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Summary

The non-linear self-refraction of acoustic pulsed beams which include shock fronts,
is studied. The medium of sound propagation is a gas where thermodynamically non-
equilibrium processes take place, such as exothermic chemical reaction or excitation of
vibrational degrees of a molecule’s freedom. Comparative analysis of the features of
sound propagation over gases where pure nonlinear attenuation of the shock wave occurs,
and gases with non-equilibrium and equilibrium processes, is performed.

PACS no 43.25, 43.35.Fj Keywords: Non-equilibrium gas, Irreversible chemical reaction, Self-
action of acoustic beam

1 Introduction

There are different kinds of self-action of sound, which have been observed in experiments,
among them nonlinear self-action and inertial types of self-action. The first kind reflects the
nonlinear distortions of the waveform as wave propagates due to dependence of a local signal
speed on the particles velocity. The last kind in fact includes two subspecies, one thermal self-
action, and the second relating to the mean flow in the field of sound. These types associate
with the nonlinear losses in acoustic energy and momentum, respectively. They arise due
to generation of the non-wave types of motion, i.e. to appearance of the areas with larger
temperature and mean flow, hence with the modified parameters of the background of sound
propagation. It is well-established, that a beam is defocused in media for which the sound speed
increases with temperature, while a beam is self-focused in media with negative temperature
coefficient. In spite of the first theoretical papers concerning self-action of acoustic beams were
reviewed in [1], this effect was observed later [2, 3]. Considerable attention was paid to the
thermal self-action of quasi-harmonic sound waves because many interesting results obtained
in nonlinear optics have their counterparts in acoustics [4, 5]. Unlike optic waves, dispersion of
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sound is usually negligible. The harmonic plane wave acquires a ”sawtooth” shape in a quadratic
nonlinear medium. Nonlinear attenuation of the waves containing shock fronts enhances losses
in energy and momentum of sound, and the inertial self-action occurs in principle differently as
compared with quasi-harmonic optic waves. As usual, inertial self-action of initially harmonic
beams are considered.

Self-action of pulsed acoustic beams is of interest in many applications of nonlinear acous-
tics. Nonlinear pulses are generated by laser radiation, explosions, electric discharges, they are
important in many technical applications. Studies of powerful pulsed beams are stimulated by
their importance in medicine, such as non-contact noninvasive destruction of tissues, remote
ultrasonic elastometry [6]. In this connection, self-action of pulsed sound which propagates in
media different from newtonian fluids is of increasing interest. In the non-equilibrium media,
sound may enhance under some conditions. In contrast to newtonian fluids, variations in the
sound magnitude in the thermodynamically non-equilibrium gases may occur due to transfer
of energy of internal degrees of molecule’s freedom into acoustic energy. The nonlinear effects
of sound also reveal anomalous features. Apart from acoustic cooling, the mean flow which is
induced in the field of sound, may be directed oppositely to the direction of acoustic streaming
in a newtonian fluid. An anomalous behavior of sound and relative nonlinear phenomena are
specific not only in vibrationally excited gases and chemically active fluids, but in all media,
where thermodynamic equilibrium is disturbed, such as non-isothermal plasma, suspensions of
microparticles in a gas, the interstellar gas and upper atmosphere [7, 8, 9]. Some important
anomalies in a linear non-equilibrium gas flow have been reviewed in Ref.[8].

This study is devoted to the non-newtonian kind of self-action of sound beams in a gas
where internal degrees of freedom are excited, or in a gas where exothermic chemical reaction
takes place, namely to the self-refraction of pulsed signals containing shock fronts. Despite
different physical reasons for possible instability, the equations which govern sound and relative
nonlinear phenomena of sound in these gases, are similar. The phenomenon of self-refraction is
related to a nonlinear variation in the shock propagation velocity, which enlarges with increase
in pressure step in a shock wave. In newtonian fluids, this step is larger near the axis than in
the periphery, and the ”straightening” of a focused-wave front is observed [10].

We consider propagation of an axially symmetric sound beam over a relaxing gas. The
simplified system of equations includes the analogue of Khokhlov-Zabolotskaya equation sup-
plemented by the term responsible for attenuation in a non-newtonian gas. The mathematical
content of further solution is very close to that one which has been developed by Rudenko et
al. in studies of self-action of sound beams in a newtonian fluid [11]. In the subsections 1.1
and 1.2, the acoustic increment (or decrement) of sound planar wave, B, is determined for two
examples of thermodynamical processes in gases, excitation of vibrational degrees of molecules’
freedom and exothermic chemical reactions.

