predicts and cancels

the distrubance. The second, outer loop, adjusts gains of the

control loop so as to optimize the canceller’s performance.

Both theoretical analysis and simulations confirm that, under

the Gaussian random-walk-type assumption, the proposed con-

troller converges in mean to the optimal one.

Appendix I

[proof of Corollary 1]

After “squaring” both sides of (8), evaluating the

steady-state expectations, and noting that E[ṽ(t)ṽH(t)] =

E[v(t)vH(t)] = V, one obtains

C∞(M) = (I−M)C∞(M)(I−M)H +MVMH +E .

Let Σ(M) = C∞(M)−P∞. It is easy to check that Σ(M)
obeys the following discrete Lyapunov equation

Σ(M) = (I−M)Σ(M)(I−M)H +Y

where Y = (G∞ − M)S∞(G∞ − M)H and S∞ = P∞ +
V > O. Note that M 6= G∞ entails Y > O. According

to Theorem 4.2.1 in [31], one arrives at Σ(M) > O, i.e.,

C∞(M) > P∞. The conclusion follows from the fact that

M ∈ Ωs and Y > O. The minimum value of C∞(M), equal

to P∞, is attained when Y = O, i.e., when M = G∞.

Appendix II

[proof of Theorem 1]

A. Equilibrium Point

Since the properties of the closed-loop system depend on

the value of BM̂(t), rather than on the value of M̂(t) alone, a

new variable X = BM will be introduced. Multiplying both

sides of (36) with B, one arrives at

Ẋ = F(X) (42)

where

F(M) = −XRyz̃(0;X)

and

Ryz̃(0;X) = E
[
y(t;X)z̃H(t;X)

]
.

It will be shown that X0 = G∞ is the unique equilibrium

point of the ODE (42), i.e., it obeys

F(X0) = O. (43)

Note that

y(t;X) = ejω0(I−X)y(t − 1;X) + ẽ(t)

+ v(t)− ejω0v(t − 1) (44)

z̃H(t;X) = e−jω0

[
(1− cµ)z̃

H(t− 1;X)− cµy
H(t− 1;X)

]
.

Multiplying these equations sidewise, taking the steady-state

expectations, and noting that Ryv(0;X) = Rvy(0;X) = V,

one arrives at

Ryz̃(0;X) = (1− cµ)(I−X)Ryz̃(0;X)

+ cµ [V − (I−X)Ryy(0;X)] .

The condition (43) is met provided that

(I−X0)Ryy(0;X0) = V. (45)

First, it will be shown that X0 = G∞ fulfills this requirement.

Note that (according to Corollary 1)

Ryy(0;G∞) = C∞(G∞) +V = P∞ +V.

Therefore

(I−G∞)Ryy(0;G∞) = (I−G∞)(P∞ +V)

= P∞ +V −G∞(P∞ +V) = V
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where the last transition stems from the fact that [cf. (13)]

G∞(P∞ +V) = P∞.

To prove that the solution X0 = G∞ is unique, observe

that [c.f. (44)]

E [y(t;X)] = O

Ryy(1;X) = (I−X)Ryy(0;X)−V

Ryy(τ ;X) = (I−X)Ryy(τ − 1;X) ∀τ ≥ 2

It follows that for any solution X0 of (45)

Ryy(1;X0) = Ryy(2;X0) = · · · = O ,

i.e., the sequence {y(t;X0)} is zero-mean and white. Accord-

ing to theorem 5.6.1 from [31], under Gaussian assumptions

this property implies that the control loop of (37) is optimal.

Since there exists exactly one optimal gain matrix Mopt =
B−1G∞ (which corresponds to Xopt = BMopt = G∞),

X0 = G∞ is the unique equilibrium point of the ODE (42).

Finally, since it holds that X0 = BM0, one gets M0 =
B−1G∞ = Mopt as the unique equilibrium point of (36).

B. Local Stability

To check stability of the equilibrium point X0 = G∞, the

ODE (42) will be linearized at X0
.

∆X= d−→

∆X
F(X0) (46)

where ∆X = X−X0.

