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Abstract

The paper introduces a method of discrete-continuous systems modelling. In the proposed method a three-
dimensional system is divided into finite elements in only two directions, with the third direction remaining
continuous. The thus obtained discrete-continuous model is described by a set of partial differential equations.
General difference equations of discrete system are obtained using the rigid finite element method. The limit of
these equations leads to partial differential equations. The derived equations, expressed in matrix form, allow
for the creation of a global matrix for the whole system. The equations are solved using the distributed transfer
function method. Proposed approach is illustrated with the example of a simple beam fixed at both ends.

Keywords: modelling, model reduction, modal analysis, mechanical system, dynamic systems,
vibration.

1. Introduction

Many different methods for modelling dynamic systems are known [1,2,5]. However,
there is no universal approach which is both accurate and applicable to the wide range of
dynamic systems. One of the most commonly used approaches is the finite element
method, which is particularly useful in providing approximate models of the real sys-
tems. Its accuracy depends on the number of finite elements. The greater their number,
the more accurate the model. However, there is an optimal division density, above which
rounding errors start to seriously affect numerical calculation. The use of finite element
methods for slender elements or structures is inefficient and basically ineffective, as
maintaining appropriate proportions would require a very fine mesh, leading to the said
rounding errors in numerical calculations. A very large number of finite elements also
means creating a high-order model. Such models are not suitable for designing control
systems. Additionally, the exact analytical solutions for a slender elements, such as
strings, bars and beams, are already known and therefore more suitable for continuous
models.

This paper proposes a hybrid method of modelling that combines the advantages of
spatial discretization methods with the advantages of continuous systems modelling
method. In the classical finite element method, the body is divided into all three spatial
directions (Fig. la, 1c). In the proposed method, the same body is divided into one (Fig.
1b) or two (Fig. 1d) spatial directions, with one direction remaining continuous. Such
a division results in finite elements with parameters distributed along one of the axes.
Two-dimensional elements are called strips (Fig. 1b) and three-dimensional elements are
called prisms (Fig. 1d). Both these elements are one-dimensional distributed systems and
are therefore described by second order partial differential equations. However, these
equations also have terms related to interactions between elements. Hence, the given
system is described by coupled second order partial differential equations.
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Figure 1. Spatial discretization of 2D and 3D body: a), ¢) conventional finite element
method, b), d) proposed hybrid method

2. General model of discrete-continuous system

In order to derive a general model of the discrete-continuous system, let us consider two
prisms, » and p, connected together by a layer of spring-damping elements, &, with dis-
tributed parameters (Fig. 2a). Such a discrete model is shown in Fig. 2b. Each element
has 6 degrees of freedom. By applying the rigid finite element method to this discrete
model, one obtains an appropriate system of ordinary differential equations for prism .
Such an FEM model may be transformed into a continuous model by letting dx—0. In
this way small differences, divided by dx, become derivatives. After these transfor-
mations, the following six differential equations of the r-th prism are obtained:

f,1AvAz = pAyAzg, | — EAyAzq], +

(1)
+Cys (qr,] - q]),]) +Cys (Sr,k,3qi,j,5 - Sp,k,3q]),5) ~Cu (Sr,k,zqr,6 - Sp,k,qu,é)
fy,szAZ = pAyAZér,z - "GA)’AZQ;,,Z + KGA)’AZ‘I:,s 2)
tCun (qy,z - qp,z) —Cu (Sr,k,3qr,4 - Sp,/(,3qp,4)
1,38vAz = pAyAzg, s — kGAyAzq) s — kKGAyAzq, 3)

Cus(q.5— qp,s) +Cu (S 409, 4 — Sp,k,qu,4)
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fy,4AyAZ = p[0qu,4 - GIqu:"A +
Cora (%,4 - qp,4) +Cys (Sr,k,qu,3 - Sr,k,qu,3) +tCus (Srz,k,zqr,4 - Sy,k,zsp,k,qu,4) + 4)

2
tCya (Sr,k,3qr,4 - Sr,k,3sp,k,3qp,4) +Cu (Sr,k,sqp,z - Sr,k,sqr,z)

ﬁ,SAyAZ = plyxér,S - Elqu:,S + KGAyAZq;ﬁ + KGAyAqu,S

Cus(q.5— qp,S) +CunS,43(q,, — qp,l) +Cu (Srz,k,3qr,5 - Sr,k,SSp,k,3qp,5) + (5)

~Cul (sr,k,2sr,k,3qr,6 - Sr,k,3sp,k,2qp,6)

j;‘,GAyAZ = plzxér,é - EI:XQ:‘,,G - KGAyAZq:,Z + KGAyAqu,b
- cxk,lsr,k,Z(qr,] - q,;,l) “Cua (Sr,k,Zsr,k,3qr,5 =S k25395 ) (6)

2
+C (Sr,k,qu,6 =S k25 p k296 )

where: £ — Young’s modulus, G — shear modulus, /,; — geometric moment of inertia of
cross section area perpendicular to the £ axis about a axis, Ay, Az — elementary dimen-
sions of finite element (Fig. 2b), x — numerical shape factor of cross section, p — mass
per unit volume, g; — transverse displacements in i direction, f,; — distributed general
force applied at r-th element (excitation) in i direction , i=1,2,...,6, 5.z, — distance be-
tween body a and distributed spring-damping element f in y direction, ¢,z — distributed
stiffness coefficient of spring element o in f direction.

