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Abstract A dominating set of a graph G = (V, E) is a set D of vertices of G such
that every vertex of V(G)\ D has a neighbor in D. The domination number of a graph
G, denoted by y (G), is the minimum cardinality of a dominating set of G. The non-
isolating bondage number of G, denoted by b'(G), is the minimum cardinality among
all sets of edges E’ C E such that §(G — E’) > 1 and y(G — E') > y(G). If
for every E' C E we have y(G — E') = y(G) or §(G — E’) = 0, then we define
b'(G) = 0, and we say that G is a y-non-isolatingly strongly stable graph. First
we discuss various properties of non-isolating bondage in graphs. We find the non-
isolating bondage numbers for several classes of graphs. Next we show that for every
non-negative integer, there exists a tree having such non-isolating bondage number.
Finally, we characterize all y-non-isolatingly strongly stable trees.
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1 Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G, we mean the
set Ng(v) = {u € V(G): uv € E(G)}. The degree of a vertex v, denoted by dg (v),
is the cardinality of its neighborhood. Let §(G) mean the minimum degree among all
vertices of G. By a leaf we mean a vertex of degree one, while a support vertex is a
vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively)
if it is adjacent to at least two leaves (exactly one leaf, respectively). The distance
between two vertices of a graph is the number of edges in a shortest path connecting
them. The eccentricity of a vertex is the greatest distance between it and any other
vertex. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity
among all vertices of G. We denote the path (cycle, respectively) on n vertices by P,
(Cy, respectively). A wheel W,,, where n > 4, is a graph with n vertices, formed by
connecting a vertex to all vertices of a cycle C,,—;. Let T be a tree, and let v be a vertex
of T'. We say that v is adjacent to a path P, if there is a neighbor of v, say x, of degree
two such that the tree resulting from 7' by removing the edge vx, and which contains
the vertex x, is a path P,. Let K, , denote a complete bipartite graph the partite sets
of which have cardinalities p and g. By a star we mean a connected graph in which
exactly one vertex has degree greater than one.

A subset D € V(G) is a dominating set, abbreviated DS, of G if every vertex of
V(G)\ D has aneighbor in D. The domination number of a graph G, denoted by y (G),
is the minimum cardinality of a dominating set of G. For a comprehensive survey of
domination in graphs, see for example [5].

The bondage number b(G) of a graph G is the minimum cardinality among all sets
of edges E’ C E such that y(G — E’) > y(G). The concept of bondage in graphs
was introduced in [2] and further studied for example in [1,3,4,6-9].

We define the non-isolating bondage number of a graph G, denoted by »'(G), to be
the minimum cardinality among all sets of edges E’ C E such that §(G — E’) > 1 and
y(G — E’) > y(G). Thus b'(G) is the minimum number of edges of G that have to be
removed in order to obtain a graph with no isolated vertices, and with the domination
number greater than that of G. If for every E’ C E we have y (G — E’) = y(G) or
8(G — E’) = 0, then we define b'(G) = 0, and we say that G is a y-non-isolatingly
strongly stable graph.

First we discuss various properties of non-isolating bondage in graphs. We find
the non-isolating bondage numbers for several classes of graphs. Next we show that
for every non-negative integer, there exists a tree having such non-isolating bondage
number. Finally, we characterize all y-non-isolatingly strongly stable trees.

2 Results

We begin with the following well known observations.

For every graph G of diameter at least two there exists a y (G)-set that contains all
support vertices.

If H is a subgraph of G such that V(H) = V(G), then y(H) > y(G).

If n is a positive integer, then y (P,) = [(n +2)/3].
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For every integer n > 3 we have y(C,,) = [(n + 2)/3].
Observation 1 If'n is a positive integer, then y (K,) = 1.
Observation 2 For every integer n > 4 we have y (W,) = 1.

Observation 3 Let p and q be positive integers such that p < q. Then

1 ifp=1,
V(Kp,q) =

2 otherwise.

First we calculate the non-isolating bondage numbers of paths.

