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Abstract—The paper presents a new approach to detection severe SAHS have gone undiagnosed despite adequate access
of apnea/hypopnea events, in the presence of artifacts andtg health care [5], [6].
breathing irregularities, from a single channel airflow record. Currently, in sleep laboratories, there are carried out
The proposed algorithm, based on a robust envelope detector, iaht ’ | hic studi ’ PSG) aimed at |
identifies segments of signal affected by a high amplitude mod- overnlg polysomnograpnic studies ( ) alme. a gary
ulation Corresponding to apnea/hypopnea events. It is shown deteCtlon and assessment Of the Sevel’l'[y Of SAHS N patlents.
that a robust airflow envelope - free of breathing artifacts - PSG study is considered as the “gold standard” method for
improves effectiveness of the diagnostic process and allows oneSAHS diagnosis [7]. It involves recording and studying si-
to localize the beginning and the end of each episode more ,,1taneously many signals such as electrocardiogram (ECG),
accurately. The performance of the proposed approach, evaluated | airfl NAF d blood turati S202). T
on 15 overnight polysomnographic recordings, was assessed usindqasa ar QW ( ) an_ 00d oxygen S"f‘ uration (Sa02). To
diagnostic measures such as accuracy, sensitivity specificity andr€ach the final conclusion, the recorded signals are analysed by
Cohen’s coefficient of agreement; the achieved levels were equala physician experienced in the field of pulmonology. The final
to 96%, 91%, 96% and 0.85, respectively. The results suggest diagnosis is based on calculation of the apnea/hypopnea index
that the algorithm may be implemented successfully in portable (AHI) which reflects the number of sleep apnea/hypopnea
monitoring devices, as well as in software-packages used in sleep SAH t h f ol It d that ¢
laboratories for automated evaluation of sleep apnea/hypopnea( ) _evens_ per. ] ou.r or sleep. 1t is ass.ume. ) al accurate
syndrome. and reliable identification of SAH events is critical for case
identification and for quantifying disease severity classified as:
mild when5 < AHI < 15, moderate wherl5 <AHI < 30,
and severe when AHF 30 (events per hour of sleep) [7], [8].
Currently the clinical routine is based on manual correction
[. INTRODUCTION of the results obtained by automated analysis, which is an

LEEP apnea/hypopnea syndrome (SAHS) is a S|ee(§)>gtremelytedious and time consuming task [8]._Unfortunately,

breathing disorder characterized by repetitive episodesBf drawbacks of the full PSG study, such as high cost, a long
complete obstruction (sleep apnea event) or partial obstructfi Of patients waiting to be tested, and a feeling of discomfort
(hypopnea event) of the upper airway, often resulting ﬁ:l,ue_ to a large number of sensors placed on the patient’s b_ody
a blood oxygen desaturation and arousals leading to si¢é8ffing the overnight test, suggest the need for developing
fragmentation. The usual daytime manifestation is excessRiernative methods of diagnosis, based on information from
sleepiness, fatigue, and poor concentration, which can escafitected channels of PSG, which could be implemented in
to traffic accidents, depression, and memory loss. The maR§table monitoring devices for evaluation of SAHS [1].
risk factors for the disorder include obesity, male gender_,Numero_U_S m(_ethods exist, based on the_ evaluation of various
and age [1]. Untreated SAHS may lead to ischemic he&,lglna_ls originating from PSG, for detect|.0n of SAH events.
disease, cardiovascular disfunction, and stroke [2]. SAHS [&is includes methods based on analysis of an ECG signal
a noticeable problem of social and health life, affectBig [9], [10], [11], [12], & SaQZ signal [13]! [14], ora comb_lnat|on
of children [3], 2% of female adults and% of male adults of the two [15]. Both signals mentioned above provide only

worldwide [4]. In fact, still up to30% of cases of moderate or SUPPortive evidence of SAH events and do not allow one to
localize precisely their beginning and end. It often happens

that the primary evidence (significant reduction in NAF signal)
Copyright (c) 2013 IEEE. Personal use of this material is permittegs not observed. In the case of a Sa02 signal, the Supportive

However, permission to use this material for any other purposes must be.d in the f f a blood d . is d
obtained from the IEEE by sending a request to pubs—permissions@ieee.@rﬁ! ence, in the form of a blood oxygen desaturation, Is de-
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based on a “black box” approach and use such techniques as
artificial neural networks [16], spectral analysis [17]atigre
selection [18] or support vector machines [19], [20]. 4007

