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a b s t r a c t

A potential function fG of a finite, simple and undirected graph G = (V , E) is an arbitrary
function fG : V (G) → N0 that assigns a nonnegative integer to every vertex of a graph
G. In this paper we define the iterative process of computing the step potential function
qG such that qG(v) ≤ dG(v) for all v ∈ V (G). We use this function in the development
of new Caro–Wei-type and Brooks-type bounds for the independence number α(G) and
the Grundy number Γ (G). In particular, we prove that Γ (G) ≤ Q (G) + 1, where Q (G) =
max{qG(v) | v ∈ V (G)} andα(G) ≥


v∈V (G)(qG(v)+1)−1. This also establishes newbounds

for the number of colors used by the algorithm Greedy and the size of an independent set
generated by a suitably modified version of the classical algorithm GreedyMAX.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we investigate applications of certain potential functions in the development of new Caro–Wei-type and
Brooks-type bounds for the two classical problems of discrete optimization, the maximum independent set problem (MIS)
and the problem of vertex coloring (COLORING). Both problems are considered for simple, finite and undirected graphs
G = (V , E) with the vertex set V , edge set E and of order n = |V (G)|. For a given graph G we say that a set of vertices I ,
I ⊆ V (G) is independent if it does not contain any pair of adjacent vertices. The MIS problem is to find an independent set
with the aim of maximizing its cardinality. The independence number α(G) of a graph G is defined as the largest cardinality
of an independent set in G. The COLORING problem is closely related to MIS and can be defined as the problem of finding
a partition of the vertex set of a graph into the minimum number of independent sets. The least number of sets in such
a partition is called the chromatic number χ(G) of a graph G. Alternatively, coloring can also be viewed as a function
c : V (G)→ N such that c(u) ≠ c(v) for all uv ∈ E(G).

Both MIS and COLORING has gained a significant interest in theoretical investigations and in the context of various
applications ranging from distributed computing, data mining and database design to image processing, frequency
assignment and scheduling. In the context of applications a graph G is often a conflict graph with vertices representing
the appropriate objects and edges uv to express that objects represented by u and v are in conflict. The goal in the MIS
problem is to select as many desirable objects as possible while never selecting the conflicting ones. In COLORING we aim
at partitioning all vertices of a graph into the smallest number of sets consisting of nonconflicting objects.

✩ A preliminary version of Section 2.1 appeared in Proc. SOFSEM 2011, LNCS 6543 (2011).
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Both problems are known to be NP-hard [18] and hard to approximate within n1−ε under a widely believed assumption
that ZPP ≠ NP [16,27]. Various exponential-time exact algorithms were proposed in the literature, e.g., for MIS the
algorithm of Robson [40] runs in O(20.25n) time using an exponential space. A slightly slower, but much simpler O(20.288n)-
time algorithm was proposed by Fomin et al. [17]. Currently the fastest O(2.2461n)-time polynomial space algorithm for
computing the chromatic number of a graph is the algorithm developed by Björklund et al. [4]. In view of the computational
hardness a lot of effort was put into establishing the bounds on α(G) and χ(G) as well as into analysis of approximation
algorithms (see e.g., [5,22,38]) and exploring the boundary between hard and polynomially solvable cases (see e.g., [2,23,
25,29,30,35]). Since the subject is too wide to be surveyed in a short paper, we refer the reader interested in particular
aspects of MIS and COLORING to [31,33,34]. In the sequel we focus on the two polynomial-time heuristics. We develop
new bounds for the performance of the classical algorithm Greedy for COLORING and a suitably adapted version of the
algorithm GreedyMAX for the MIS problem.We start our investigations with the following well-known bounds: the Brooks
bound [10]

χ(G) ≤ ∆(G)+ 1, (1)

and the bound discovered independently by Caro [11] and Wei [45] (known as the Caro–Wei bound)

α(G) ≥ CW(G, dG) =


v∈V (G)

1
dG(v)+ 1

, (2)

where dG(v) is the degree of a vertex v in the graph G, while ∆(G) = maxv∈V (G) dG(v). The Caro–Wei bound extends the
classical result of Turán [44] α(G) ≥ n/(d̄(G) + 1) stated in terms of graph’s order and its average degree d̄(G). It has also
been proved using probabilistic methods, e.g., by Alon and Spencer [3] and Selkow [41], while Griggs [20] as well as Chvátal
and McDiarmid [14] showed that GreedyMAX (selecting a vertex of maximum degree, deleting it with all incident edges
from the graph and iterating this process on the resulting graph until no edge remains) outputs an independent set of size
at least CW(G, dG). Several modifications of bounds (1) and (2), given in terms of various invariants are known (see e.g.,
[6,42,47,8,20,26,24,37,41], to mention just a few). Our new Brooks-type and Caro–Wei-type bounds are stated in terms of
the carefully constructed step potential function that is the key notion of this paper.

Namely, a potential function fG of a graph G = (V , E) is an arbitrary function fG : V (G)→ N0 that assigns to every vertex
v of G some nonnegative integer value fG(v). The most natural example of a potential function can be obtained by choosing
fG(v) = dG(v). Several potential functions were introduced and analyzed in [7,8]. A function pG defined by Borowiecki and
Göring [7] will be also used in this paper, while in Section 2, after introduction of step sequences, we define an iterative
process of calculating the step potential function qG. The potential functions considered in this paper satisfy

qG(v) ≤ pG(v) ≤ dG(v)

for every vertex v ∈ V (G). In particular, if Q (G) and P(G) denote the maxima of qG and pG, taken over V (G), respectively,
then Q (G) ≤ P(G) ≤ ∆(G) holds for every graph G. Since potential function fG will be usually clear from the context, we
simply call fG(v) the potential of a vertex v.