Lemma 4 For any positive integer n we have

0 ifn=1,2,3,4,57;
V(P)=11 ifn>6and n #3k+1;

2 ifn>10and n =3k + 1.
Proof Let us observe that if a path has at most five or exactly seven vertices, then
removing any edges does not increase the domination number, or gives an isolated
vertex. Assume that n = 6 or n > 8. First assume that n = 3k. We have y (P,) =
L(mn +2)/3] = L3k +2)/3] = k. We also have y(P,—2) + y(P2) = |n/3] +1 =
k+1 > y(P,).Thusb'(P,) = lifn = 3k andn > 6. Now assume thatn = 3k+2. We
have y (P,) = [(n+2)/3] = [(3k+4)/3] =k+1.Wealsohave y (P,—4)+y (Ps) =
n/3|+2=k+2>y(P,). Thus b'(P,) = 1ifn = 3k +2 and n > 8. Now assume
that n = 3k 4+ 1. We have y(P,) = [(n +2)/3] = |(3k + 3)/3] = k + 1. Let us
observe that removing any edge does not increase the domination number. We have

Y(Pr—6) +y(Pe)+y(P2) = (n—4)/3]+3=[Bk—3)/3]+3=k+2> y(Pn).
Therefore b'(P,) = 2ifn =3k + 1 and n > 10. O

We now investigate the non-isolating bondage in cycles.
Lemma 5 For every integer n > 3 we have

[0 ifb'(P,) = 0;
b/(Cn) =
(P, +1 ifb(P,) #0.

Proof We have y (P,) = y(C,). Clearly, C,, — e = P,. This implies that b'(C;) = 0
if b'(P,) = 0, while b'(C,,) = b'(P,) + 1if b'(P,) # 0. O

We now find the non-isolating bondage numbers of complete graphs.

Proposition 6 Ifn is a positive integer; then

B Ky 0 forn=1,2,3;
K,) =
" l(n+1)/2] forn > 4.
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Proof Obviously, b'(K1) = 0and b’ (K) = 0. We have K3 —e = C3and b'(C3) = 0.
This implies that 5'(K3) = 0. Now assume that n > 4. By Observation 1 we have
y(K,) = 1. Let us observe that the domination number of a graph equals one if and
only if the graph has a universal vertex. Given a complete graph, we increase the
domination number if and only if for every vertex we remove at least one incident
edge. If n is even, then we remove n/2 = |[(n + 1)/2] edges. If n is odd, then we
remove (n — 1)/2+1=m+1)/2 = [(n+ 1)/2] edges. O

We now calculate the non-isolating bondage numbers of wheels.

Proposition 7 For integers n > 4 we have

2 ifn =4

b/(Wn) = |
1 ifn>5.

Proof Since Wy = Ky, using Proposition 6 we get b’ (Wy) = b'(K4) = |5/2] = 2.

Now assume that n > 5. By Observation 2 we have y(W,) = 1. The domination

number of a graph equals one if and only if it has a universal vertex. Removing an

edge of W,, incident to the vertex of maximum degree gives a graph without universal

vertices. Therefore b’ (W,) = 1 forn > 5. O

We now investigate the non-isolating bondage in complete bipartite graphs.

Proposition 8 Let p and q be positive integers such that p < q. Then

0 ifp=1,2;
b’(Kp,q)z 4 ifp=23;

p otherwise.

Proof Let E(Kp4) ={aibj: 1 <i <pand1 < j <g}. If p =1, then obviously
b'(Kp,4) = 0 as removing any edge produces an isolated vertex. Now assume that
p > 2. By Observation 3 we have y (K, ;) = 2. Let E’ be a subset of the set of edges
of K> 4 such that § (K3 4 — E’) > 1. Each vertex b; is adjacent to aj or ap in the graph
K>, —E ’. Observe that the vertices a; and ay form a dominating set of K>, —E .
Therefore b'(K>,4) = 0. Now assume that p = 3. It is not very difficult to verify
that removing any three edges does not increase the domination number while not
producing an isolated vertex. We have y (K3, — a1by — a1bs —aby — azby) =3 >
2 = y(K3,4). Therefore b’(Kg,q) = 4. Now assume that p > 4. If we remove at most
p — 1 edges, then there are vertices a; and b; which have degrees ¢ and p, respectively.
Itis easy to observe that the vertices a; and b still form a dominating set. Let us observe
that y (K, —a1by —axby —azby —ashy —asby —---—apby) =3 > 2=y (K, 4).
Therefore b'(K, 4) = pif p > 4. O

The authors of [2] proved that the bondage number of any tree is either one or two.