1.1 Gases with excited vibrational degrees of molecule’s freedom

The first example of fluid where equilibrium or non-equilibrium thermodynamic processes take
place, is a gas whose steady but non-equilibrium state is maintained by pumping energy into
the vibrational degrees of freedom by power I (I refers to a unit mass). The relaxation equation
for the vibrational energy ¢ per unit mass has the form:

de  e-— Eeq(T)

— = I 1
dt T + (1)
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The equilibrium value of the vibrational energy at given temperature 7" is denoted by e.,(7T'),
and 7(p,T) marks the vibrational relaxation time. The quantity e.,(7) equals in the case of a
system of harmonic oscillators:

h$}

Zeal ) = m (exp(hQ/kgT) — 1)’ 2)

where m is the mass of a molecule, h{2 is the magnitude of the vibrational quantum, kg is the
Boltzmann constant. Eq.(2) is valid over the temperatures, where one can neglect anharmonic
effects, i.e., below the characteristic temperatures, which are fairly high for most molecules

8, 12]. The quantity
2
B=— (’7 13) TO (ﬁ + £ Qgeq ﬁ) (3)
2¢; T T2 dT' ),

is increment, if positive in the non-equilibrium regime of excitation of internal degrees of
molecule’s freedom (or decrement, if negative in the equilibrium regime) of the sound pla-
nar wave. It is the quantity evaluated at unperturbed pressure py, temperature T, and
C, = de.,/dT. The non-equilibrium excitation is possible in principle due to negative dr/dT.
The relaxation time in the most important cases may be thought as a function of temperature
accordingly to Landau and Teller with some positive constants A and B, 7(T) = Aexp(BT~/3)
[8, 13, 14]. There exists the threshold quantity of pumping magnitude I starting from which
the excitation is non-equilibrium, since € — e, =~ I7.

1.2 Gases in which exothermic chemical reactions occur

For this kind of processes in a gas [15],

Qo(v — 1)(Q, + (v — 1)Qr)

B—
2¢im

(4)

is the quantity evaluated at unperturbed pg, Ty, Yo, where Y denotes mass fraction of a reagent
A* in A* — B* reactions; @ is the heat produced in a medium per one molecule due to a
chemical reaction, Qo = Q(7b, po, Yo). The dimensionless quantities @7, @, are conditioned by
dependence of the heat produced due to a chemical reaction on temperature and density of the

mixture: Ty (90 20
0 £o
= — _ 5 —_— — . 5
QT QO <8T) To,p0,Y0 QP QO ( ap )Tovpo,Yo ( )

2 The governing equations and starting points

The equation which describes evolution of an acoustic pressure p without account for thermal
and inertial self-action in media with unusual attenuation, takes the form

o (0Op € a\ Op <
8_77 (& - 08? (p— 5) 8_77 —Bp) = EALP, (6)

were x and r are cylindrical coordinates, the axis Ox coincides with the axis of a beam, ¢y =

JPo
[40]

of specific heats, py denotes unperturbed density), n = t — x/cy is the retarded time in the

denotes the infinitely small-signal sound speed in a perfect uniform gas (7 is the ratio

3
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reference frame which moves with the sound speed ¢g, A, is the Laplacian with respect to
the radial coordinate r, ¢ = (v + 1)/2 is the parameter of nonlinearity, and B is responsible
for attenuation or amplification of sound in a gas different from that in the newtonian fluids.
Eq.(6) accounts for a nonlinear variation Ac in the shock propagation velocity, which increases
with enlargement of pressure step in a triangular at a transducer shock wave, a:

. ca
2¢opo-

Ac (7)
Since values of a(z,r) differ at the axis of a beam and on its periphery, the change of an impulse
profile takes place. This phenomenon is called self-refraction. Eq.(6) without the dispersive
term, — Bp, is well-studied in the theory of nonlinear acoustics [17, 16]. In this study, we consider
new pecularities of beams’ self-refraction which reflects anomalous or normal dispersion in a gas.
An acoustic pressure may be found in the form which follows from the theory of geometrical
acoustics [16],

P:P(%Taezﬁ—?/}(x’?n)/co)- (8>

The form (8) is suitable in the cases where acoustic nonlinearity is essential and description
of the entire nonlinearly distorted waveform is required [18]. This leads to the equations for
unknown eikonal v and acoustic pressure p,

dp € a\ Op oYop A

L (VN gy 2 E —

dx  c3po ( 2) o6 Pt orar T2 P 0 ©)
oy 1 [o\? £
L ZE) = —— . 1
or 2 (87‘) QCgpoa (10)

Egs (9),(10) are valid at the limit of short wavelengths, small in comparison with the scales of
thermal and hydrodynamical inhomogeneities. In the new variables

P = exp(—Bzx)p, ¥V = exp(—Bz)y, X = (exp(Bzx) —1)/B, A = exp(—Bxz)a, (11)

they may be readily rearranged into the set

opP £ A\ OP 0VOoP A,V
L S Gl pP= 12
X po ( 2) 00 * or or L 0 (12)

0 BX +1 (0V7)? e
X (BX +1)¥) + 5 (E) = —% (13)
It is assumed that the wavefront is parabolic [18]:

U(X,rt)=TUo(X t)+ﬁilnF(X) (14)

IR — ¥0 ) 20X .