If c is a coloring in which for every two colors i, j, with i < j, every vertex colored j has a neighbor colored i, then c is
called a Grundy coloring. The largest number of colors for which there exists a Grundy coloring of G is called the Grundy
number Γ (G) of a graph G. The notion of the Grundy number is usually attributed to Christen and Selkow [12], and it is well
known that Grundy colorings are exactly the colorings produced by the algorithm Greedy, which colors every vertex with
the smallest possible color. Consequently,

Γ (G) ≤ ∆(G)+ 1. (3)

When a graph G and an integer k are part of the input, the problem of deciding whether Γ (G) ≥ k is known to be NP-
complete [19,36] and it remains so, even if we consider bipartite graphs [28] or their complements [46]. On the other hand,
by the finite basis theorem of Gyárfás et al. [21], the problem is polynomially solvable when k is fixed (see also [9] for the
results on Grundy k-critical graphs). In Section 3 we strengthen (3) and the bound of Zaker [47] by proving that

Γ (G) ≤ Q (G)+ 1. (4)

Moreover, we argue that for almost all graphs Q (G) < ∆(G). The graphs for which χ(G) = Q (G) + 1 constitute a
nontrivial class of graphs optimally colorable by Greedy. We show that deciding whether χ(G) ≤ Q (G) is NP-complete,
when Q (G) ≥ 3.

Since the independence number of G is at least α(G) ≥ n/χ(G), by (4) we immediately obtain α(G) ≥


v∈V (G)(Q (G)+

1)−1. An even stronger bound is proved in Section 4. Namely,

α(G) ≥ CW(G, qG) =


v∈V (G)

1
qG(v)+ 1

. (5)
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In the same sectionweprove that every graphG contains a vertex criticalwith respect to qG and that theGreedyMAX-type
algorithm that in each step removes such a vertex, outputs an independent set of order at least CW(G, qG). This strengthens
Caro–Wei bound (2) as well as the corresponding result on CW(G, pG) proved in [7].

In contrast to the bounds of Caro,Wei and Brooks, which strongly rely on counting the neighbors of a vertex, the potential
functions give us a closer insight into the properties of the neighborhoods. The main advantage of such an approach is that
the potential of a vertex lets us incorporate both quantitative and qualitative aspects in algorithms’ performance analysis.

2. Step potential of a graph

Throughout the paper we use the notions of a finite multiset of integers and a finite nondecreasing sequence of integers
interchangeably. If A is a finite multiset of integers such that a1 < a2 < · · · < ap are the distinct elements of A andmi is the
multiplicity of ai in A for i ∈ {1, . . . , p}, then A corresponds to the finite nondecreasing sequence

(a1, . . . , a1  
m1

, a2, . . . , a2  
m2

, . . . , ap, . . . , ap  
mp

).

Conversely, if S = (s1, s2, . . . , sk) is a finite nondecreasing sequence of integers such that

s1 = · · · = sm1 < sm1+1 = · · · = sm1+m2

< sm1+m2+1 = · · · = sm1+m2+m3

< · · ·

< sm1+···+mp−1+1 = · · · = sk
and mp = k − (m1 + · · · + mp−1), then S corresponds to the finite multiset whose distinct elements are sm1 < sm1+m2 <
· · · < sm1+···+mp such that mi is the multiplicity of sm1+···+mi for all i ∈ {1, . . . , p}. If A and B are finite multisets of integers,
then the cardinality |A| of A is the sum of the multiplicities of all elements in A, while B ⊆ A means that for every element
x of B, the multiplicity of x in A is at least the multiplicity of x in B. Using these conventions we write ‘‘S ⊆ A’’, where S is a
finite nondecreasing sequence of integers and A is a finite multiset of integers, meaning that B ⊆ A, where B is the multiset
corresponding to S, in the sense explained above.

2.1. Step sequences

Let A ⊂ N be a multiset. We say that the nondecreasing sequence S = (s1, . . . , sk), S ⊆ A is a step sequence in A if for
each i ∈ {1, . . . , k} it holds that si ≥ i. A step sequence of length k is called a k-step sequence. We say that a k-step sequence
is maximal in A if there does not exist k1 > k such that A contains a k1-step sequence. A maximal k-step sequence with the
largest sum of elements is called maximum in A and it is denoted by SAmax, while SAmin stands for a maximal k-step sequence
with the smallest sum, and is called minimum in A. We say that a k-step sequence S is saturating in A if k = |A|. Otherwise,
we say that S is nonsaturating. It follows by the maximality that for every nonsaturating maximal k-step sequence S there
exists at least one element si ∈ S such that si = i. An element si ∈ S for which si = i is called a blocking element in S.

Lemma 1. Let S and S ′ be arbitrary k-step sequences maximal in A and let b, b′ be the values of the largest blocking elements in
S and S ′, respectively. Then b = b′.

Proof. The lemma clearly holds whenever S and S ′ are saturating in A. Let X = A \ S,M = {s ∈ S | s ≤ b} and L = S \ M .
The sets X ′,M ′ and L′ for S ′ are defined analogously.

Assume that b > b′. If there existed an a ∈ L such that a ∉ L′, then S ′ would not be maximal in A (consider a (k+ 1)-step
sequence obtained from S ′ by inserting a just after b′). Hence L ⊆ L′. Let C = L′ \ L. If C were not empty, then since b′ is the
largest blocking element in S ′, C would have to contain an element c > b. Obviously C ⊆ X ∪M and if X ∪M contained an
element c > b, S would not be maximal in A (consider a (k+ 1)-step sequence obtained from S by inserting c just after b).
Therefore, b′ ≥ b.

