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Abstract: Generation of vorticity in the field of intense sound in a bubbly liquid in the free half-space is considered. The
reasons for generation of vorticity are nonlinearity, diffraction, and dispersion. Acoustic streaming differs
from that in a Newtonian fluid. Under some conditions, the vortex flow changes its direction. Conclusions
concern streaming induced by a harmonic or an impulse Gaussian beam.

PACS (2008): 43.25Yw

Keywords: acoustic streaming • bubbly liquid • nonlinear acoustics • dispersion, diffraction
© Versita sp. z o.o.

1. Introduction

Acoustical dispersion in unbounded acoustical media isusually a weak effect in contrast to strong dispersion oflight in most optical media. Inhomogeneous media mayreveal noticeable dispersion under some special condi-tions [1–3]. A liquid which involves gaseous bubbles pos-sesses compressibility much lower than the gas phase, andthe acoustical properties of a bubbly liquid differ con-siderably from that in a pure liquid [2, 4]. The soundspeed becomes essentially reduced, nonlinearity increasesby orders of magnitude, and features of sound propaga-tion depend considerably on its frequency. That makesstudies of nonlinear effects important not only relative tosound itself, but in connection with nonlinear phenomenainduced in the sound field. Analysis of propagation of
∗E-mail: anpe@mif.pg.gda.pl (Corresponding author)
†E-mail: pwojda@mif.pg.gda.pl

finite-amplitude sound in bubbly liquids is quite compli-cated. It relates to a number of theoretical models whichdescribe inclusion of set of bubbles into the bulk of liquiddifferently [4–8]. A proper description of nonlinear soundpropagation is the second starting point in all nonlineareffects caused by sound [2, 3]. The equation which gov-erns sound beam is analogous to the famous Khokhlov-Zabolotskaya-Kuznetsov equation, but it includes a dis-persive term instead of or supplementing standard atten-uation [2, 9]. Analytical methods for solving the fully non-linear form of the Khokhlov-Zabolotskaya equation (thatis, the lossless form of the KZK equation) have been pro-posed only recently. One method incorporates analyticaltechniques used in nonlinear geometrical acoustics [10].An approximate axial solution is derived for the preshockregion of a beam radiated by a monofrequency source. Thesecond method is more general in that it applies to pulsesand takes into account shock formation [11]. A Gaussianprofile of acoustic pressure at the transducer is assumedin both approaches. As for the full KZK equation, generalanalytical methods to solve it are still absent, all the more
305
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so for solutions of the equations which govern sound in abubbly viscous liquid.Among other nonlinear phenomena (such as acoustic heat-ing and scattering of sound), understanding of acousticstreaming in bubbly liquids is important [12, 13]. Studiesof nonlinear fluid dynamics must start from equations de-scribing fluid dynamic of the mixture as a whole. Theseequations schedule all motions which may exist in a bub-bly liquid and should be consequently decomposed in or-der to yield equations governing every mode. Modes ofinfinitely small amplitude do not interact. In three dimen-sions, both non-wave modes, i.e., vorticity and entropymodes (these names come from the linear theory of flowsof Newtonian uniform unbounded fluids [14]) are nonlin-early generated in the field of sound. As far as the authorsknow, acoustic streaming in a bubbly liquid, that is, vor-tex modes which are caused by intense sound, is still anunexplored domain. The main difficulty is to describe asprecisely as possible propagation of the sound beam it-self and the interaction of sound and non-wave modes. Weuse an analytical approach in order to subdivide govern-ing weakly nonlinear equations for every mode from thesystem of conservation equations, and numerical methodsto solve them approximately.As a result of the proper decomposition of equations, non-linear terms become distributed between equations cor-rectly. They include terms of all modes and may be con-sidered as "driving forces" of specific modes. The proce-dure was applied by one of the authors in problems ofacoustic heating and streaming in Newtonian and somenon-Newtonian fluids [15–17].
2. Equations governing perturba-
tions in bubbly liquid