This implies that distance from the axis of a beam r is small compared to its initial width h,
r?/h* < 1. Applying the transformation of variables,

ax’
F(X")’

P = F(X)P, A= F(X)A, ¢ =r/(hF), €— /X (15)
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we reduce the transfer equation (12) to the readily solvable equation

oP e (= A\ OP

= _ ([P )= 16

X cpo ( 2) a0 ’ (16)

which is similar to the equation for a simple wave. Its solution yields the peak pressure
/2
Py r 1 r Xoax
AX,r)=—=o(-—) |1 d(— — 1

X =% (hF) { T ox, <hF> /Xl F(X’)] (17)

in a single pulse of duration 2.5, which has the form of an isosceles triangle at a transducer, P,
is the maximum acoustic pressure at a transducer; X, = c3poS/eP, is the distance at which the
shock arises in the planar wave, X; = R(1 — exp(—X,/R)) is a distance of the shock forming
in a focused wave with curvature at a transducer R~'. Expanding (17) in the series in the

vicinity of axis of initially Gaussian beam with ® (#) = exp (— (#)2>, and substituting it

into eikonal equation (13), we arrive finally at

g (PF B OF\ _ 1 PR B R S WA T A ¢ e
0X* T BX+10X) T 2X,X.BX +1) " ' 41X, Jy, F(X)) 2X, [y, F(X))

(18)

where X; = h?/(2¢yS) is the typical diffraction length. The boundary conditions take the form
X dF 1

szxlzl—f, X |[x=x =g (19)

Eq.(18) tends to the analogous equation which describes newtonian fluids when B — 0. Re-
turning to the co-ordinate x, one may readily rearrange Eq.(18) into the following one:

F282F _exp (Bx) L+ 1 /x exp (Bz)dz' . 1 /x exp (Bz)da’ —3/2’ o)
Ox2 2X X, 4X; /o, F(x) 2X, J,, F(z)

where

21 = In[BX, +1]/B. (21)

Note, that shock front does not form at all for B < —1/X; (that is, large attenuation) and
always appears in the non-equilibrium regime, when B is positive. By use of the new variable
z =x/R, and constants Il = R/ X, D = R/ Xy, 5 = RB, Eq.(20) takes the form

z N z NN\ —3/2
F282—F _ @exp (62) <1 N E/ exp (2')dz ) (1 N E/ exp (2')dz ) | (22)

02?2 2 4 )., F&) 2 /., F(¢)
where

2 =I[f +1— Bexp(—1/M)/B. (23)

Eq.(22) is solved numerically in the Sec.3 with the boundary conditions

dF

F|,—., = exp(—1/II) , = l.=zy = —exp(B2z1) . (24)

The increase in the pressure step at the axis of a beam, is evaluated as

Py I [*exp(82)dz'] "
0)=— 14— —_— . 25
o0 = Pesal(se) |1+ [ 2 (25)
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3 Self-refraction of weak shock waves

To review briefly the knowledge about nonlinear self-refraction of acoustic beams with discon-
tinuities, it would be useful to remind the following. It has been established, that the quadratic
nonlinearity alone can not lead to beam bending or self-focusing [11]. In the presence of diffrac-
tion, the wave acquires a frequency-dependent phase shift. That leads to the waveform with
compression region which becomes higher and sharper and with the smooth rarefaction region
[18]. The fact that the positive peak pressure exceeds negative one yields to acceleration of
the shock front, it is flattened because of supersonic propagation near the axis as a beam ap-
proaches focus and due to larger attenuation at the axis of beam propagation. This effect is
much pronounced in the case of monopolar pulses. The waist size enlarges, and focus becomes
displaced due to this kind of nonlinear self-action. The numerical investigations revealed some
important features of the self-refraction of sound pulses in newtonian fluids, such as decrease
in the maximum peak pressure a,,,, with the growth of F,. The longitudinal size of the focal
area increases, and the nonlinear focus is formed at distances greater than the linear one. The
amplitude of the pulse at the focus is practically independent on Fj at enough large values of
Py, that is, nonlinear saturation takes place [17]. For small II, the peak pressure maximum is
reached at the geometrical focus x = R and amounts to P/ D.