Since by symmetry it follows that b′ ≤ b, we finally get b′ = b. �

In what follows we use bmax
A to denote the value of the largest blocking element for step sequencesmaximal in A. We also

use emax
A for the value of the largest element of X = A \ SAmin, when X ≠ ∅, and we assume that emax

A = 0 if X = ∅.

Example 1. If A = {1, 2, 3, 3, 3, 5, 5, 8}, then SAmax = (3, 3, 3, 5, 5, 8), bmax
A = 5, while SAmin = (1, 2, 3, 5, 5, 8), A \ SAmin =

{3, 3} and consequently emax
A = 3.

Now, we prove the two complementary lemmas on extending and shortening of step sequences.

Lemma 2. If A′ = A ∪ {t}, then every (k + 1)-step sequence S ′ maximal in A′ contains t if and only if A contains a maximal
k-step sequence S such that exactly one of the following conditions is satisfied:
(a) S contains at least one blocking element and t > bmax

A ,
(b) S does not contain blocking elements.
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Proof. (⇒) Let S ′ be a (k + 1)-step sequence maximal in A′ and let t ∈ S ′. Moreover, let sequence S ′ =
(s′1, . . . , s

′

i, t, s
′

i+2, . . . , s
′

k, s
′

k+1) be such that t has the smallest index, say i + 1. Consequently, i ≤ s′i < i + 1 ≤ t .
Hence, elements of S ′ satisfy s′i = i, t ≥ i + 1 and s′j ≥ j for j ∈ {i + 2, . . . , k + 1}. Now, consider the sequence
S = (s1, s2, . . . , si, si+1, . . . , sk−1, sk), with sj = s′j for j ∈ {1, . . . , i}, and sj = s′j+1 when j ∈ {i + 1, . . . , k}. Observe
that all elements of S satisfy the following conditions: sj ≥ j for j ∈ {1, . . . , i} with si = i, and sj = s′j+1 ≥ j + 1 implying
sj > j when j ∈ {i+ 1, . . . , k}. It follows that si is the largest blocking element in S and t > bmax

A . If t has index 1 in S ′, then
S does not contain blocking elements. Maximality of S follows from the maximality of S ′.

(⇐) Assume that A contains a maximal k-step sequence S containing no blocking elements. Then for every element
si ∈ S, i ∈ {1, . . . , k} we have si − i ≥ 1. Hence, every sequence S ′ obtained from S by inserting t , independently of
the index of t , is a (k + 1)-step sequence in A′. Now, let sj ∈ S be the largest blocking element. Then similarly, for any
si ∈ S, i ∈ {j+ 1, . . . , k}we have si− i ≥ 1. Hence, any sequence S ′ = (s1, . . . , sj, t, sj+1, . . . , sk) is a (k+ 1)-step sequence
in A′. �

Example 2. Let A = {1, 2, 3, 3, 3, 5, 5, 8} and recall that by Example 1 the maximum length of a step sequence in A is
6. Assume that A′ = A ∪ {t} and consider t > bmax

A = 5, e.g., t = 6. Then A′ contains a maximal 7-step sequence
SA
′

max = (3, 3, 3, 5, 5, 6, 8) but for all t ≤ bmax
A any 6-step sequence is maximal in A′.

Lemma 3. Let A contain a maximal k-step sequence S. If A′ = A \ {t}, then A′ contains a maximal (k− 1)-step sequence if and
only if t > emax

A .

Proof. Let S be any k-step sequence that is saturating in A. Then emax
A = 0 and for every t, emax

A < t . On the other hand,
removal of any element t from S directly results in the (k − 1)-step sequence S ′ maximal in A′. Now, assume that S is any
k-step sequence that is nonsaturating in A.

(⇒) On the contrary assume thatA′wasobtainedby removal of t ≤ emax
A fromsequence S = (s1, . . . , si−1, t, si+1, . . . , sk).

Let S ′ = S \ {t}. If t ∉ SAmin, then SAmin ⊆ A′, a contradiction. If t ∈ SAmin, then there exists an element t ′ ∈ A \ SAmin, t
′
= emax

A
such that S ′ = (s1, . . . , si−1, t ′, si+1, . . . , sk) is a k-step sequence in A, a contradiction.

(⇐) It is enough to see that all elements t > emax
A must belong to every k-step sequence S maximal in A or in other words

no element taken from A \ S can replace t without decreasing k. �

Example 3. Let A = {1, 2, 3, 3, 3, 5, 5, 8} and recall that by Example 1, emax
A = 3. Assume that A′ = A \ {t} and consider

t > emax
A , e.g., t = 5. Then a 5-step sequence SA

′

min = (1, 2, 3, 5, 8) is maximal in A′, while for any t ≤ emax
A , e.g., t = 2, a

6-step sequence still exists, e.g., SA
′

max = (3, 3, 3, 5, 5, 8).

2.2. Step potential function

In order to define the step potential function of an n-vertex graph G we consider the iterative process that starts
with the initial vector q(0)

= (dG(v1), dG(v2), . . . , dG(vn)). In the process of calculating subsequent vectors q(j)
=

(q(j)(v1), q(j)(v2), . . . , q(j)(vn)) every element q(j)(vi), i ∈ {1, . . . , n} is determined as themaximum k for which there exists
a k-step sequence in {q(j−1)(u) | u ∈ NG(vi)}, where NG(vi) is the set of the neighbors of a vertex vi. The process continues
until q(t)

= q(t−1) for some t > 0. As we will prove later the process is always finite.

Definition 1. A function qG : V (G) → {q(t)(v1), . . . , q(t)(vn)} such that qG(vi) = q(t)(vi), i ∈ {1, . . . , n} is called the step
potential function of a graph G, while qG(vi) is called the step potential of a vertex vi. The maximum value of qG on V (G) is
called the step potential of a graph G and we denote it by Q (G).