The main contribution of this paper is demonstration that —
SAH events can be effectively identified, in the presence of é 200¢
artifacts and breathing irregularities, based on analgéia Y
robust airflow envelope. 2 0

Il. BREATHING ARTIFACTS —200¢

The standard morphological criteria, given by the American 400 ‘ ‘ ‘
Academy of Sleep Medicine (AASM) [1], describe SAH 0 200 (s 40 60
events as a significant reduction of airflow amplitude lastin 600 \ \ \
at least10 seconds. The reduction of airflow amplitude is ob- B ¢, \l,
served in relation to the level of breathing amplitude pdéog 400}
and succeeding the respiratory event, further called ivesel
value. Two thresholds of airflow reductiofip% and 90%, = 200
were accepted to represent partial and complete obstruatio 2
the upper airway, respectively. The baseline was not defined g 0
clearly in an analytical way. Often pulmonology specialist =
adopt for the baseline the value the local maximum peak, “7200'
or the average value of peaks from the ld$00 seconds
[1]. In the presence of abnormally large peaks, furtherecall 400

artifacts, none of these recommendations is appropriate fo 0 10 e [512‘0 30
baseline value tracking. Irregular breathing artifactswsually

associated either with the patient’s motion during sleepe SFig. 1: Breathing artifacts : A - rapid body movements and

Fig. 1A (rapid body movements, changing of sleep pOSitiorEhanging of sleep position, B - sudden opening of the upper

or with a sudden opening of the upper airway succeedingagway succeeding a sleep apnea/hypopnea event. Artifaets
sleep apnea event - see Fig. 1B. Such a rtifacts in airfloWs ked with arrows.

measurements can lead to incorrect identification of SAH
events by automated sleep scoring methods, which in turn may

result in incorrect diagnosis of the SAHS syndrome. For thig, 4 51,y closely sudden variations in signal amplitulde.

reason, the physician localizes, b_ased on visual inspecti partial or complete reduction of airflow takes place, then
signal segments corrupted by artifacts and manually mar, AH events take the form of characteristic “valleys” visibl

‘he”.‘ as thg ones that should be |gnqred during automatep S.Iﬁethe signal envelope. A physician identifies and classifies
scoring. This IS a very time-consuming Process, and a S“bjﬁ(fese valleys as hypopnea or sleep apnea events, based on the
tive J_udgment is required to _complete the job. unsat's_mtostandard morphological criteria and his/her own expegeht
quality of automated analysis based on NAF signal is Oft‘?ﬂe proposed approach we try to reproduce such a procedure.

caused _by problems W't.h adaptive tracklng of t.h.e basellneEnvelope detection has numerous applications in the field of
value, with respect to which SAH events are identified. Due 9

the presence of artifacts, the correct morphological detion gnal processing and communications [24], one of which is
) - o dati demodulation of amplitude-modulated (AM) signals governe
of the baseline value is not a trivial task [8], [21]. In [22et b P (AM) sig g
authors propose to track the baseline value in adaptive Wag;,
based on an exponentially weighted average of past peaks.

To eliminate impact of large positive and negative peaksj onyheret = ..., —1,0,1,... denotes normalized (dimension-
peaks that remain withii0% of the current baseline value aTQess) discrete timenrb(t) >0 denotes the baseband message,
considered. This approach seems to work well until a SUdd@Q denotes carrier (angu|ar) frequena%/’denotes the carrier
change of breathing rhythm appears, leading to problents wimplitude and3 > 0 is the so-called amplitude sensitivity of
fast updating of the baseline value. The approach propasedte modulator. Whem:(t) is a lowpass signal with bandwidth
[23] is based on airflow signal modeling. The model is use@” much smaller than the carrier frequency; the amplitude

to reconstruct fragments corrupted by artifacts. envelope of the signal(t) is defined as

s(t) = A[l + Bm(t)] cos wet 1)

[1l. ENVELOPE DETECTION e(t) = A[l + Bm(t)] > 0. 2

During a routine analysis physician can easily track thenvelope can be “extracted” from the AM signal using devices
“true” signal envelope using visual inspection - even in thkenown as envelope detectors. The two most frequently used
presence of artifacts. Such an envelope corresponds te®raelope detectors that will be briefly described below are
smooth curve (without ripples) that matches, in a way that ikose based on the square-law (full rectification) prirgighd
robust to breathing artifacts, the main peaks of the waweforon the Hilbert transform, respectively. Due to irreguiastin
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the breathing rhythm, the airflow signal only approximately
fits the AM model (1) which adversely affects performance of #% |
the classical envelope detectors. The situation becomes ev
more complicated in the presence of breathing artifacts. We
will show that both problems indicated above can be takea car
of if the classical detection schemes are suitably modified.