We consider three-dimensional motions of a mixture whichconsists of compressible liquid and identical sphericalbubbles of an ideal gas. All bubbles are of the same radiiat equilibrium, and there is no heat and mass transfer be-tween liquid and gas. To simplify the analysis, we assumethat motions of the bubbles do not influence each other(i.e., they are well separated), and that they pulsate intheir lowest, radially symmetric mode. The characteristicscale of perturbation in the mixture is much larger thana bubble radius, so that the mixture as a whole may betreated as a homogeneous continuum. The pressure of themixture equals the pressure of the liquid [4, 18]. Quanti-ties relating to gas, liquid, or to the mixture are marked byindex g, l, and mix , respectively. Unperturbed quantitiesare marked by an additional zero, and disturbed ones are

primed. The density of the mixture is given by
ρmix = ρgρl

βρl + (1− β)ρg , (1)
where β is the constant mass concentration of gas in themixture. The initial volume concentration of gas in themixture, α0, equals

α0 = β ρmix0ρg0 . (2)
The acoustics of incompressible liquids (when cl → ∞)including bubbles was originally studied by van Wijn-gaarden [4]. In particular, involving liquid compressibilitycorrects the nonlinear sound parameter [2, 19]. The fol-lowing equations in differential form declare conservationof momentum, energy and mass:

∂~v
∂t + (~v · ~∇)~v + 1

ρmix
~∇p = 0,

∂p
∂t + c2

l
∂ρl
∂t −

c2
l (γl − 1)
ρl0 ρl

∂ρl
∂t = 0, (3)

∂ρmix
∂t + ~∇(~vρmix ) = 0,

where ~v , p denote velocity and pressure in the mixture.The second equation in (3) is actually a result of linearcombination of the continuity and energy equations fora pure liquid, with γl = Cp,l
CV ,l

ρl0
pl0
(
∂pl
∂ρl

)
T=const , where Cpand CV denote the heat capacities at constant pressureand density. For water at normal conditions, it equalsapproximately 7. Some other equations complement thesystem (3). The first reflects a constant mass of gas insidea spherical bubble whose density is constantly distributedover a volume (R denotes the bubble’s radius),

R3ρg = R30ρg0, (4)
and the second one describes the adiabatic behavior ofgas in it,

pgρ
−γg
g = pg0ρ−γgg0 . (5)Eq. (5) imposes, given spatially homogeneous distributionof density and pressure in a bubble, no energy exchangebetween bubbles and the surrounding liquid, γg = Cp,g

CV ,g
.Pulsation of each bubble is described by the Rayleigh-Plesset equation [20]:

R ∂
2R
∂t2 + 32

(
∂R
∂t

)2
− 1
cl

(
R2 ∂3R

∂t3 +6R ∂R∂t ∂2R
∂t2 +2(∂R∂t

)3)=
p′g − p′l
ρl

. (6)
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Surface tension is not taken into account by Eq. (6), butit accounts for compressibility of a liquid [5, 18]. Eqs. (4),(5), (6) permit rearranging the second equation from thesystem (3) in terms of quantities describing the mixture: p,
ρmix , ~v . Eqs. (3) in the dimensionless quantities (~x denotesthe vector of cartesian coordinates)

~vd = ~v ′
cmix

, pd = p′

c2
mixρmix0 , ρ

d = ρ′mix
ρmix0 ,

~xd = ~x
λ , t

d = tcmix
λ , (7)

where excess quantities are denoted by primes, and cmixis the velocity of sound of infinitely small magnitude in abubbly liquid [4]:
1
c2
mix

= (1− α0)2
c2
l

+ α0(1− α0)ρl0
γgpg0 , (8)

take the form [19]
∂~v
∂t + ~∇p = −((~v · ~∇)~v − ρ ~∇p) ,

∂p
∂t + ~∇·~v−α0(1− α0)R20ρ2

l0c4
mix3(γgpg0)2 ∂3p

∂t3 = (1−α0)c2
mix

(
−γl + 1

c2
l

ρ ~∇ · ~v − c2
mix
α0(1− α0)ρ2

l0(γg + 1)(γgpg0)2 p ~∇ · ~v
)
−(~v· ~∇)ρ+ρ ~∇·~v,(9)

∂ρ
∂t + ~∇ · (ρ~v ) = 0.