Observe that, according to the definition of the iterative process, finding a maximal k-step sequence in {q(j−1)(u) | u ∈
NG(vi)}, during the jth iteration of the process, can be realized in polynomial time, e.g., by greedily qualifying subsequent
neighbors of a vertex vi in nondecreasing order of q(j−1)(u). See Algorithm1 for a pseudocode of the algorithm that efficiently
computes the step potential function of a given graph G.

Example 4. Let us consider an example in Fig. 1, which presents the execution of Algorithm 1 for a graph constructed by
taking an even number r of disjoint copies of a gadget Gk, adding a vertex x joined with the central vertex vk of each gadget
and 5r/2 edges between vertices uk1

i , uk2
j of the gadgets Gk1 and Gk2 , so that all vertices uk

i , i ∈ {1, . . . , 5} of every gadget
Gk, k ∈ {1, . . . , r} have degree two. Now, let us sketch the main calculations that take place during the iterative process.
After the first step of the process q(1)(x) = 6, since x has r neighbors of degree 6. Similarly, for every gadget Gk, q(1)(wk

i ) = 3
for all i ∈ {1, . . . , 5}. This in turn, according to the values of q(1) in the neighborhood of vk results in q(2)(vk) = 4, after the
second step of the process. Finally, for the vertex xwe get q(3)(x) = 4.

Proposition 1. Let G be an arbitrary graph. Then the iterative process of calculating the step potential function qG converges in
a finite number t of steps. Moreover, for each j ∈ {0, . . . , t} and for every vertex v of G it holds that δ(G) ≤ q(j)(v) ≤ ∆(G),
where δ(G) = minv∈V (G) dG(v).
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Algorithm 1 Calculating the step potential function of a graph

Input: G – a simple undirected graph
Output: q – a vector of values of the step potential function

Begin
x← (dG(v1), dG(v2), . . . , dG(vn))
repeat

q← x
for i = 1, . . . , n do

find a k-step sequence that is maximal in {q(u) | u ∈ NG(vi)}
x(vi)← k

end
until q = x

End

Fig. 1. An example of calculating the step potential function of a graph.

Proof. Anupper bound qG(v) ≤ ∆(G) follows directly from the definition of the iterative process. For a lower bound observe
that initially q(0)(v) = dG(v) ≥ δ(G) holds for all vertices. Suppose that x is the first vertex that after jth iteration satisfied
q(j)(x) = k, for some k < δ(G). Since dG(x) ≥ δ(G), the vertex x has at least r ≥ δ(G) neighbors {u1, . . . , ur} and for all of
them q(j−1)(ui) ≥ δ(G). Hence q(j)(x) ≥ δ(G) > k, a contradiction. �

Clearly, the vector q(t) is uniquely determined for every graph G. It is also not hard to see that the functions q(j)
G defined

by vectors q(j), j ∈ {0, . . . , t}, are monotone with respect to taking subgraphs.

Proposition 2. If H ⊆ G, then for each j ∈ {0, . . . , t} and every vertex v ∈ V (H) it holds that

q(j)
H (v) ≤ q(j)

G (v).

Proof. We prove the statement by induction on j. For j = 0 it follows immediately from dH(v) ≤ dG(v). Now, let j ≥ 1. If
q(j)
H (v) = k, then v1, . . . , vk are distinct neighbors of v in H with q(j−1)

H (vi) ≥ i for each i ∈ {1, . . . , k}. Hence, by induction,
q(j−1)
G (vi) ≥ i for each i ∈ {1, . . . , k}, which implies q(j)

G (v) ≥ k. �

Szekeres and Wilf [43] proved that whenever λ is a real valued function on the family of all simple graphs such that for
every simple graph G it holds that δ(G) ≤ λ(G) and λ is monotone with respect to taking induced subgraphs of G, then
χ(G) ≤ λ(G)+ 1. Consequently, by Propositions 1 and 2 we directly obtain the following bound:

χ(G) ≤ Q (G)+ 1. (6)

We further strengthen this bound in the next section.
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In subsequent sections wewill also refer to the function pG, introduced in [7], which we call here the simple step potential
function. The function pG is equivalent to the function q(1)

G defined by the vector q(1). The maximum value of pG on V (G),
denoted by P(G), will be called the simple step potential of a graph G. Naturally, for every vertex v ∈ V (G), it holds that

qG(v) ≤ pG(v) ≤ dG(v).

In what follows we will be interested in the properties of both functions qG and pG. The motivation comes from the fact that
Caro–Wei and Brooks-type bounds, in which degrees of vertices are replaced with their potentials, are provably not worse
than the original bounds. Moreover, they seem to be better for almost all graphs, even for pG.

Theorem 1. For almost all graphs P(G) < ∆(G).

Proof. By the definition of the simple potential pG, every vertex v has a neighbor u such that pG(u) ≥ pG(v). Hence, every
graph G containing at least one edge has a pair of adjacent vertices v1, v2 for which pG(v1) = pG(v2) = P(G). In particular, if
P(G) = ∆(G), then pG(vi) = dG(vi) = ∆(G), i ∈ {1, 2}. Hence, both vertices v1, v2 have degree ∆(G). However, the result
of Erdős and Wilson [15] says that almost all graphs have only one vertex of maximum degree. �

3. Step potential and the Grundy number

An interesting variation on the notion of the maximum degree of a graph was introduced by Stacho [42]. Namely,

∆2(G) = max
v∈V (G)

max
u∈N≤(v)

dG(u),

where N≤(v) = {u ∈ NG(v) | dG(u) ≤ dG(v)}. Clearly, ∆2(G) ≤ ∆(G). In the same paper Stacho used ∆2 to prove a new
Brooks-type bound on the chromatic number.

