
Augmenting Digital Documents with Negotiation Capability

Jerzy Kaczorek
Dept. of Intelligent Interactive Systems

Faculty of ETI
Gdansk University of Technology, Poland

jkaczorek@gmail.com

Bogdan Wiszniewski
Dept. of Intelligent Interactive Systems

Faculty of ETI
Gdansk University of Technology, Poland

bowisz@eti.pg.gda.pl

ABSTRACT
Active digital documents are not only capable of performing
various operations using their internal functionality and ex-
ternal services, accessible in the environment in which they
operate, but can also migrate on their own over a network of
mobile devices that provide dynamically changing execution
contexts. They may imply conflicts between preferences of
the active document and the device the former wishes to
execute on. In the paper we propose a solution for solving
such conflicts with automatic negotiations, allowing docu-
ments and devices to find contracts satisfying both sides.
It is based on a simple bargaining model reinforced with
machine learning mechanisms to classify string sequences
representing negotiation histories.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and
Text Editing—Document management ; I.2.11 [Artificial In-
telligence]: Distributed Artificial Intelligence—intelligent
agents; H.5.3 [Group and Organization Interfaces]: col-
laborative computing—computer-supported cooperative work

Keywords
Active document, automatic bargaining, mobile computing

1. INTRODUCTION
Mobile Interactive Document (MIND) architecture devel-

oped in the MENAID project [4] enables proactive digital
documents to travel through an open network of geographi-
cally separated locations, carry any useful content conform-
ing to the MIME standard, and provide services enabling
interaction with collaborators, their respective local devices
and third-party external services [1]. Owing to the notion of
policies incorporated in their logical structure, MIND docu-
ments are mobile and intelligent. The former involves a doc-
ument workflow combining activities and transitions, while

http://dx.doi.org/10.1145/2494266.2494305

the latter implies ability to resolve conflicts between pref-
erences of the active document and the characteristics of
the device where it is executed. Activities are performed
by collaborators interacting with document-agents carrying
content to their personal devices, and involve such opera-
tions as text editing, merging, splitting, copying, form fill-
ing, and so on. Transitions from one collaborator to an-
other are performed automatically by documents between
their respective locations. While locations of collaborators
are specified firmly with their email addresses, devices they
use when performing activities, may change significantly –
from a powerful workstation with a trusted company net-
work connection, to a laptop accessing a public (open) WiFi
network in a hotel room, to a smartphone or cellphone on a
plane in flight, thus without any network access at all.

Clearly, an active document must be able to adjust to such
dynamic execution contexts, often in a non-cooperative set-
ting, as the execution devices (or rather their owners) may
impose their own policies governing the way document work-
flow activities may be executed. Conflicts arising between
active documents and execution devices must be resolved
in a way that satisfies both parties, for otherwise a work-
flow process could not be completed. Therefore we propose
to introduce negotiation as a general technique for adapt-
ing active documents to varying client system requirements.
By “adapting”we mean reaching agreement on a certain set
of attributes of a service the document receives from the
device. Negotiation is necessary to cope with an unlimited
number of attributes and their combinations, which may oc-
cur in various proactive document systems – depending on
their particular semantics, classes of problems solved and
types of execution devices used. Further in the paper we in-
troduce the use of this technique for the MIND architecture
as an example, using a set of service attributes used in our
current implementation of the system.

2. NEGOTIATION PROCESS
We model offers with trees, which are based on the logi-

cal structure of Collaboration Protocol Profile (CPP) docu-
ments used by ebXML to declare preferences of collaborating
partners [5]. Each path in such a tree constitutes an offer
consisting of five items, representing attributes of possible
execution contexts of each activity: who shall be its actual
performer, and what are the current network availability, its
performance characteristics, the current execution device se-
curity and its possible reliability levels.

Values of each component item are of two types: one is a
public content of each possible offer, and another is private

preference, used by each respective partner to rank offers.
Therefore trees of each partner are internally sorted from the
most to the least valued offer. Figures 1 and 2 indicate con-
flicting preferences of the execution device: a laptop owner
preferring not to be using a company network, and an active
document willing to do everything on its own, most prefer-
ably from inside a company network.

Figure 1: Preferences of an execution device

Figure 2: Preferences of a proactive document

2.1 Bargaining model
Negotiation of values of a multi-item contract, as speci-

fied by trees above, is a non-zero game, where each side can
win some wealth. The question is how to organize the entire
process, so that each party may get as much as it can in the
current execution context. We have proposed for that a sim-
ple bargaining (economic) model [2] with a utility function
valuating offers as a sum of element preferences along each
respective CPP tree path. Offers are chosen by each partner
from its tree, starting from the leftmost (most valuable) one.
Bids are exchanged until one negotiating party repeats any
offer presented by its opponent before.