To show that the system governed by (42) is locally stable

at X0, the asymptotic stability of the linearized system (46)

will be proved. First of all, note that

d−→

∆X
F(X0) = −d−→

∆X
[X0Ryz̃(0,X0)]

= −∆XRyz̃(0,X0)−X0d−→

∆X
Ryz̃(0,X0)

= −X0d−→

∆X
Ryz̃(0,X0) (47)

where the last transition is a consequence of the fact that (as

shown in the preceding subsection)

Ryz̃(0,X0) = O. (48)

Carrying out differentiation of Ryz̃(0,X0), one obtains

d−→

∆X
Ryz̃(0,X0) = (1− cµ)(I−X0)d−→

∆X
Ryz̃(0,X0)

− (1− cµ)∆XRyz̃(0,X0)

+ cµ∆XRyy(0,X0)

+ cµX0d−→

∆X
Ryy(0,X0). (49)

After squaring both sides of (44) and evaluating the steady-

state expectations, one obtains the following implicit formula

for Ryy(0;X)

Ryy(0;X) = (I−X)Ryy(0;X)(I−X)H +E

+XV +VXH. (50)

Therefore

d−→

∆X
Ryy(0;X0) = (I−X)d−→

∆X
Ryy(0;X0)(I−X)H

+∆X
[
V −Ryy(0;X0)(I−X0)

H
]

+ [V − (I−X0)Ryy(0;X0)]∆XH. (51)

Since the last two components on the right hand side of (51)

are zero [cf. (45)], one arrives at

d−→

∆X
Ryy(0;X0) = O. (52)

Combining (49) with (48) and (52), one obtains

d−→

∆X
Ryz̃(0,X0) = (1− cµ)(I −X0)d−→

∆X
Ryz̃(0,X0)

+ cµ∆XRyy(0,X0) (53)

which finally results in

d−→

∆X
Ryz̃(0,X0) = cµD0∆XRyy(0,X0) (54)

where

D0 = [I− (1− cµ)(I −X0)]
−1

. (55)

After combining (46), (47) and (54), the linearized ODE can

be written down in the form
.

∆X= −cµX0D0∆XRyy(0,X0). (56)

To show asymptotic stability of the system governed by (56),

the Lyapunov approach will be used. Consider the following

Lyapunov function

V (∆X) = tr
{
∆XHP0∆X

}
(57)

where P0 is a positive definite matrix yet to be defined. Note

that V (∆X) ≥ 0, and that the equality holds iff ∆X = O.

Using (56), one obtains

V̇ (∆X) = tr

{ ·

∆XH P0∆X+∆XHP0

·

∆X

}

= tr
{
(P0A0 +AH

0 P0)B0

}
(58)

where

A0 = −cµX0D0, B0 = ∆XRyy(0;X0)∆XH.

To proceed further, the following result will be needed

Corollary 2

For any value cµ, such that 0 < cµ < 1, the matrix A0 is

stable, i.e., it has eigenvalues with strictly negative real parts

Re {λi(A0)} < 0, i = 1, . . . , n. (59)

Proof

The proof will start from rewriting X0 in the form X0 =
Q−1Λ0Q, where

Λ0 = diag {λi(X0), i = 1, . . . , n}

is a diagonal matrix made up of the eigenvalues of X0.

Similarly, D0 can be expressed in the form D0 =
Q−1Σ0Q, where

Σ0 = diag

{
1

cµ + (1− cµ)λi(X0)
, i = 1, . . . , n

}
.

Combining both results, one obtains

λi(X0D0) =
λi(X0)

cµ + (1− cµ)λi(X0)
, i = 1, . . . , n.

Since X0 ∈ Ωs, the eigenvalues of X0 must obey

Re {λi(X0)} > 0, i = 1, . . . , n. Using this property, it is
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straightforward to show that for any 0 < cµ < 1 it holds

that Re {λi(A0)} < 0, i = 1, . . . , n.

Using the well-known properties of a continuous Lyapunov

equation [32], one can conclude that there exists (exactly one)

matrix P0 > O obeying

P0A0 +AH
0 P0 + I = O. (60)

The conclusion follows from the fact that the matrix A0 is

stable and the matrix I is positive definite.

Combining (58) and (60), one arrives at

V̇ (∆X) = −tr{B0} ≤ 0 (61)

which stems from the fact that the matrix Ryy(0;X0) is pos-

itive definite. Moreover, equality in (61) holds iff ∆X = O.

This proves the asymptotic stability of the system governed

by (46).
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[26] M. Niedźwiecki and M. Meller, “SONIC – self-optimizing narrowband
interference canceler: comparison of two frequency tracking strategies,”
in Proc. 8th IEEE Int. Conf. on Control and Automation, Xiamen, China,
2010, pp. 1892–1896.

[27] ——, “Multifrequency self-optimizing narrowband interference can-
celler,” in Proc. 18th International Workshop on Acoustic Echo and

Noise Control, Tel Aviv, Israel, pp. 1–4, 2010.
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