Fig. 3: Envelope detector based on the Hilbert transform.

A. Square-law envelope detector A

The flowchart of the square-law detector [24] is shown in
Fig. 2. Whens(t) is an AM signal governed by (1), the scaled

2
LP Filter
73 - % ELS @ h(E E’iﬁ

Fig. 2: The square-law envelope detector. 0

output of the squaring device can be written down as a sum [
of two components ol

F(t) = A2[1+ Bm(t)]* + A%[1 + Bm(t)]? cos 2wet.  (3) 5 oot

and half is shifted down towards DC. The first term on
the right-hand side of (3) is a lowpass signal with the cutoff
frequency2WW, and the second one is a bandpass signal with
spectrum confined to the frequency band=2w. — 2W, 2- 0155 - o m = %
we+2W) and (2w, — 2W, 2w, +2W), centered around-2w... el

Hence, when the condition. > 2WW is met, the lowpass gy 4. The output of the Hilbert-transform-based envelope
component off () can be extracted using a lowpass l:IRf'lt‘":'életectorprior to lowpass filtering (thick line): A) normal

L(w) with cutoff frequency2iW/ breathing in the presence of incidental artifacts, B) skgpea

_ ok e e A2 2 patterns. Note the presence of high-frequency fluctuations
h(t) = LIf(1)] = Ziszllf(ﬁ )= AT+ ()] (4) called ripples. Thin lines show the airflow (input) signal.

=0.1F

wherel; = 1_;,1 = —k,..., k, denote impulse response
coefficients of the filter. The estimated value of the envelop
can be obtained from Since Hilbert transform shifts the phase of all sinusoidal
components by—=/2, for the “ideal” AM signal (1), one
e(t) = Vh(t) (5)  obtainssy(t) = A[l + Bm(t)] sinw.t which means that the
envelope ofs(t) can be obtained by evaluating the magnitude
B. Envelope detector based on the Hilbert transform of the analytic signal

The second classical method of envelope detection, based - . R
on the Hilbert transform [24], is depicted in Fig. 3. The PO =ly@®) = /s*() +s5(1) = A[L+ fm(@)]. - ()
Hilbert transform of an analog real-valued finite energyalg For AM-like signals, such as speech signals or biomedical
x(te), —00 < t. < 00, is defined as [24] signals, the envelope extracted in this way suffers fronihig

oo g(r)dr frequency fluctuations, called ripples [27] - see Fig. 4.dRp
su(te) = His(te)] = / TR (6) can be removed by passing the sigrfiéd) through a lowpass
oo (te = 7) filter, leading to
wheret. denotes the continuous-time variable. Envelope de- e(t) = L[f(t)]. (10)
tection involves creation of the complex-valued analyitimal,
defined as

y(tc) = S(tC) JFjSH(tC)- (7)

The analytic counterpart of a discrete-time sigrél) can

be evaluated either directly - using the FFT-based frequenc The estimation of the airflow envelope obtained using

domain approach [25], or indirectly - by computing an .‘anaqpproach based on the square-law or on the Hilbert transform

lytic” signal sy (¢) (Using the discrete-time FIR approximationSUﬁers from envelope distortions caused by artifacts twhic

of the Hilbert transform) and combining it with(¢): are only partially eliminated at the stage of lowpass filtgri
The envelope distortions of short duration and of relagivel

y(t) = s(t) + jsu(t). (8) high amplitude may seriously affect the estimated baseline