Bids with trees in Figures 1 and 2 would be the following:
1 : Y1[15] ⇒ X5[9], 2 : X1[14] ⇒ Y5[8], 3 : Y2[13] ⇒ X3[11],

4 : X2[13] ⇒ Y4[9], 5 : Y3[10] ⇒ X4[10], 6 : X3[11] ⇒ Y2[13],

where labels X and Y denote respectively the negotiating
parties, an execution device and the document, indexes of
the initiating party 1, 2, 3 denote consecutive rounds (of-
fer,counteroffer), brackets provide values of exchanged bids
for each side, and ⇒ points alternative valuation of the offer
by the receiving opponent. Initial bid Y1 was made by the
document, while X3 made by the execution device is the fi-

nal one, since it repeats Y2 offered before by the document.
A contract is specified in Figure 3 with a tree similar to
a logical structure of the Collaboration Protocol Agreement
document used by ebXML [5].

Figure 3: Negotiated collaboration agreement

CPP trees considered in the above example are relatively
simple. In a more realistic scenario, however, execution con-
texts of active documents may be much more diversified –
given the variety of personal devices used by collaborators,
their preferences, as well as the abundance of workflow cases
and classes of active documents that may be designed to re-
solve them. To avoid combinatorial explosion leading to the
excessive number of rounds during the negotiation process
more rigid classification of active documents and their exe-
cution contexts is necessary.

2.2 Negotiation policies
We started our analysis from the observation that not all

offers that can be described with CPP trees make sense (or
are worth considering) in each particular execution context.
This has lead us to the concept of negotiation policies. The
idea is that upon arrival an active document is aware of what
kind of device it will be provided with, so what offers will not
be considered for sure, and what is their commonly agreed
partial ordering. Collaborators reserve the right, however,
to keep detailed ordering of their CPP trees private, as they
wish to satisfy the incoming document at the lowest possi-
ble cost. In consequence, bargaining can be performed in a
semi-cooperative setting, where parties are free to make of-
fers, but some a priori agreements concerning the execution
circumstances apply. These “circumstances” are described
with respective sets of rules for designing CPP trees for each
party, which constitute in fact specific negotiation policies.

Before going to a detailed example consider a coding scheme
of offer components defined in Table 1. All five previously
mentioned execution aspects are classified and coded with
symbols, used later in expressions defining the respective
policy rules. For example, D denotes a class of active docu-
ments that can perform a given activity automatically, e.g.,
fetch data from an indicated user’s repository, as opposed
to a document of class W , which requires a user (worker)
to do the job, e.g. read and approve its content. The re-
liability aspect (in the lowest row of Table 1) has just four
simple classes, shown already in Figures 1 and 2, i.e. class
H includes all such features as acceptance and undo buttons,
autosave and auto spell-check, while the remaining symbols
L, B and F represent subsets including only some of them.

2.2.1 Execution device context
Execution devices may be one of the following: work-

stations (WS), laptops (LT), tablets (TB), smartphones
(SM), and cellphones (CP). Their technical features vary,
what may significantly affect the way a given activity is per-

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 1: Negotiated items
execution aspect offer components
performer document (D), worker (W), both (J)
availability separated (S), connected from outside (E)

or inside (I) organization
performance network unknown (U), WiFi (R), phone

(M) or ADSL (A) modem, wire (N)
security public (P) or private (K) network, HTTPS

(T), secure connection (C)
reliability low (L), back-up (B), no fail (F), high (H)

formed. For example, workstations and laptops do not differ
very much in their computational power, but the latter are
mobile, thus more often using alternative network connec-
tions, like WiFi, ADSL or telephone modems. Tablets or
smartphones in turn do not have regular keyboards, what
may limit interaction between active documents and their
users, while cellphones add to a limited keyboard also a
low speed and costly network connection. Each device of
the classes listed above may perform the activity when con-
nected to the network or disconnected. This also determines
what an active document could and could not do while on
the execution device. Based on that we distinguish ten exe-
cution contexts:

{WS,LT, TB,SM,CP} × {connected, disconnected} (1)

In Table 2 we specify rules for building context specific sets
of offers as CPP trees for two example execution contexts,
a laptop connected to any network, and a smartphone out
of reach of any network. The CPP tree root is denoted by
ε, possible connections between tree levels with →, and ele-
ments at respective levels with symbols from Table 1. More-
over, elements in curly brackets {} may be specified in a tree
in any order.