Theorem 9 ([2]) For every tree T we have b(T) € {1, 2}.
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Fig. 1 A tree T} having 4k + 2
vertices, where both central
vertices are of degree k + 1

Let us observe that for every non-negative integer there exists a tree with such
non-isolating bondage number. We have b’ (P4) = 0. For positive integers k, consider
trees Ty of the form presented in Fig. 1. It is not difficult to verify that b’ (T}) = k.

Hartnell and Rall [3] characterized all trees with bondage number equal to two. We
characterize all trees with the non-isolating bondage number equal to zero, that is, all
y-non-isolatingly strongly stable trees.

We now show that joining two y -non-isolatingly strongly stable trees gives us also
a y-non-isolatingly strongly stable tree.

Lemma 10 Letr Ty and T» be vertex-disjoint y-non-isolatingly strongly stable trees.
Let x be a support vertex of T and let y be a leaf of T>. Let T be a tree obtained
by joining the vertices x and y. If y(T) = y(Ty) + y(T»), then the tree T is also
y -non-isolatingly strongly stable.

Proof Let E1 be a subset of the set of edges of T such that (7T — E1) > 1. Ifxy € Ey,
thenwegety (T'—Ey) = y(T1—EINE(T1))+y(I,—EiNE(T2)) = y(T1)+y(T2) =
y(T). Now assume that xy ¢ Ej. Let z be the neighbor of y other than x. If yz ¢ Ej,
then let £y = E; U {xy}. Similarly as earlier we get y(T — E») = y(T). We have
y(T — Ey) < y(T — E»), and consequently, y (T — E1) = y(T). Now assume that
vz € E1. Let E3 = E1 U {xy}\{yz}. Similarly as earlier we get y (T — E3) = y(T).
Let D> be a y (T — E3)-set that contains the vertices x and z. It is easy to observe
that D is also a DS of the graph T — E. Therefore y (T — E1) < y(T — E3). This
implies that y (T — E1) = y(T). We now conclude that b'(T') = 0. m]

We next show that a subtree of a y-non-isolatingly strongly stable tree is also
y-non-isolatingly strongly stable.

Lemma 11 Let T be a y-non-isolatingly strongly stable tree. Assume that T’ is a
subtree of T such that T — T’ has no isolated vertices. Then b'(T") = 0.

Proof Tf T’ consists of a single vertex, then obviously »'(T’) = 0. Thus assume that
T' # K. Let E| be the minimum subset of E(T) such that T’ is a component of
T — Ei. Now let E’ be a subset of E(T’) such that §(T’ — E’) > 1. Notice that
8(T — E; — E") > 1. The assumption b'(T) = 0 implies that y (T — E;) = y(T)
and y(T — E; — E') =y(T).Wehave T — E{ —E' =T — E'"U(T —T’) and
T—E =T U(T —T'). Wenow get y(T' — E') = y(T — Ey — E') — (T —T")
— y(T) — y(T — Ey) + y(T") = y(T"). This implies that &' (T") = 0. o

For the purpose of characterizing all y-non-isolatingly strongly stable trees, we
introduce a family 7 of trees T = T}, that can be obtained as follows. Let 77 € { Py, P»}.
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If k is a positive integer, then Ty can be obtained recursively from 7} by one of the
following operations.

e Operation O;: Attach a vertex by joining it to any support vertex of Tk.

e Operation O,: Attach a path P, by joining one of its vertices to a vertex of Ty,
which is adjacent to a path P; or P4, or is not a leaf and is adjacent to a support
vertex.

e Operation O3: Attach a path P53 by joining one of its leaves to a vertex of T
adjacent to a path Py or Ps.

e Operation O4: Attach a path Ps by joining one of its leaves to any support vertex
of Ty.

We now prove that every tree of the family 7 is y-non-isolatingly strongly stable.
Lemma 12 IfT € 7T, then b’ (T) = 0.

Proof We use induction on the number k of operations performed to construct the tree
T.If T = Py, then obviously b'(T) = 0. If T = P,, then b’'(T) = 0 as removing the
edge gives isolated vertices. Let k be a positive integer. Assume that the result is true
for every tree T’ = T of the family 7 constructed by k — 1 operations. Let T = T4
be a tree of the family 7 constructed by k operations.