C. Moadification in the envelope detection procedures
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values by setting them at too high levels. This may lead totlaan those obtained when only one of the filters is applied.
large number of false-positive decisions, some of whickseauThe proposed modification in the airflow envelope detection
erroneous distinction between hypopnea of sleep apnegseveprocedures allows one to obtain robust envelopes based on
The second problem with analysis based on the classitia# square-law or on the Hilbert transform, further denaied
envelope detection results, is related to the filter-indugee- RESL and REHT, respectively.
shift effects, at the beginning and at the end of each apnedigs. 6-9 illustrate robustness of the proposed modified
episode, namely, in an i increased number of true-negatism®velope detectors in two practically important cases.
decisions. Since the sleep apnea event should last atlléast Figs. 6 and 7 demonstrate insensitivity of RESL and
seconds, wrong localization of its endpoints may resultrin 8EHT envelopes to breathing artifacts — unlike the clagsica
erroneous event classification. ESL/EHT envelopes, which are affected by airflow outliers,
To eliminate both drawbacks mentioned above, a cascatle RESL/REHT envelopes are robust to short-lived bregthin
made up of a standard median (SM) filter and a recursiggtifacts. This allows one to keep the baseline (which is set
median (RM) filter is used instead of the linear lowpass FI& the local envelope maximum) at a level corresponding to
filter L(w) in the two envelope detection methods depicted Wegular, i.e., undisturbed breathing.
Figs. 2 and 3. Figs. 8 and 9 demonstrate another advantage of nonlinear
filtering — preservation of sharp envelope “edges”. Wheadin
h(&F lowpass filter is used in lieu of the proposed cascade of non-
linear filters, the corresponding envelopes slowly dedssy//at
the beginning/end of each reduced-airflow episode. Sinee th
fan . ) ) : X
ength of such an episode is an important diagnostic factor
(see Section 4), its underestimation can result in oveif@pk
. o . ) .or misclasification of SAH events. Median filters do not
Median filtering is a popular method of noise removal ify,qyce time shifts mentioned above. Additionally, teeur-
applications involving signal and image processing. TIB-N g6 median filter is very efficient in smoothing out (without

linear technique has proven to be a good alternative totingg,, 1ing envelope edges) some local signal fluctuations tha
flltermg_as It can eﬁgctlvely SUPPress impulsive noise l&/hi 5 e ohserved at the output of a standard median filter
preserving the edge mfor_matlon ,[28]' i [29]. As a result, the envelope “valleys” corresponding &HS

. The output pf the SM filtey(t) is the median Va!ue of Fhe events usually have only one local minimum. This very much
input data inside the window centered at the pdinand is  gjnhjifies SAH identification as SAH episodes can be easily
given by localized between the two successive local maxima.

B

AF |
' se) 5] RE |

Fig. 5: A cascade made up of standard and recursive med
filters.

g(t) =med f(t —m),.... f(t),.... f(t+m)}  (11) Remark 1: Note that median windows centered at instants

where M = 2m + 1 denotes the window size anded{-} andt¢+ 1 overlap. Therefore, since evaluationgdf) given by _
denotes the central value of the ordered sequence of samgiéd) has already sorted most of the samples that are required
To effectively reduce the influence of artifacts on the aivflo for evaluation ofg( + 1), the computation can be made much
envelope, while preserving the sharp envelope “edges”et fore efficient. Using the indexable skip list technique [8(
beginning and at the end of each apnea episode, the gRfnputational complt_axny of a median filter can be .reduced
window size should be properly selected. If the window siZgom _O(MQ) comparisons to OnlyO(log_M) comparisons

is too small, not all artifacts are suppressed. If the windoRe! time update [31]. The same technique can be used for
size is too large, the blurring effect can be observed, aityil "€alization of a fast recursive median filter.

as in the case of image processing applications. Therefiere Remark 2: Similarly as in the case of classical envelope
window size should be at least two times larger than the fengfetectors, the computational load of the proposed methas ¢
of the segments affected by artifacts, but smaller than thg fyrther reduced by downsampling the sigriéd) prior to
distance between two neighboring SAH events. Based on $injinear filtration. To avoid aliasing effects, prior toveio
observation that artifacts are usually confined to one hiegt sampling the signaff(¢) should be passed through a linear

cycle, whereas the breathing frequency changes fra®iHz  |owpass filter with appropriately chosen cutoff frequency.
to 0.4 Hz, we suggest that the SM window should coveér

seconds of the airflow signal.
The RM filter, used to process the median-prefiltred signal
samplesg(t), is given by Once the airflow envelope has been obtained, identification
. of SAH events is easy: they can be localized (if present)
h(#) = medht —n),.... bt =1),9(t), . gt +n)} (12) between the succeeding local maxima of the robust envelope.
where N = 2n + 1 denotes the window size. The RM filterEach time a new local maximum appears, the baseline value is
is more sensitive to window size than the SM filter. If theipdated and set to the value of this local maximum. Consider
window is too wide, it can excessively smooth out the signal sequence of sampldg(t,),...,e(t,)} corresponding to a
leading to deformation of the envelope. It is proposed to sségment of robust envelope, wheig;) ande(t,,) represent
N approximately tolM /2. According to our experiments, thetwo subsequent local maxima. The baseline value is set to
proposed cascade of two median filters yields better resul{g;) and two thresholds are computed, correspondirig)to

IV. | DENTIFICATION OF SAH EVENTS
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TABLE I: Quantitative comparison of scores provided by apesx with the results yielded by two variants of the proposed

method: Approach | based on the square-law, and Approachsiéd on the Hilbert transform. The scores correspond to the
number of detected apnea/hypopnea events (SAH), only aavesds (Apnea) and only hypopnea events (Hypopnea). The AHI
index reflects the number of sleep apnea/hypopnea eventsngehour of sleep. The number of artifacts present in airflow

recordings, based on subjective scoring of abnormallyelargaks, ranged from3 to 210 per recording.