Theorem 2 (Stacho [42]). For every graph G we have

χ(G) ≤ ∆2(G)+ 1. (7)

Stacho’s result was further improved by Zaker [47]. Motivated by computational hardness of determining the Grundy
number, Zaker proved the following theorem.

Theorem 3 (Zaker [47]). For every graph G we have

Γ (G) ≤ ∆2(G)+ 1. (8)

In order to compare ∆2(G) and P(G) we prove the following two propositions.

Proposition 3. For every graph G it holds that

P(G) ≤ ∆2(G).

Proof. For an arbitrary vertex v let d2(v) = maxu∈N≤(v) dG(u) and let k = pG(v). From the definition of the simple step
potential it follows that k ≤ dG(v) and there exists u ∈ NG(v) such that dG(u) ≥ k. Following degree condition in the
definition of d2 we have to investigate two cases. If dG(u) ≤ dG(v), then d2(v) ≥ dG(u) ≥ k. On the other hand, if
dG(u) > dG(v), then d2(u) ≥ dG(v) ≥ k. Thus, for every vertex v we have d2(v) ≥ pG(v) or v has a neighbor u such
that d2(u) ≥ pG(v). �

Proposition 4. For every integer η > 0 there exists a connected graph G such that

∆2(G)− P(G) > η.

Proof. Consider the following two graphs: H = K2+ rKk, i.e., a join of r independent copies of a complete graph Kk with the
complete graph K2, and the graphH ′ obtained from two stars K1,k by joining their centers by an edge. Clearly,∆2(H) = n−1
and P(H) = k+ 2, while ∆2(H ′) = k+ 1 and P(H ′) = 2. �

The following bound is a strengthening of (6)–(8). Also, note that by Theorem 1 for almost all graphs our new bound is
better than (3).

Theorem 4. For every graph G it holds that

Γ (G) ≤ Q (G)+ 1. (9)

Proof. We say that a vertex v is terminal if for a Grundy coloring c for all u ∈ NG(v) it holds that c(u) < c(v). Otherwise v
is nonterminal. Let k = Γ (G) and let H be an induced Grundy k-critical subgraph of G, i.e., a subgraph such that Γ (H) = k,
but for every v ∈ V (H), Γ (H − v) < k. The color classes (V1, . . . , Vk) of any Grundy k-coloring of H satisfy the following
conditions:
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(a) Vk consists of a singleton terminal vertex vk,
(b) for every i ∈ {1, . . . , k}, every vertex in Vi has a neighbor in every Vj, j ∈ {1, . . . , i},
(c) V1 ∪ · · · ∪ Vk−1 contains only nonterminal vertices.

Claim 1. For every r ∈ N0,

(1) q(r)
H (vk) ≥ k− 1 and

(2) q(r)
H (v) ≥ i for every vertex v ∈ Vi, i ∈ {1, . . . , k− 1}.

Proof. The proof is by induction on r . For r = 0 we have q(0)
H (vk) = dH(vk) ≥ k − 1 for the terminal vertex vk and

q(0)
H (v) = dH(v) ≥ i for every i ∈ {1, . . . , k− 1} and v ∈ Vi (note that in the latter case all vertices are nonterminal). Now,

assume that r ≥ 1. If v ∈ Vi for some i ∈ {1, . . . , k−2}, then let uj ∈ Vj be a neighbor of v inH for j ∈ {1, . . . , i−1}∪{i+1}.
By induction, q(r−1)

H (uj) ≥ j for every j ∈ {1, . . . , i − 1} ∪ {i + 1}, which implies that q(r)
H (v) ≥ i. If v ∈ Vk−1, then let

uj ∈ Vj ∩ NH(v) for j ∈ {1, . . . , k − 2}. Since v is nonterminal and c(v) = k − 1, vk must be a neighbor of v. By induction,
q(r−1)
H (uj) ≥ j for every j ∈ {1, . . . , k − 2} and q(r−1)

H (vk) ≥ k − 1, which implies that q(r)
H (v) ≥ k − 1. Finally, if v = vk,

then let uj ∈ Vj ∩ NH(v) for j ∈ {1, . . . , k − 1}. By induction, q(r−1)
H (uj) ≥ j for every j ∈ {1, . . . , k − 1}, which implies

q(r)
H (v) ≥ k− 1. This completes the proof of the claim. �

By the claim, Q (H) ≥ qH(vk) ≥ k− 1 and hence by Proposition 2 we get Γ (G) ≤ Q (G)+ 1. �

By the theorem of Brooks χ(G) = ∆(G)+ 1 holds if and only if some component of G is a (∆(G)+ 1)-clique or ∆(G) = 2
and G is not bipartite. Considering an analogous equality for a step potential, observe that whenever χ(G) = Q (G)+1, then
by (9) it holds that Γ (G) = χ(G), i.e., a graph G is optimally colorable by Greedy. Consequently, if there exists an ordering
of vertices for which Greedy produces a nonoptimal coloring, then χ(G) ≤ Q (G). In contrast to Brooks’ graphs, which can
be recognized in polynomial time, it was recently proved by Zhu [48] that determining whether a graph G has the chromatic
number smaller than its coloring number is NP-complete, while the reduction proposed by Stacho [42] can be used to prove
NP-completeness of deciding whether χ(G) ≤ Q (G). We include the adapted proof to keep the paper self-contained.

Theorem 5. If Q (G) ≥ 3, then it is NP-complete to determine whether χ(G) ≤ Q (G).