Table 2: Example device policy rules

LT connected SM disconnected
ε → D ε → D
D → {E, I}, D → S
E → {R,M,A,N}, I → {R,N} S → U
{M,A,N} → {P, T}, R → {P,K, T,C} U → P
{P,K, T,C} → {L,B, F,H} P → {L,B, F,H}

2.2.2 Document classes
MIND documents split in three classes, depending on what

kind of functionality they bring to the execution device and
what level of autonomy a document may get from the cur-
rent activity performer. Passive (PS) documents make their
content accessible for processing with user tools, installed lo-
cally on the execution device. Reactive (RA) documents are
more autonomous in keeping under control what users can
do with their content, but expect users to initiate certain
actions. Finally, proactive (PA) documents initiate all nec-
essary actions, call local or external services and take over
the interaction with the user. Depending on the actual se-
curity policy they may consider their content protected or
open, and the strain imposed on the execution device when
executing the activity as heavy or light. We get 12 classes of
documents, each with its own set of policy rules:

{PS,RA,PA} × {protected, open} × {heavy, light} (2)

Table 3 specifies rules for building CPP trees for proactive
documents with a protected content and light stress on the
execution device in two alternative execution modes: with
and without network access.

Table 3: Example document policy rules

network required network not required
ε → D ε → D
D → {E, I}, D → S
E → {R,M,A,N}, I → {R,N} S → U
{M,A,N} → T , R → {K,C} U → P
{K,T,C} → {B,H} P → {B,H}

2.3 Reproducibility of contracts
The notion of a semi-cooperative setting based on negoti-

ation policies leads to the significant reduction of the size of
CPP trees needed by active documents to bargain over con-
tracts with execution devices. However, it does not provide
any mechanism that may help active documents to pass one
another any knowledge on what contracts could be won with
specific devices in various contexts. A naive approach would
be when each document stores its negotiation histories with
each encountered device and shares it with other companion
documents. With that, reproducibility of contracts could be
provided, i.e., instead of negotiating contracts all over again
a document could repeat the one known from its past en-
counters, or encounters of its companions. The problem is,
however, that the negotiation histories might be to large to
be stored in a mobile document agent memory. We propose
to solve this problem by introducing a machine, or rather
document, learning approach, used in sequence classifica-
tion [6].

3. DOCUMENT LEARNING APPROACH
The example contract specified with the tree in Figure 3

has been negotiated by an active document and its execu-
tion device in three rounds. Obviously, trees specified in
Figures 1 and 2 would have much more paths if execution
aspects listed in Table 1 were specified in more detail. This
is the case of our prototype implementation of MIND doc-
uments, where some CPP trees may reach the size of 80000
or more paths, leading to excessively long negotiation histo-
ries. The question to be asked here is whether it is possible
to represent negotiation histories as sequences of symbols
and train active documents to classify n-symbol sequences
by recognizing k-grams, short sequences of up to k consec-
utive symbols (k << n). If trained, a document may be
able to guess a contract during the next encounter with the
execution device, as well as pass this ability to other doc-
uments, in case they may encounter this device context in
the future. Because of a semi-cooperative setting – in this
case a commonly agreed assumption that offers in CPPs are
always sorted in the decreasing order, documents may be
trained with sequences containing offers communicated only
by the devices.

3.1 Coding of offers
A more detailed analysis of execution contexts indicated

by Formula 1 yields a certain number of subclasses of each
negotiated item listed before in Table 1. Subclasses of nego-
tiated items are identified with unique labels, used in context
dictionaries to specify what subclasses may appear at each
level of a CPP tree in each particular execution context. For
example, context dictionary of a laptop described in Table 2
is shown in Table 4; it details a CPP tree in Figure 1. For
example, D1, D2 and D3 denote subclasses of contexts en-
abling documents to perform their activities solely with the
embedded functionality, or with local tools provided by the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

device, or with services external to both, E5, E6 and E7 de-
note various types of resources available to documents, and
so on. Detailed description of each subclass is beyond the
scope of this short paper – we list them just to indicate the
size of the space of possible negotiation histories.