Expert Approach | Approach Il
Patient | Artifacts || SAH | Apnea | Hypopnea| AHI SAH | Apnea | Hypopnea| AHI SAH | Apnea | Hypopnea| AHI
1 20 33 5 28 4.41 36 3 33 4.81 34 2 32 4.54
2 70 36 2 34 4.81 45 2 43 6.01 49 2 47 6.55
3 13 46 13 33 6.15 45 9 36 6.01 53 11 42 7.08
4 70 50 5 45 6.68 53 1 52 7.08 58 1 57 7.75
5 78 106 17 89 14.16 || 127 8 119 16.97 || 130 8 122 17.37
6 17 111 28 83 14.83 || 107 17 90 14.30 || 113 16 97 15.10
7 59 126 75 51 16.84 || 136 67 69 18.17 || 142 70 72 18.98
8 36 167 126 41 22.32 || 147 100 47 19.64 || 147 100 47 19.64
9 76 169 19 150 22.58 || 168 13 155 22.45 || 178 15 163 23.79
10 64 216 133 83 28.86 || 222 23 199 29.67 || 201 20 181 26.86
11 55 217 170 47 29.00 || 229 167 62 30.60 || 231 165 66 30.87
12 210 241 74 167 32.20 || 247 22 225 33.01 || 241 27 214 32.20
13 69 290 196 94 38.75 || 295 179 116 39.42 || 295 184 111 39.42
14 206 311 247 64 4156 || 312 197 115 41.69 || 330 203 127 44.10
15 91 315 177 138 42.09 || 314 154 160 41.96 || 301 154 147 40.22
[ overall | 1134 | 2434 1287 [ 1147 | [ 2483 ] 962 | 1521 | [[ 2503 ] 978 | 1525 | |

TABLE II: Event-by-event analysis. Comparison of scoretaoted for two variants of the proposed method: Approactsklda
on the square-law, and Approach Il based on the Hilbert toams The scores that are higher than or equal to those ylelde
by the competing approach are shown in boldface. Equal s@mee marked with asterisks.

Approach | Approach Il
Patient SAH Apnea | Hypopnea| Misclass.| False SAH Apnea | Hypopnea| Misclass. | False
det. (%) | det. (%) | det. (%) det. det. (%) | det. (%) | det. (%) det.
1 84.85 40.00° 82.14 3 8 75.76 40.00° 75.00 2 9
2 97.22 50.00¢ 9412 2* 10 97.22 50.00¢ 94.12 2" 14
3 93.48 69.23 93.94 3* 2 91.30 76.92 87.88 3* 11
4 88.00 20.00° 86.67 4 9 78.00 20.00° 75.56 4% 19
5 93.40 23.53 88.76 16* 27 89.62 23.53 84.27 16~ 34
6 89.19 57.14 86.75 11 8 88.29 53.57 85.54 12 16
7 98.41 89.33 98.04 7 13 96.83 90.67 90.20 8 21
8 91.62 87.30¢ 95.12 1* 4 90.42 87.30r 90.24 4* 6
9 96.45 68.42 96.00 6 5 93.49 78.95 92.67 4 20
10 91.67 17.29 90.36 100 24 82.87 15.04 63.86 106 22
11 99.54 95.29 93.62 10* 12 97.70 94.71 87.23 10* 18
12 95.44 28.38 93.41 53 17 89.63 33.78 85.03 49 25
13 93.79 88.78" 84.04 19 25 91.72 88.78" 75.53 21 32
14 95.82 78.54 90.63 46~ 15 96.14 80.57 84.38 46~ 32
15 95.56 87.01 92.75 19 16 90.79 84.18 81.88 24 18
[overal | 9363 | 60.02 | 91.09 | 20.20 | 13.00] 89.99 | 6120 | 8356 | 20./3 [ 19.80]
and10% of the baseline value for hypopnea and apnea events, V. EXPERIMENTAL RESULTS

respectively. The following decisions are made
The polysomnograms of5 sleep apnea patient8, males