Proof. Let k ≥ 3 be an integer and let G be an arbitrary graph of order n. Given a graph G one can construct in polynomial
time a graph G′ such that Q (G′) = k, and such that χ(G′) ≤ k if and only if χ(G) ≤ k. To construct G′ proceed as follows:

(a) Set V (G′) =


uv∈E(G) Cuv ∪ W , where each set Cuv corresponds to an edge uv ∈ E(G), |Cuv| = k, while every vertex
wi ∈ W corresponds to the appropriate vertex vi ∈ V (G), i ∈ {1, . . . , n}.

(b) Add edges between vertices of V (G′) so that each Cuv induces a clique of order k, each vertex x ∈ Cuv is a neighbor of
either u or v, and both u and v have at least one neighbor in Cuv .

Observe that each vertex x ∈ Cuv has k−1 neighbors of degree k and one neighbor of degree at least 1. Hence, qG′(x) = k.
On the other hand, no vertexw ∈ W has a neighbor of degree greater than k and hence qG′(w) ≤ k. Consequently,Q (G′) = k.
To see that given a k-coloring c of G one can obtain a k-coloring of G′, color all wi ∈ W with the same colors as the
corresponding vi ∈ V (G) and since there are at least two vertices x1, x2 ∈ Cuv such that ux1 ∉ E(G′) and vx2 ∉ E(G′)
use color c(v) for x2 and c(u) for x1. The rest of uncolored vertices of Cuv can be colored with the remaining k − 2 colors.
Conversely, independently of k-coloring of G′, any vertices w1, w2 ∈ W that correspond to the edge v1v2 ∈ E(G) must be
colored with different colors because all of k colors are already used in Cv1v2 . This results in a k-coloring of G. �

It is also worth pointing out that Reed’s conjecture [39], which asks whether χ(G) ≤ ⌈ 12 (∆(G)+ 1)+ 1
2ω(G)⌉, holds for

all graphs G with χ(G) = Q (G) + 1, even if we consider a stronger statement of the conjecture, i.e., with Q (G) in place of
∆(G) (see also Section 5).

4. Step potential and the independence number

In what follows we need to distinguish several types of vertices. Let fG : V (G) → N0 be a potential function such that
fG(v) ≤ dG(v) for all v ∈ V (G). Then, a vertex v for which fG(v) = dG(v) is called saturated, while it is called nonsaturated,
when fG(v) < dG(v).

Let H = G − x be a graph obtained from G by deletion of a vertex x with all incident edges, and let CG(x) be a
subset of neighbors of the vertex x in a graph G such that for each u ∈ CG(x) it holds that fH(u) = fG(u). We also need
DG(x) = NG(x) \ CG(x). Less formally DG(x) is a subset of the neighbors of x whose potentials decrease after deletion of x.
Observe that for the step potential function whenever u ∈ NG(x) is saturated, then u ∈ DG(x). Hence, if u ∈ CG(x), then u is
nonsaturated. We will use this fact in subsequent sections.

As well as the above-mentioned types of vertices, we will also need critical vertices that turn out to be crucial for the
statement and analysis of GreedyMAX-type algorithms.
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Algorithm 2 GreedyMAX-type (G, fG, I)

Input: G – a simple graph
fG – a potential function

Output: I – a maximal independent set in G

Begin
i← 0; Gi ← G; I ← ∅
While E(Gi) ≠ ∅ do

select vertex xi that is critical with respect to fG
Gi+1 ← Gi − xi
i← i+ 1

I ← V (Gi)
End

Definition 2. Let G be a graph and let fG : V (G)→ N0 be a potential function. A vertex x is said to be criticalwith respect to
fG if

(a) fG has a local maximum at x, i.e., for each u ∈ NG(x), fG(u) ≤ fG(x), and
(b) |DG(x)| ≥ fG(x).

4.1. GreedyMAX-type algorithms

Every GreedyMAX-type algorithm selects a vertex x that is critical with respect to some potential function fG, deletes
x from the graph together with all incident edges and iterates this process on the resulting graph until no edge remains.
Repeating deletions naturally defines the sequence of vertices (x0, . . . , xr−1) as well as the sequence of graphs (G0, . . . ,Gr)
such that Gi+1 = Gi − xi, where r is the number of iterations.

ThepseudocodeofGreedyMAX-type algorithm that for a given graphG and an appropriate potential function fG calculates
a maximal independent set I is presented as Algorithm 2. Naturally, in order to define a particular GreedyMAX-type
algorithm, one has to specify an appropriate selection rule that depends on fG and allows us to choose a critical vertex. We
refer the readers to [7] for the description of several selection rules that were used for the simple step potential function pG
(a slightly different but more general selection rule was also given in [8]). The GreedyMAX-type algorithms analyzed in [7,
8] always return an independent set I with |I| ≥ CW(G, pG). Before discussing the properties of vertices that are critical
with respect to qG, we prove a stronger version of Theorem 4 from [8]. The main advantage of this result is that it broadens
a family of potential functions and critical vertices that are suitable for GreedyMAX-type algorithms.

Theorem 6. Let G be an induced hereditary class of graphs and let fG : V (G) → N0 be the potential function of G ∈ G. If for
every G ∈ G there exists a vertex x, critical with respect to fG, and restriction of fG to V (G) \ {x} is an upper bound for fG−x, then
GreedyMAX-type algorithm applied to G returns an independent set I satisfying

|I| ≥ CW(G, fG) =


v∈V (G)

1
fG(v)+ 1

. (10)

Proof. To prove (10) by induction we first observe that the assertion trivially holds for edgeless graphs. Let x be a vertex
critical with respect to fG and let H = G− x. We are going to argue that

CW(H, fH)− CW(G, fG) ≥ 0.