In this study, we consider gases where unusual amplification of sound may take place due
to thermodynamical processes connected with non-equilibrium phenomena in a gas. That
corresponds to positive B. Hence, the sawtooth impulse enhances due to convergence of a
beam and due to thermodynamical processes in a gas, but alters the nonlinear attenuation as
it propagates towards the focus. In the planar wave which propagates in the non-equilibrium
gas, the peak acoustic pressure does not tend to zero with enlargement of distance from a
transducer, but to the value 0.5¢oBSFPy/e. The unusual behavior of a sound beam leads to the
shift of the focus towards the transducer as compared to the focus in a gas without relaxation.
Figure 1(a,b) shows the dimensionless acoustic peak pressure at the axis of beam propagation,
a(z,0)/ Py, as a function of z for the set of parameters II = 100 (a) and II = 10 (b), and
D = 0.01. The thin solid line reproduces the results of numerical calculations by Musatov et
al. [17] (formally this corresponds to 8 = 0), the bold line represents the results of numerical
simulations relating to a gas with the non-equilibrium processes (5 > 0), and the dotted line
to a gas with equilibrium processes (5 < 0). As for the equilibrium case, the curve becomes
sharper, the peak amplitude is smaller and the focal length increases as compared to the case
of pure nonlinear attenuation (at least in the case of weaker nonlinearity, II = 10). In the
non-equilibrium case, vice versa, the curve is flat, the peak amplitude is comparatively large
and the focal length small.
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a b

Fig.1 The dimensionless peak amplitude of the shock pulse at the axis of beam propagation in

equilibrium gas (6 < 0), non-equilibrium acoustically active gas (5 > 0), and in a gas where

the pure nonlinear attenuation occurs (B =0); z denotes the dimensionless distance from a
transducer.

The difference is more pronounced in the case of small II, in the weakly nonlinear regime.
The shift of the focus towards transducer in the non-equilibrium regime may be explained
by comparative decrease in the speed of shock front of an impulse due to non-linear change
of co-ordinate. That may be simply evaluated for the planar wave with discontinuity. If 3

differs from zero, speed of the discontinuity equals ¢ Po exp(fz) and for B =0, it
#CL0, °P Y eduals ot o (3o D15 p=0
I1Sco

equals ¢y + #ﬁ = ¢ <1 + m). Fig.2 shows the additional speed of the wavefront

for different values of 3. The joint influence of the difference in the local speeds of various parts
of the wavefront and their nonlinear attenuation which is followed by unusual increase in the
peak pressure, is the reason for shift of the focus towards transducer.

Fig.2 Variations in the speed of the shock front in the planar wave with discontinuity.

It is remarkable, that in the case of strong nonlinearity, all curves in Fig.1(a) behave similarly
in the vicinity of transducer. At first, the nonlinear damping occurs, and, despite focusing,
the peak pressure decreases. At the larger distances, the peak pressure increases and reaches a
maximum at some point z > 1. Because of unusual acceleration of sound in the non-equilibrium
regime, the amplitude of a beam is the largest as compared to the cases § < 0, and the curve is
the most sloping. As for the transversal distribution of the peak pressure, there is a difference
also, in accordance to the Fig.3(a,b,c). When § is less then zero, a beam rapidly converges,
but before the focus the transverse structure becomes sharp. As for 5 > 0, the cross-section is
slowly smoothed, and becomes slowly sharper as distance from a transducer increases.
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Fig.3 Transversal distribution of the dimensionless peak acoustic pressure in a shock wave.

4 Concluding remarks

The conclusions concerning self-refraction of a pulsed beam with discontinuities due to pure
nonlinear attenuation, are well-understood. It has been established, that the flattening of a
the focused wave front is observed due to increase in the nonlinear compound of the shock
wave velocity, Ac. The nonlinear absorption, which occurs simultaneously with self-refraction,
makes distribution of the peak pressure over the front more uniform. Evidently, both processes
shift the nonlinear focus with respect to the geometric one and enlarge the beam waist. These
effects were described in the review [19]. They have been observed experimentally.

In this study, the peculiarities of a pulsed shock beam which propagates in relaxing media,
which may be thermodynamically non-equilibrium, are studied. Anomalous increase in the
sound amplitude as a beam propagates, along with the nonlinear attenuation, result in the
anomalous self-focusing and self-refraction of a beam in a non-equilibrium gas. The nonlinear
focus shifts toward transducer, the distribution of the peak acoustic pressure along axis of a
beam propagation is more acclivous as compared to a gas with pure nonlinear attenuation of
a shock pulse. The maximum peak amplitude enlarges. Vice versa, in the equilibrium regime,
the peak acoustic pressure is comparatively small, and the longitudinal distribution is sharp.

The nonlinear effects of sound in the non-equilibriumacoustically active media also behave
atypically. The theory of anomalous cooling of the medium (instead of acoustic heating) and
streaming (with streamlines inverted as compared with direction of sound propagation) has
been recently developed in reference to aperiodic and periodic in time sound beams, including
beams with discontinuities [20, 21, 22].
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