. ~, 1 —~,
dy(t;) = { Lif e(t) < 2 e(t1) and6 females [age53 + 7 years (meatstandard deviation),
0 otherwise duration of each studyt49 minutes] were used to validate the
proposed method. The analyzed sleep studies were drawn from
1 if e(t;) < & e(tr) the database of the Medical University of Gdansk, Gdansk,
dy(t:) = 0 otherwise Poland. In all studies the airflow signal was recorded with

the sampling frequency of 20 Hz. Respiratory events were
where d;s(t) and d,(t) denote sequences of binary valuedetected based on analysis of the airflow signal and scored
indicating which samples in the analysed segment can bging the criteria proposed by AASM [1]. Hypopnea was
classified as hypopneic/apneic activity. If the segmeritioies  defined as an ovei0% reduction in airflow from the baseline
less thanl0 seconds of continuous hypopneic/apneic activityalue, lasting for more thah0 seconds, and associated with
it is classified as normal breathing. Otherwise hypopnea ar3% desaturation or an arousal. Sleep apnea was defined
apnea is detected. When both types overlap, only the slesp the absence of airflow for more thdan seconds. The
apnea episode is scored — see Fig. 10. clinical routine was based on manual correction of the tesul
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TABLE IlI: Epoch-by-epoch analysis. Comparison of scorégamed for two variants of the proposed method: Approach
| based on the square-law, and Approach Il based on the Hitteersform. Four quality measures were used to asses the
performance of the proposed method: accuracy (Acc), $@hsitSens), specificity (Spec) and Cohen’s coefficientgfegement

(k). The scores that are better than or equal to those yieldadédbgompeting approach are shown in boldface. Equal scores
are marked with asterisks. Evaluation was based on analys3§-second airflow epochs classified as positive, if attl&as
seconds of the epoch was affected by hypopneic/apneidtactor each examined patient the number of epochs was equal
to 899. TP: true positive, FN: false negative, TN: true niegat-P: false positive.

Approach | Approach I
Patient | TP FN TN FP | Acc Sens Spec K TP FN TN FP Acc Sens Spec K
(%) | (%) (%) (%) | (%) (%)
1 33 8 846 12 | 97.78 | 80.49 98.60 | 0.76 31 10 843 | 15 | 97.22| 7561 | 98.25| 0,70
2 49 3 828 19 | 9755 94.23% | 97.76 | 0.80 49 3 820 | 27 | 96.66 | 94.23 | 96.81| 0,75
3 51 5 836 7 98.67 | 91.07 99.17 | 0.89 48 8 826 | 17 | 97.22| 85.71 | 97.98| 0.78
4 50 7 827 15 | 97.55| 87.72 98.22 | 0.81 45 12 817 | 25 | 95.88| 78.95 | 97.03 | 0.69
5 136 19 708 | 36 | 93.88| 87.74 95.16 | 0.79 || 131 24 697 | 47 | 92.10| 8452 | 93.68| 0.74
6 127 23 735 14 | 9588 | 84.67 | 98.13 | 0.85 || 127 23 723 | 26 | 9455 84.67 | 96.53 | 0.81
7 175 9 676 | 39 | 94.66 | 95.11 9455 [ 0.85 [ 173 11 669 | 46 | 93.66 | 94.02 | 93.57| 0.82
8 239 19 630 11 | 96.66 | 92.64 98.28 | 0.92 || 236 22 628 | 13 | 96.11| 91.47 | 97.97 | 0.90
9 181 17 693 8 97.22] 9141 98.86 | 0.92 || 178 20 677 | 24 | 9511 89.90 | 96.58 | 0.86

10 196 17 657 29 | 94.80 | 92.02 95.77 | 0.86 180 33 656 30 | 92.99 | 84.51 95.63 | 0.81
11 325 18 536 20 | 95.77 | 94.75 96.40 | 0.91 || 320 23 528 28 | 94.33 | 93.29 94.96 | 0.88
12 296 20 548 35 | 93.88 | 93.67 94.00 | 0.87 281 35 537 46 | 90.99 | 88.92 92.11 | 0.80
13 347 28 489 35 | 92.99 | 92.53 93.32 | 0.86 || 340 35 485 39 | 91.77 | 90.67 92.56 | 0.83
14 311 12 555 21 | 96.33 | 96.28 96.35 | 0.92 306 17 538 38 | 93.88 | 94.74 93.40 | 0.87
15 428 38 393 40 | 91.32 | 91.85 90.76 | 0.83 || 409 57 390 43 | 88.88 | 87.77 90.07 | 0.78