Starting from Eqs. (9), upper indices by dimensionlessquantities will be omitted. The largest, quadratic termsreside in the non-linear right-hand parts of all equations.
3. Decomposition of sound, the en-
tropy and the vorticity mode in the
flow of infinitely small magnitude
The linear analogue of the system (9) takes the form

∂Ψ
∂t + LΨ = 0, (10)

where Ψ is a vector of perturbations, Ψ =(
vx vy vz p ρ

)T , and

L =


0 0 0 ∂
∂x 00 0 0 ∂
∂y 00 0 0 ∂
∂z 0

∂
∂x (1 +D∆) ∂

∂y (1 +D∆) ∂
∂z (1 +D∆) 0 0

∂
∂x

∂
∂y

∂
∂z 0 0

 ,

D = α0(1− α0)R20ρ2
l0c2

mix3(γgpg0)2λ2 (11)
are a linear matrix operator including spatial derivativesand a small parameter responsible for dispersion, D, re-spectively. In leading order, ∂3p

∂t3 equals −∆( ~∇ · ~v ). That

follows from the first and second equations in the system(9). Studies of the motions of infinitely-small amplitudesusually begin by representing of all perturbations as asum of plane waves:
f (~x, t)=∫ f̃ (~k, t) exp(−i~k·~x)d~k=∫ f̃ (~k) exp(iωt−i~k·~x)d~k,(12)(̃f (~k, t) denotes the Fourier transform of f (~x, t), f̃ (~k, t) =1(2π)3 ∫ f (~x, t)ei~k·~xd~x). In all evaluations below only termsproportional to D0 and D1, are retained. There are fiveroots of the dispersion equation, the first two being acous-tic (marked by indices 1 and 2, respectively), the thirddispersion relation describing a stationary (or “entropy”)mode, and the last two zero roots describing the stationaryvortex motion,

ω1 = −i√∆̃(1 + D2 ∆̃) , ω2 = i
√∆̃(1 + D2 ∆̃) ,

ω3 = 0, ω4 = 0, ω5 = 0, (13)
where

∆̃ = −k2
x − k2

y − k2
z ,

√∆̃ = i
√
k2
x + k2

y + k2
z .

They determine relations of perturbations specific for ev-ery mode (Ψ̃ denotes a vector of Fourier-transforms of
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perturbations):

Ψ̃1 =



ikx√∆̃
(1 + D2 ∆̃)

iky√∆̃
(1 + D2 ∆̃)

ikz√∆̃
(1 + D2 ∆̃)
1 +D∆̃1


ρ̃1,

Ψ̃2 =



− ikx√∆̃
(1 + D2 ∆̃)

−
iky√∆̃

(1 + D2 ∆̃)
− ikz√∆̃

(1 + D2 ∆̃)
1 +D∆̃1


ρ̃2,

Ψ̃3 =


00001

 ρ̃3, (14)

where ρ̃n (n = 1, 2, 3) are Fourier transforms of pertur-bations in density belonging to the corresponding specificmode. Both branches of the vortex mode may be deter-mined in the following way:
~∇ · ~v4,5 = 0, p4,5 = 0, ρ4,5 = 0, (15)

where ~v4, ~v5 denote two arbitrary independent branches ofthe vortex flow: ~v4 + ~v5 = ~vvort . Eqs. (13),(14) may be ex-panded in series with respect to powers of D. That signif-icantly simplifies evaluations. Based on the links specificfor every mode, the projecting matrix operators may bedetermined. Projectors are matrix operators decomposingevery mode from the total vector of perturbations,
P̃iΨ = Ψi (i = 1 . . . 5). (16)

Every projector is a matrix of spatial operators consistingof five rows and five columns. In the Fourier space, theytake the leading-order forms