Let U = V (G) \ (NG(x) ∪ {x}). Hence, for the subgraph H we write

CW(H, fH) =


v∈CG(x)

1
fH(v)+ 1

+


v∈DG(x)

1
fH(v)+ 1

+


v∈U

1
fH(v)+ 1

,

while for G we have

CW(G, fG) =
1

fG(x)+ 1
+


v∈CG(x)

1
fG(v)+ 1

+


v∈DG(x)

1
fG(v)+ 1

+


v∈U

1
fG(v)+ 1

.

By assumption for every v ∈ CG(x), fH(v) = fG(v), while for every v ∈ U, fH(v) ≤ fG(v). Suppose that, in the worst case, for
all v ∈ DG(x), fH(v) = fG(v)− 1. Then

CW(H, fH)− CW(G, fG) ≥


v∈DG(x)


1

fG(v)
−

1
fG(v)+ 1


−

1
fG(x)+ 1

.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


P. Borowiecki, D. Rautenbach / Discrete Applied Mathematics 182 (2015) 61–72 69

Since fG has a local maximum at x, for every v ∈ DG(x), fG(v) ≤ fG(x) and it remains to consider
v∈DG(x)

1
fG(x)(fG(x)+ 1)

−
1

fG(x)+ 1
≥ 0,

|DG(x)|
fG(x)(fG(x)+ 1)

−
1

fG(x)+ 1
≥ 0,

which finally gives |DG(x)| ≥ fG(x). �

Aswe have alreadymentioned, a simple step potential function pG is closely related to dG. However, for the step potential
qG the relationship between degrees and the corresponding values of qG is much harder to follow. Even the fact that every
graph G contains a vertex that is critical with respect to qG is not obvious. This is proved in the next section.

4.2. Analysis of GreedyMax-type algorithm that selects vertices critical with respect to the step potential

Let A(v) = {qG(u)|u ∈ NG(v)} be a multiset of potentials of the neighbors of a vertex v and let emax(v) denote emax
A(v). A set

R(v) ⊆ NG(v) is said to realize qG(v) if {qG(u)|u ∈ R(v)} contains a qG(v)-step sequence and |R(v)| = qG(v). We begin with
the proof of a basic property of vertices that have the same values of the step potential function.

Lemma 4. If the step potential function qG of a graph G has a local maximum at vertex x and CG(x) ≠ ∅, then for every u ∈ CG(x)
it holds that emax(u) = qG(u) = qG(x) and qG attains a local maximum at u.

Proof. Assume that emax(u) < qG(x). Then from Lemma 3 it follows that u ∈ DG(x), a contradiction. Therefore, emax(u) ≥
qG(x) and since qG has a local maximum at x, it holds that qG(x) ≥ qG(u). By definition emax(u) ≤ qG(u). Thus emax(u) =
qG(u) = qG(x).

Concerning local maximum at u, on the contrary assume that there exists v ∈ NG(u) such that qG(v) > qG(u). Clearly,
since qG(v) > emax(u), v belongs to every set that realizes qG(u). Let R(u) realize qG(u) and let z ∉ R(u) be a vertex for which
qG(z) = emax(u). Then, R(u) ∪ {z} realizes qG(u)+ 1, a contradiction. �

Lemma 5. Every graph G contains a vertex that is critical with respect to qG.

Proof. Let x be an arbitrary vertex at which qG attains a local maximum (note that every graph contains such a vertex). If
maximum at x is strict, then by Lemma 3 the vertex x is critical. Now, assume that the maximum in x is not strict and that x
is not critical. Then by the definition of a critical vertex |DG(x)| < qG(x) ≤ dG(x), and consequently CG(x) ≠ ∅. Let u ∈ CG(x)
and let k stand for qG(x). By Lemma 4, emax(u) = qG(u) = k and qG has a local maximum at u.
If u is critical then the thesis follows. Assume that u is not critical. Hence, CG(u) ≠ ∅.
Case 1 x is saturated.

Since x is saturated, x ∉ CG(u). Hence, there exists z ≠ x such that z ∈ CG(u). From Lemma 4 it follows that
emax(z) = qG(z) = qG(u) = k and qG attains a local maximum at z. Now, since z ∈ CG(u), z is nonsaturated and there exists
R(z) ⊆ NG(z)\{u} that realizes qG(z) = k. Analogously, since u ∈ CG(x), u is nonsaturated and there exists R(u) ⊆ NG(u)\{x}
that realizes qG(u) = k. Consider R(u) ∪ {x} and R(z) ∪ {u}, and recalculate qG for u and z to get qG(u) = qG(z) = k + 1,
which is a contradiction.
Case 2 x is nonsaturated.
Subcase 2.1 x ∈ CG(u).

Since x ∈ CG(u) and by assumption x is nonsaturated, there exists R(x) ⊆ NG(x)\{u} that realizes qG(x) = k. Analogously,
since u ∈ CG(x), u is nonsaturated and there exists R(u) ⊆ NG(u) \ {x} that realizes qG(u) = k. Consider R(u) ∪ {x} and
R(x) ∪ {u}, and recalculate qG for u and x to get qG(u) = qG(x) = k+ 1, a contradiction.
Subcase 2.2 x ∉ CG(u).

Since x ∉ CG(u), there exists z ≠ x such that z ∈ CG(u). Now, in order to complete the proof proceed analogously as in
Case 1. �

Corollary 1. If qG has a local maximum at x, then x is critical with respect to qG or there exists u ∈ NG(x) that is critical with
respect to qG and nonsaturated.

Consequently, in view of Theorem 6 and Proposition 2 there follows the main result of this section.

Corollary 2. If I is an independent set generated by a GreedyMAX-type algorithm that in every iteration selects a vertex critical
with respect to the step potential function qG, then

|I| ≥


v∈V (G)

1
qG(v)+ 1

. (11)
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Fig. 2. The trees T L
3 , T

R
3 and the resulting tree T4 .