First assume that T is obtained from 7’ by Operation O;. Let x be the attached
vertex, and let y be its neighbor. Let z be a leaf adjacent to y and different from x.
Let D be a y(T)-set that contains all support vertices. The set D is minimal, thus
x ¢ D. Obviously, D is a DS of the tree T'. Therefore y(T’) < y(T). Now let E’
be a subset of the set of edges of T such that §(T — E’) > 1. Since both x and z are
leaves of T, we have xy ¢ E’ and yz ¢ E’. The assumption b'(T’) = 0 implies that
y(T'—E’) = y(T"). Let us observe that there exists a y (T' — E’)-set that contains the
vertex y. Let D’ be such a set. It is easy to see that D’ is a DS of the graph T — E’. Thus
y(T —E') < y(T' — E'). We now get y (T — E') < y(I' — E') = y(T") < y(T).
On the other hand, we have y (T — E’) > y(T). This implies that y (T — E") = y(T),
and consequently, b’ (T) = 0.

Now assume that 7 is obtained from 7" by Operation O,. The vertex to which is
attached P, we denote by x. Let vjv; be the attached path. Let v be joined to x. If x
is adjacent to a leaf or a support vertex, say a, then let D be a y (T)-set that contains
all support vertices. We have vy ¢ D as the set D is minimal. It is easy to observe that
D\{v1}is a DS of the tree T’. If x is adjacent to a path Py, then we denote it by abcd.
Let a and x be adjacent. Let us observe that there exists a y (T")-set that contains the
vertices vy, ¢, and x. Let D be such a set. It is easy to observe that D\ {v} is a DS of the
tree T'. We conclude that y (T") < y(T) — 1. Now let E’ be a subset of the set of edges
of T such that §(T — E’) > 1. Since v, is aleaf of T, we have vjv, ¢ E'. If xv; € E/,
then (T — (E' N E(T"))) > 1. We get y(T — E') = y(P, UT' — (E'"\{xv1}))
=y(T' —(E'NET))+y(P) =y(T")+1 < y(T). Now assume that xv; ¢ E’.
By T, (T, respectively), we denote the component of T — E’ (T’ — E’, respectively)
which contains the vertex x. If § (T’ — (E'NE(T"))) > 1, thenlet D} be any y (T})-set.
It is easy to see that D/, U {v;} is a DS of the tree Ty. Thus y(7y) < y(T}) + 1. We
now get y(T —E") = y(T —E' —T.) +y(Ty) < y(T —E' —T,) +y(T) + 1
=yT' —E -T)+yT)+1=yT" —EN+1=yT)+1 < y(T). Now
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assume that §(7" — (E' N E(T'))) = 0. This implies that x is the only isolated vertex
of T" — (E' N E(T’)), and so x is not adjacent to any leaf in the trees 7" and T.
Consequently, 7, consists only of the vertex x, and T is a path P3. Let us observe
that §(T" — (E’\{xa})) > 1. Let T, be the component of 7’ — E’, which contains
the vertex a. Now let 7, be a tree obtained from 7, by attaching a vertex to the
vertex a. Wenow get y(T — E') = y(T —E' —T)+y(P3) =y(T'—E' —T))+ 1
= y(I'—E'~T|~T)+y(T)+1 < y(T'—E'=T{=T)+y(T})+1 = y (T'— E'
~T~THUT))+1 = y(T'—(E\[xaD))+1 = y(T'—=E)+1 = y(T)+1 < y(T).
We conclude that y (T — E") = y(T), and consequently, b’ (T) = 0.