P̃1,2 = 12



−k
2
x∆̃ −kxky∆̃ −kxkz∆̃ ± ikx√∆̃

(1 + D2 ∆̃) 0
−kxky∆̃ −

k2
y∆̃ −kykz∆̃ ± iky√∆̃

(1 + D2 ∆̃) 0
−kxkz∆̃ −kykz∆̃ −k

2
z∆̃ ± ikz√∆̃

(1 + D2 ∆̃) 0
± ikx√∆̃

(1 + D2 ∆̃) ± iky√∆̃
(1 + D2 ∆̃) ± ikz√∆̃

(1 + D2 ∆̃) 1 0
± ikx√∆̃

(1− D2 ∆̃) ± iky√∆̃
(1− D2 ∆̃) ± ikz√∆̃

(1− D2 ∆̃) 1−D∆̃ 0


, (17)

P3 =


0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 −1 +D∆̃ 1

 ,

P̃vort = P̃4 + P̃5 =


−
k2
y + k2

z∆̃ kxky∆̃ kxkz∆̃ 0 0
kxky∆̃ −k

2
x + k2

z∆̃ kykz∆̃ 0 0
kxkz∆̃ kykz∆̃ −

k2
x + k2

y∆̃ 0 00 0 0 0 00 0 0 0 0


.
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Projectors analogous to (17) in the planar flow of a bubblyliquid were firstly derived in [19]. In the leading order,projecting operators form a full set of orthogonal operators,with properties
5∑
i=1 Pi = I, Pi · Pj = 0, i 6= j, P2

i = Pi, (18)
where I and 0 denote unit and zero matrix operators.
4. Equations governing sound and
the vorticity mode in a weakly nonlin-
ear flow
The modes of a flow of infinitely small magnitude donot interact far from boundaries. The dynamic equationswhich govern any mode may be readily decomposed ap-plying projectors on the linearized system (10). The pro-jecting operators (17) point the way for successful decom-position of equations governing every mode also in thenonlinear flow. Projection results in dynamic equationswith nonlinear terms responsible for the modes’ interac-tion. These terms may be considered as "driving forces" forindividual modes. Eqs. (9) accounting for nonlinear termstakes the form

∂Ψ
∂t + LΨ = Ψnl. (19)

Application of Pvort to the system (19) cancels all acousticand entropy terms in the linear part of the left-side vector,but yields nonlinear sources in the right-hand vector. We

will consider among nonlinear terms only acoustic ones.These correspond to intense sound as compared to thenon-wave modes. The vorticity projector in fact applieson three components of overall velocity. Its part, applyingto the velocity vector, Pvort,~v , includes nine operators:

Pvort,~v = 1∆



∂2
∂y2 + ∂2

∂z2 − ∂2
∂x∂y − ∂2

∂x∂z

− ∂2
∂x∂y

∂2
∂x2 + ∂2

∂z2 − ∂2
∂y∂z

− ∂2
∂x∂z − ∂2

∂y∂z
∂2
∂x2 + ∂2

∂y2


(20)Application of Pvort,~v to the first three equations from thesystem (9) (they represent the momentum equation), re-sults in the dynamic equation governing velocity of thevorticity mode:

∂~vvort
∂t = Pvort,~v


−(~v · ~∇)vx + ρ∂p∂x
−(~v · ~∇)vy + ρ ∂p∂y
−(~v · ~∇)vz + ρ∂p∂z


a

. (21)

The right-hand side of Eq. (21) includes, in general, termsbelonging to both acoustic modes. By use of the firsttwo eigenvectors from Eqs. (14), we express the acousticpressure and components of the velocity in terms of ex-cess density for each pair of acoustic modes, and readilyrearrange Eq. (21) into the following equation:

∂~vvort
∂t = Pvort,~v

12 ~∇
− 2∑

n=1 ~vn ·
2∑

n=1 ~vn +( 2∑
n=1 ρn

)2+D
2∑

n=1 ρn
~∇∆ 2∑

n=1 ρn
 = DPvort,~v

( 2∑
n=1 ρn

~∇∆ 2∑
n=1 ρn

)
. (22)