[Coverall | 2944 | 243 | 9957 | 341 | 95.67 ] 91.08 | 96.36 | 0.85 || 2854 | 333 | 9834 | 464 | 94.09 | 8703 | 95.14 ] 0.80

obtained by automated analysis performed by a commerdiad expressions are

PSG software (RemLogic). The common mistakes of the auto- TP + TN

i - i A A = =
mated anz.ilys_ls are: overlooked episodes, false detectoils ceuracy = =g PN+ TN+ FP
misclassification between hypopnea and sleep apnea events. TP
In all studies2434 SAH events were detected287 apneas Sensitivity = TP+ FN
and 1147 hypopneas. The apnea/hypopnea index (AHI) for TN
the examined patients ranged from 4.41 to 42.09. The total Specificity = ——=

. o . TN +FP
number of artifacts present in airflow recordings — the itesul A-B
of subjective scoring of abnormally large peaks — was 1134, Agreement = T ="
ranging from13 to 210 per recording.

where
(TP + TN)(TP + FN) + (FP + TN)(FN + FP)

The 127-tap FIR filter approximating the Hilbert transform B TP +FN + TN + FP

was designed using the Parks-McClellan algorithm. The ana-Tables Il and Ill show the comparison of two variants of
lytic signal was computed by adding the appropriately timghe proposed method: Approach | based on the square-law,
shifted real signal to its imaginary counterpart generdigd and Approach Il based on the Hilbert transform.
the Hilbert filter. To reduce computational complexity,@ri  Table Il shows results of the event-by-event analysis. Note
to median filtering the signalf(t) was passed through athat while detection rates of SAH events reach high levels
lowpass FIR filter with a cutoff frequency df Hz, and then (average detection rate = 936 minimum detection rate =
downsampled by a factor of = 6. After decimation, the SM 84.9%), classification of apnea and hypopnea episodes is less
window size was set td/ = 51 and the RM window size successful. In particular, for 4 patient$4, #5, #10 and
was set toNV = 21. #12) the apnea detection rate is lower tt3¥%. This means
that some further work is needed to develop tools capable of
distinguishing both types of events in a more reliable way.
Table | compares the results of automated detection of SAHTable 11l shows results of the epoch-by-epoch examination.
events with decisions made by an expert. Patients wereestdeEvaluation was based on analysis of 30-second airflow epochs
according to their apnea/hypopnea index (AHI). All deaisio classified as positive, if at least 5 seconds of the epoch was
were divided into four categories: true positive (TP), truaffected by hypopneic/apneic activity. For each patiem th
negative (TN), false positive (FP) and false negative (FNjumber of epochs was equal to 899. The obtained results
Four quality measures were used to asses the performaclearly indicate superiority of the square-law-based apph.
of the detectors: accuracy, sensitivity, specificity andh&ds Note that the Cohen’s coefficient of agreememvaluated for
coefficient of agreement (agreement beyond that expectedtbg robust square-law detector takes pretty large values — f
chance, usually referred to as kappa statistic) — the quores 12 patients it holds that € [0.81, 1], which corresponds to
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Fig. 6: Performance of the classical square-law envelop&®. 7: Performance of the classical Hilbert transform dope
detector (A) and its robust version (C) in the presence dftector (A) and its robust version (C) in the presence of
breathing artifacts. Middle figure (B) shows the intermégliabreathing artifacts. Middle figure (B) shows the interméslia
detection results observed at the output of the standaréamedietection results observed at the output of the standardamed
filter. Thick line — envelope, thin line — airflow signal. filter. Thick line — envelope, thin line — airflow signal.

the highest qualitative level of agreement strength, preted Finally, Table IV shows the re_sults of compa_rison of 3
as “almost perfect agreement” [32] or “very good agreemenea,pproac_hes to SAH evgnts detection, based on different ways
[33], and for the remaining 3 patientse [0.61,0.80], which is of baseline value tracking: the approach based on the expo-

regarded as “substantial agreement” [32] or “good agre¢meRentially weighted average of past peaks (EWAPP) [22], the

[33]. approach adopted in a commercial PSG software (RemLogic),
Bland-Altman plots comparing AHI scores provided by aﬁmd the proposed approach based on RESL. In this experiment

expert with those resulting from the automated analysis ar differentiation between apnea and hypopnea event was

shown in Fig. 11 (for Approach 1) and Fig. 12 (for Approacﬁnade' Evaluation was based on analysis of 30-second airflow