Concerning the worst-case for differences CW(G, fG)−CW(G, f ′G) taken for various functions fG, f ′G the construction given
in [7] reveals that for every integer η > 0 there exists a connected graph G such that CW(G, pG)−CW(G, dG) > η. Before we
present a generalization of this result, recall that for the t-step iterative process of calculating the step potential of a graph
G, q(j)

G : V (G)→ {q(j)(v1), . . . , q(j)(vn)} such that q(j)
G (vi) = q(j)(vi), i ∈ {1, . . . , n} is the function obtained after the jth step

of the process.

Theorem 7. For any integers η > 0, t ≥ 1 there exists a connected graph G such that after each step j ∈ {1, . . . , t} of the t-step
iterative process of calculating the step potential function qG it holds that

CW(G, q(j)
G )− CW(G, q(j−1)

G ) > η.

Proof. Let us first consider a tree Tℓ, with the root vℓ. In the recursive definition of Tℓ we distinguish left and right subtrees
denoted T L

ℓ−1 and T R
ℓ−1, respectively. The appropriate trees can be constructed as follows:

(R) Let T R
1 be isomorphic to a path P4 and have the root in one of the internal vertices. For ℓ ≥ 2 take two copies of T R

ℓ−1 and
join their roots by an edge. The root of T R

ℓ is the root of the second copy.
(L) Let T L

1 be isomorphic to a path P3 and have the root in the middle vertex. For ℓ ≥ 2 take one copy of T L
ℓ−1 and one copy

of T R
ℓ−1. Then, join roots of both copies by an edge and set the root of T L

ℓ−1 as the root of T L
ℓ .

Finally, set Tℓ = T L
ℓ . An example in Fig. 2 presents the tree T4.

Now, consider the iterative process on Tℓ, ℓ ≥ 1 and observe that the final values of the step potential are calculated in
ℓ steps, so that after each step j the functions q(j−1)

Tℓ
and q(j)

Tℓ
differ only for a single vertex vj. For a further reference notice

that for j ∈ {1, . . . , ℓ− 1}we have q(j−1)
Tℓ

(vj) = j+ 2, while q(j)
Tℓ

(vj) = j+ 1.
A connected graph G that proves our assertion can be obtained, e.g., by taking a cycle Cm and joining by an edge every

vertex of the cycle with the roots of r ≥ ℓ+ 2 of mr disjoint copies of Tℓ. For the graph G the process converges after ℓ+ 1
steps and the following formula holds for all j ∈ {1, . . . , ℓ+ 1} (observe that dG(vℓ) = ℓ+ 2)

CW(G, q(j)
G )− CW(G, q(j−1)

G ) ≥


mr/(j2 + 5j+ 6), j ∈ {1, . . . , ℓ}
m/(l2 + 9l+ 20), j = ℓ+ 1.

(12)

Note that it involves no loss of generality that in inequality (12) a nonnegative additive term depending on the potentials of
the vertices of Cm was omitted for j = 1. �

The performance ratio ρA of an algorithm A is defined as infG A(G)/α(G), where A(G) denotes the size of an independent
set generated by A for a graph G. For the GreedyMAX algorithm in its classical setting, Halldórsson and Radhakrishnan [22]
used a complete bipartite graph with the removed perfect matching to show that whenever the maximum degree of
a graph is bounded by ∆ it holds that ρGreedyMAX ≤ 2/(∆ + 1), while from the results of Griggs [20] it follows that
ρGreedyMAX ≥ 1/(∆ + 1). Using the step potential function qG, as a consequence of Corollary 2, we get the following lower
bound which holds for graphs having their maximum step potential bounded by Q .

Theorem 8. If A is a GreedyMAX-type algorithm that in each step selects a vertex critical with respect to the step potential
function qG, then

ρA ≥ 1/(Q + 1). (13)

Proof. It is enough to observe that α(G) ≤ n, while by Corollary 2, A(G) ≥ CW(G, qG) ≥ n/(Q + 1). �

Note that, e.g., for stars K1,k or wheels Wk it holds that Q (K1,k) = 1, ∆(K1,k) = k, and Q (Wk) = 3, ∆(Wk) = k. In both
cases the right-hand side of (13) is constant, while previously known ratios depending on ∆ get worse when maximum
degree grows. Though for any η > 0 the existence of graphs for which ∆(G) − Q (G) > η follows from Proposition 4, we
would like to mention another interesting class of graphs called ct-graphs. We say that G is a ct-graph if for every edge
uv ∈ E(G) the value of |dG(v) − dG(u)| is constant. The constructions of ct-graphs described in [1,32] provide appropriate
examples for any η > 0.
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5. Further research

We strongly believe that the following strengthening of Reed’s conjecture [39] is true.

Problem 1. Prove that for every graph G it holds that

χ(G) ≤


Q (G)+ ω(G)+ 1

2


. (14)

The Chvátal graph (see [13]) is 4-regular, thus its step potential equals 4 and since it is triangle-free and 4-chromatic we
can easily see that rounding up in (14) is necessary. There are classes of graphs for which (14) and the original Reed’s bound
are equal, e.g., for regular graphs qG(v) = dG(v) holds for every vertex v. We also know graphs for which the conjectured
bound is better than Reed’s bound, e.g., stars K1,k and odd wheelsW2k+1. In both cases the bound relying on step potential is
exact while Reed’s bound can be arbitrarily far from the optimum. We conclude with the observation that follows directly
from Theorem 4 and the fact that graphs for which χ(G) = Q (G)+1 are optimally colorable by Greedy. Namely, whenever
G is such a graph, then (14) holds.
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