Table 4: An example context dictionary
item item subclass
performer D1, D2, D3
availability E5, E6, E7, I5, I6, I7
performance A4, M4, N4, R1, R2, R3, R4
security C4, K2, K3, K4, T2, T3, T4
reliability H3, H4, F1, F2, F3, F4

3.2 Training sets
Negotiation histories hm = σm1σm2 ...σmn , m = 1, 2, .., Q

are sequences of length |hm|, with offers from set HS =
{σ1, σ2, ..., σq}. Each offer in HS uses symbols from the re-
lated context dictionary, q is the maximum number of offers
in one CPP tree, and Q is the number of all paths in all CPP
trees, possible in a given context. Special coding function
PREC : HS×HS → {0, 1}, such that PREC(σi, σj) = {0 :
i > j, 1 : i < j}, defines conversion of a set of negotiation
histories into a training set:

LE = (map PREC) ◦ (filter i �= j) (3)

Negotiation history h for the contract in Figure 3 consists
of |h| = 3 offers: σ1 = D3E7M4T4H4, σ2 = D3E7A4T4H4,
σ3 = D3E7R2K4F1. Note that the upper bound for the
maximum size of a single CPP tree with symbols from a
given context dictionary is a product of the numbers of sym-
bols provided for each item, i.e. ||HS|| ≤ 5292, while the up-
per bound for the number of possible negotiation histories is
a product of their respective permutations, i.e. m ≤ 79·1012 .
In order to convert a set of negotiation histories into a train-
ing set each hm is coded as sequence seq(hm) of unique natu-
ral numbers. For h considered before we get seq(h) = 3, 2, 1,
and generate <(4,3,1),(4,2,1),(3,2,1),(3,4,0),(2,4,0),(2,3,0)>
with LE. Such vectors of pairs of offers derived from nego-
tiation histories is put to a neural network along with the
negotiated contracts to train it. Note that the training set
describes relative orderings of each possible pair of offers in
recorded histories, rather then define ordering of entire se-
quences. A trained network can later guess contracts based
on the initial k offers returned by the execution device.

3.3 Testing
Document learning based on the presented model of ne-

gotiation histories has been implemented with a neural net-
work simulated in MATLAB. It has ten neurons in one hid-
den layer and two neurons in the output layer. Our initial
test results are promising – after training the network with
a vector derived with LE from a set of Q = 12 k-grams
(with k = 4) of sequences related to the context specified in
Table 4, it was able to precisely guess over 50% of contracts,
and further 40% close to the optimal ones.

It was possible to improve the above results by retraining
the network, but a better solution was increasing the number
of histories to have more pairs of offers in the training set.

4. CONCLUSIONS
A question may be asked what happens when an under-

trained active document makes an imprecise guess of the

contract during its encounter with an execution device. For
the bargaining model used in our approach it does not pose
any problem, as an imprecisely guessed contract may just
delay reaching an agreement – it will be rejected by the
execution device and negotiations continued for a few more
rounds. To speed that up and make parties more willing
to compromise a discount factor δ ∈ (0, 1) may be used to
diminish valuation of the next round offer compared to the
presently considered one [2].

When adapting proactive documents to their execution
contexts a technique based on the media queries may be
considered [3], as an alternative to negotiation and machine
learning proposed here. However, the problem with media
queries is that their sets of media types and media features
have to be defined beforehand, as a commonly agreed stan-
dard to all documents and devices. In real life, proactive
documents may not know the type of a device they would
execute on, so queries might not resolve to true. Negotiation
can cope with that, as only the set of service attributes in a
negotiated contract has to be agreed beforehand, regardless
of the actual classes of available devices. Classes of these
devices may be implicitly learned by documents with each
successfully negotiated contract.

Our plans for future work include experiments to deter-
mine the optimal size of training sets and k-grams for con-
tract prediction – using neural networks and the naive Bayes
classifier first, and next adopting reinforcement learning mech-
anisms to enable active documents to discover new execution
contexts in a truly open environment.

5. ACKNOWLEDGMENTS
This work was supported by the National Science Center

grant no. DEC1-2011/01/B/ST6/06500.

6. REFERENCES
[1] M. Godlewska and B. Wiszniewski. Distributed MIND -

a new processing model based on mobile interactive
documents. In Proc. PPAM 2009, volume 6068 of
LNCS, pages 244–249. Springer, 2010.

[2] J. Kaczorek and B. Wiszniewski. A simple model for
automated negotiations over collaboration agreements
in ebXML. In Proc. 13th Conf. on Commerce and
Enterprise Computing (CEC), pages 167–172. IEEE,
2011.

[3] Media Queries. W3C Recommendation.
http://www.w3.org/TR/2012/REC-css3-

mediaqueries-20120619/, June
2012.

[4] MeNaID project home page. Methods and tools of next
generation document engineering.
http://www.menaid.org.pl.

[5] OASIS. Collaboration Protocol Profile and Agreement
Specification Version 2.0, September 2002.

[6] Z. Xing, J. Pei, and E. J. Keogh. A brief survey on
sequence classification. SIGKDD Explorations,
12(1):40–48, 2010.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