Il). This is a.popular method to comparé two scoring tecﬁe_pochs classified_ as SAH events or normal breathing. The

nigues. In this graphical method the differences between poch was classified as SAH gvent if at !eastIS. seconds of
he epoch was affected by apneic/hypopneic activity. Thked to

two techniques are plotted against their averages. Haaron ;
lines are drawn at the mean difference, and at tHg 98its number of epochs for 15 patients was 13485. The total number

of agreement, which are defined as the mean differeric66 of events detected by the expert for 15 patients was 2434. The

times the standard deviation of the differences. BlandrAl results of the test show clearly superiority of the proposed
) . . .___method.

plots allow one to investigate the existence of any systiemat
difference (fixed bias) between the scores, and to identiRemark:When comparing results of automated detection of
possible outliers. According to the plots shown in Figs. 13AH events with those provided by an expert, one should
and 12, the proposed methods are nearly unbiased — meamember that the latter ones do not necessarily present a
biases are equal t60.4367 and —0.6153 event/hour of sleep 100% correct score. Reports on intrascorer and interscorer
for Approach | and Approach I, respectively. The differeac reliability for scoring respiratory events were summadize
remain close to the bias line, even for an increasing AHInde[8]. Reliability increases when an expert is guided by an
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.
48
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airflow [mL/s]
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Fig. 8: Performance of the classical square-law envelopgy 9: Performance of the classical Hilbert transform éope
detector (A) and its robust version (C) in the presence @ktector (A) and its robust version (C) in the presence of
sleep apnea/hypopnea events. Middle figure (B) shows t§igep apnea/hypopnea events. Middle figure (B) shows the
intermediate detection results observed at the output ®f fiatermediate detection results observed at the output ef th
standard median filter. Thick line — envelope, thin line standard median filter. Thick line — envelope, thin line —
airflow signal. airflow signal.

TABLE IV: Results of comparison of 3 approaches to SAH

150

events detection, based on different ways of baseline value
tracking: the approach based on the exponentially weighted
average of past peaks (EWAPP), the approach adopted in 5o
a commercial PSG software (RemLogic), and the proposed%
approach based on RESL. The best scores are shown irg

100

T
local maximum

T T
local maximum

boldface.

Approach to| Correct | False Acc Sens | Spec K 150l . :
SAH det. | det.[%] | det.s] | [%] [%] [%] m _‘;;ﬂ;’LW
EWAPP 81.53 | 14.63 | 90.83| 81.24 | 94.10 | 0.65 200 ‘ : : : : ‘ ‘ -
Remlogic | 67.40 | 7.13 | 90.13 | 67.70 | 97.80 | 0.67 0 oowoon g o8 0w

RESL 93.63 6.82 | 95.67 | 91.08 | 96.36 | 0.85

Fig. 10: Identification of SAH events based on the RESL
envelope.

automatic detection tool [22]. One of important conclusion
of this study is that the proposed methods seem to provide

better guidance than the currently available ones. proposed approach is a simple modification of the existing
schemes, obtained by replacing the linear lowpass output
filter with a cascade of two nonlinear filters - a standard
The widely used classical envelope detection methods anedian filter and a recursive median filter. Unlike the method
not robust to artifacts present in airflow measurements. THescribed in the literature the proposed algorithms do eetin

VI. CONCLUSION


http://mostwiedzy.pl

A\ MOST

6 i
3 4 1
g ° Mean+1.96SD
& 2 4
>—<<
2 ofF o o [ ] r 2
| *—@
5 ° ° ¢ o ® Mean
&2t * 1
>—<Lu @
< 4t Mean—1.96SD -
s i
0 5 10 15 20 25 30 35 40 45
[AHL o+ AHL et 12

Fig. 11: Bland-Altman plot comparing AHI scores provide(fl12

[7

—

(8]
El

[20]

[11]

by an expert with those resulting from the automated analysi
using Approach | (differences between the scores agaiast th
averages). Horizontal lines show the mean difference aad {3

95% limits of agreement (SD = standard deviation).

6 4
= 4f Mean+1.96SD 1
.
& 2r ° ° B
=<
< of ° ° [ Mean -
' ] ° v
2 2 hd ° 4
& 2 ° °
E °
< 4 1
Mean—1.96SD
6 i
0 5 10 15 20 25 30 35 40 45
[ AHIFxpcn. A Approach IT ]/2

[14]

[15]

[16]

[17]

(18]

[19]

20
Fig. 12: Bland-Altman plot comparing AHI scores provideé ]
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initial training or optimization.
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