a) b)

r+1

Figure 2. General model of considered system: a) discrete-continuous, b) discrete

In the same way equations for the p element can be determined. These p element
equations can also be obtained from equations (1+6) by replacing r indices with p indi-
ces and p indices with 7 indices. Equations (1+6) for the r element and the corresponding
equations for the p element may be written in matrix form:
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Apg(x,1)+ Ay q"(x, 1)+ A,0q'(x, 1) + Ay q(x, 1) = f(x,1) (7)
with boundary conditions
0 0
M, +M,,— q(0,6)=y,(1), | Noy + N, — |g(L,t) =7,(1) ,
ox Ox
where:
A, = diag (A, , A02p) s Ay, = diag (pAyAz, pAyAz, pAyAz, pl,, ., plyx PL) s
Ay, = diag (pAyAz, pAyAz, pAyAz, pl, , pl,., PL.,) 5
A,y = diag (Ay,, Ay ,) s Ay, = diag(—EAyAz,—~kGAyAz,—kGAyAz,~GI, ,—El
Ay, = diag (—EAyAz,—~kGAyAz,~xGAyAz,~-Gl ,—El

o ’_E[:x ) >
—EI.), A, =diag(Ay,,A4,,) ,

yx

0 0 0 0 0 0
0 0 0 0 0 kGAyAz
4 0 0 0 0 —xGAyAz 0 K, K,
o 0 0 0 0 o |77 [7(';[ ! _If;;} ’
0 0 kGAyAz 0 0 0
|0 — xGAyAz 0 0 0 0
i Con 0 0 0 CotSus —C1S
0 Cus 0 —CrSii3 0 0
K, - 0 0 Cos c‘kis,_,¢Z ) 0 0
0 —CurSus  CusSpua  Cua FCounSms T CusSin 0 0
CortSres 0 0 0 Cuks +C.r/¢15f/¢3 T Ca1S 2S5k
| = CotrS i 0 0 0 —CotSpaSus  Cue T CortSi
—C 0 0 0 —Co1S i3 C o1 pia
0 —Cy» 0 CoaS s 0 0
K - 0 0 —Cys = CysS 2 0 0
'Pk 0 Co2Ss T CusSua T Cua T CaaSusS s T CasSmaS ph2 0 0
~Ca1S 3 0 0 0 “Cas ~CanrS i3S pi3 €18 w3 S pi2
CoiS 0 0 0 CorSiaS pis = Cas ~ CatrS 2 pia
K, =K, ,matrices K, and 4, are obtained from K, and 4, by replacing indices r

with p.

A global model for the whole system is built the same way as the FEM model. Glob-
al matrices Ag,, Ao, Ao include sub-matrices of each prism element, located on their
main diagonal. Matrix Ay is formed by summing the stiffness matrices of each prism
element in the global system.

The solution of these equations with appropriate boundary conditions gives semi-
analytical results for the tree-dimensional structure. To solve partial differential equation
(7), the distributed transfer function method was used [2,4].
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The proposed approach may be applied in modelling 1D, 2D and 3D continuous sys-
tems. In the case of a 1D system, there are of course no interactions between prisms.

3. Example of method application

As a simple example, let us consider a beam fixed at both ends (Fig. 3) with the follow-
ing parameters: E=2-10"[Pa], G=8-10"[Pa], p=8000[kg/m’], Ay=0.15 [ml],
Az=0.15 [m], /=1 [m], x =1.2.

0.1

X2 X=! .
J jP=1 (input force)
Y

Az=0.15
X1

x=0.4

3 output

= =0.15
=1 | 2y

Figure 3. Fixed beam

The beam is divided into four prisms (Fig. 4) and four distributed spring elements.
Each prism has three degrees of freedom — displacement along x; and x, axes and rota-
tion angle around x; axis.

For this example the frequency responses of the proposed model are compared with
those of Euler and Timoshenko beam models (Fig. 5).

The beam frequency responses (Fig. 5) are obtained for the unit step force input sig-
nal acting at beam point x=0.1 [m] (Fig. 3) and the displacement output signal is ob-
served at the x=0.4 [m] point.

Figure 4. Discrete model of beam: a) general scheme, b) equivalent scheme

The characteristic in Fig. 5 shows that the first two frequencies of the proposed mod-
el and that of the Timoshenko beam model are very similar. This proves that the pro-
posed model is correct. The later trend shows that the frequencies in the proposed model
are even more to the left than in Timoshenko’s model. The characteristic of the Euler
beam model differs significantly from the other two. This is because the Euler beam
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model does not take into account the effect of shear deformation and is therefore less
accurate. Timoshenko included shear deformation to produce a more accurate model
than Euler, with a frequency trend more to the left. The beam model proposed in this
paper is closer to Timoshenko’s model but the subsequent frequency trend is even more
to the left. In the future, these results will be verified and compared with a corresponding
FEM model.
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Figure 5. Frequency characteristics
4. Conclusions

This paper has presented a discrete-continuous modelling method. For the proposed
method, general partial differential equations were derived. These equations were next
written in a formalized matrix form that is very easily applied in computer algorithms.
A beam fixed at both ends was used to illustrate the general concept. The obtained nu-
merical calculation results show that the proposed method is efficient and applicable to
discrete-continuous dynamic system modelling.
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