Now assume that T is obtained from 7’ by Operation Q3. The vertex to which is
attached P3 we denote by x. If x is a support vertex, then using Lemma 10, for T} = T’
and T, = P3, we get b’ (T) = 0. Now assume that x is adjacent to a path P3, say abc.
Let a and x be adjacent. The attached path we denote by vivyv3. Let vy be joined to
x. Let us observe that there exists a y (7)-set that contains all support vertices and
does not contain the vertex vi. Let D be such a set. We have v3 ¢ D as the set D is
minimal. Observe that D\{v;} is a DS of the tree T'. Therefore y(T") < y(T) — 1.
Now let E’ be a subset of the set of edges of T such that §(T — E’) > 1. We have
vov3 ¢ E’ as the vertex v3 is a leaf. If xv; € E’, then vjvy ¢ E’; otherwise we get
an isolated vertex. Let us observe that §(T' — (E' N E(T"))) > 1. We get y(T — E’)
= y(PUT —(E"\{xu1})) = y(T' = (E'NE(T")) +y(P3) = y(T") + 1 < y(T).
Now assume that xv; ¢ E’. Because of the similarity between the paths abc and vy vov3
adjacent to the vertex x, it suffices to consider only the possibility when xa ¢ E’. Let
us observe that (7" — (E' N E(T"))) > 1. By Ty (T}, respectively), we denote the
component of T — E' (T’ — (E'N E(T")), respectively) which contains the vertex x. If
vivy ¢ E’, then let D), be any y (T)-set. It is easy to see that D/, U {vp} is a DS of the
tree Ty. Thus y (Ty) < y(T))+1.Wenowgety (T —E') = y (T —E'—=Ty)+y (Ty) <
y(T—E =T +yT)+1=y(T' —E = T)+yT)+1=y(T —E)+1=
y(T"Y+1 < y(T). Now assume that vi v, € E’. Because of the similarity between the
paths abc and vivv3, it suffices to consider only the possibility whenab € E’. Let D),
be a y (T7)-set that contains all support vertices (sox € D). Itis easy to see that D/, is
aDSofthetree Ty. Thus y (Ty) < y(T}). Wegety (T —E') = y(T —E' = Ty)+y (Ty)
<y(T—E'-T)+y(T) =y(T'—E'=T)+y(T)) = y(T'=E') = y(T") < y(T).
We now conclude that y (T — E’) = y(T), and consequently, b'(T) = 0.

Now assume that 7 is obtained from 7’ by Operation Q4. By Lemma 4 we have
b’ (Ps) = 0. Using Lemma 10, for T} = T’ and T, = Ps, we get b’ (T) = 0. O

We now prove that if a tree is y-non-isolatingly strongly stable, then it belongs to
the family 7.

Lemma 13 Let T be atree. If b'(T) =0, then T € T.

Proof If diam(T') € {0, 1}, then T € {P;, P,} C 7.If diam(T) = 2, then T is a star.
The tree T can be obtained from P, by an appropriate number of Operations O;. Thus
T € 7. Now assume that diam(7) > 3. Thus the order n of the tree T is at least four.
We obtain the result by the induction on the number 7. Assume that the lemma is true
for every tree T’ of order n’ < n.
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First assume that some support vertex of 7', say x, is strong. Let y be a leaf adjacent
tox.Let 7/ = T — y. Let D’ be a y(T’)-set that contains all support vertices. It
is easy to see that D’ is a DS of the tree T. Thus y(T) < y(T'). Now let E’ be
a subset of the set of edges of T’ such that §(T" — E’) > 1. Since b'(T) = 0,
we have y (T — E’) = y(T). Let us observe that there exists a y (T — E’)-set that
contains the vertex x. Let D be such a set. The set D is minimal, thus y ¢ D.
Obviously, D is a DS of the graph T’ — E’. Therefore y (T’ — E') < y(T — E').
We now get y(T' — E') < y(T — E’) = y(T) < y(T'). On the other hand, we
have y (T’ — E') > y(T’). This implies that y (T' — E’) = y(T"), and consequently,
b'(T") = 0. By the inductive hypothesis, we have T’ € 7. The tree T can be obtained
from T’ by Operation O;. Thus T € 7. Henceforth, we assume that every support
vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(7). Let ¢ be a leaf at
maximum distance from r, v be the parent of 7, and u be the parent of v in the rooted
tree. If diam(7") > 4, then let w be the parent of u. If diam(7") > 5, then let d be the
parent of w. If diam(7") > 6, then let e be the parent of d. By T, we denote the subtree
induced by a vertex x and its descendants in the rooted tree 7.

Assume that dr (#) > 3. Thus some child of u is a leaf or a support vertex other than
v.LetT' =T — T,. By Lemma 11 we have b'(T’) = 0. By the inductive hypothesis,
we have T’ € 7. The tree T can be obtained from T’ by Operation O;. Thus T € 7.

Now assume that d7 (1) = 2. Assume that dr (w) > 3. First assume that there is a
child of w other than u, say k, such that the distance of w to the most distant vertex of
Ty is three. It suffices to consider only the possibility when 7} is a path Ps, say kim.
Let 7/ = T — T,. By Lemma 11 we have b'(T’) = 0. By the inductive hypothesis,
we have T’ € 7. The tree T can be obtained from T’ by Operation O3. Thus T € 7.

Now assume that some child of w is a leaf. Let 7" = T — T,,. By Lemma 11 we
have b'(T’") = 0. By the inductive hypothesis, we have T’ € 7. The tree T can be
obtained from T’ by Operation O3. Thus T € 7.

Thus there is a child of w, say k, such that the distance of w to the most distant
vertex of Ty is two. Consequently, & is a support vertex of degree two. Due to the earlier
analysis of the children of the vertex u, it suffices to consider only the possibility
when dr(w) = 3. Let T’ = T — Ty. It is easy to observe that D’ U {v, k} is a
DS of the tree T. Thus y(T) < y(T’) + 2. We have §(T — dw — uv — wk) > 1.
We now get y(T —dw —uv — wk) = y(T"U P, U P, U Py) = y(T') + 3y (P)
=y(T")+3>y(T)+ 1> y(T). This implies that b'(T') # 0, a contradiction.

Ifdr(w) = 1,then T = P4.Let T’ = P, € T. The tree T can be obtained from
T’ by Operation O;. Thus T € 7. Now assume that d7 (w) = 2. First assume that
there is a child of d other than w, say k&, such that the distance of d to the most distant
vertex of Ty is four or one. It suffices to consider only the possibilities when 7} is a
path Py, or k is aleaf. Let T’ = T — T,,. Let us observe that there exists a y (T’)-set
that contains the vertex d. Let D’ be such a set. It is easy to observe that D' U {v} is a
DS of the tree T. Thus ¥ (T) < y(T') + 1. We have § (T —dw —uv) > 1. We now get
y(T —dw —uv) = y(T'UP,UP) = y(T)) +2y(P) = y(T) +2 2 y(T) + 1 >
y(T). This implies that b'(T) # 0, a contradiction.

Now assume that there is a child of d, say k, such that the distance of d to the most
distant vertex of Ty is three. It suffices to consider only the possibility when 7} is a
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path P3, say klm. Let T’ = T — T;. Due to the similarity of T’ to the tree T from the
previous case when d is adjacent to a leaf, we conclude that b'(T’) # 0. On the other
hand, by Lemma 11 we have b'(T’) = 0, a contradiction.

Now assume that there is a child of d, say k, such that the distance of d to the most
distant vertex of Ty is two. Thus k is a support vertex of degree two. Let T" = T — Tk.
By Lemma 11 we have '(T’) = 0. By the inductive hypothesis, we have T’ € 7.
The tree T can be obtained from T’ by Operation O;. Thus T € 7.

Ifdr(d) =1,thenT = Ps.Let T’ = P, € 7. The tree T can be obtained from T’
by Operation Q3. Thus 7 € 7.

Now assume that d7(d) = 2. First assume that e is adjacent to a leaf, say k. Let
T' =T — Ty. By Lemma 11 we have b'(T") = 0. By the inductive hypothesis, we
have T’ € 7. The tree T can be obtained from T’ by Operation O4. Thus T € 7.

Now assume that e is not adjacent to any leaf. Let E’ be the set of edges incident
with e excluding ed. Let G’ = T — T; — e. Let D’ be any y(G’)-set. It is easy
to observe that D’ U {d, v} is a DS of the tree T. Thus y(T) < y(G') + 2. We
have §(T — (E’ U {dw, uv})) > 1. We now get y(T — (E' U {dw, uv})) = y(G’
UP,UP,UP) =y(G)+3y(P) =y(G)+3>y(T)+ 1 > y(T). This implies
that b'(T') # 0, a contradiction. O

As an immediate consequence of Lemmas 12 and 13, we have the following char-
acterization of all y-non-isolatingly strongly stable trees.

Theorem 14 Let T be a tree. Then b'(T) = 0 if and only if T € T.
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