This yields the dynamic equation for the vorticity mode inthe field of intense sound in two equivalent forms,
∂~Ω
∂t = D

(
~∇ρa

)
×
(
~∇∆ρa) ,

∂~vvort
∂t = DPvort,~v

(
ρa ~∇∆ρa) . (23)

where ~Ω is the vorticity of the flow, ~Ω = ~∇ × ~vvort , and
ρa = ρ1 +ρ2. Application of the last row of P1 on Eqs. (9),

if only nonlinear terms belonging to the first mode arekept in the nonlinear part to leading-order, results in theequation governing an excess density of the first branchof sound,
∂ρ1
∂t −

√∆(1 + D2 ∆)ρ1+(2ε − 12 ρ1( ~∇ · ~v1) + 12~v1 · ( ~∇ρ1)) = 0, (24)
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where ε denotes the parameter of nonlinearity,
ε = ((1− α0)c2

mix (γl + 1)2c2
l

+ c4
mixα0(1− α0)2ρ2

l0(γg + 1)2(γgpg0)2
)
.(25)and the square root of the Laplacian (√∆f (~r, t)) means anintegral operator which corresponds to the Fourier trans-form of i√k2

x + k2
y + k2

z f̃ (~k, t). The parameter of nonlin-earity, given by Eq. (25), coincides with that evaluatedin Ref. [2]. In the study [2], the expression obtainedfor incompressible liquid is completed by the terms fol-lowing from the nonlinearity in equations different fromthe pressure-density relation for the mixture. In contrast,Eq. (25) is an immediate result of considering of the totalsystem of conservation equations describing compressibleliquid including bubbles.
5. Vortex flow induced in the field of
a Gaussian beam
Until this point, no restriction concerning the type of flowgeometry was done. Let y designate the nominal axisof the sound beam pointing in the propagation direction,and let x, z be the coordinates perpendicular to that axis.We will assume that all acoustic perturbations vary muchfaster in the direction of the OY axis than in the directionperpendicular to this axis: k2

y � k2
x + k2

z . This allowsexpansion of the relations for sound perturbations in aseries of powers of the small parameter µ = (k2
x + k2

z )/k2
y .Using this assumption, we can rewrite the equation (24)in the form:

∂ρ1
∂t + ∂ρ1

∂y + ∆⊥2
∫
ρ1dy+ D2 ∂3ρ1

∂y3 + ερ1 ∂ρ1
∂y = 0, (26)

where ∆⊥ = ∂2
∂x2 + ∂2

∂z2 . This equation is in fact one ofthe forms of the KZ (the inviscid limit of KZK) equationincluding dispersion. The dynamic equation for the vortic-ity mode in the field of intense sound propagating in thepositive direction of the OY axis takes the leading-orderform:
∂~Ω
∂t = D

(
~∇ρ1)× ( ~∇∂2ρ1

∂y2
)
. (27)

Eq. (27) reveals that both nonlinearity and dispersion arenecessary conditions for acoustic streaming in a bubblyliquid. The following assumptions will be made regard-ing the source: it is defined at the plane y = 0 and ispositioned symmetrically with respect to the y-axis. Thesystem (Eqs. (26), (27)) may be readily rearranged in a

cylindrically symmetric geometry with r = √µ√x2 + z2:
∂ρ1
∂t +∂ρ1

∂y + µ2r ∂∂r
(
r
∫ ∂ρ1

∂r dy
)+D2 ∂3ρ1

∂y3 +ερ1 ∂ρ1
∂y = 0,(28)

∂~Ω
∂t = √µD

 cosφ0
− sinφ

F (ρ1), (29)
where

F (ρ1) = −∂ρ1
∂r

∂3ρ1
∂y3 + ∂ρ1

∂y
∂3ρ1
∂r∂y2 (30)

and φ = arccos ( z√
x2+z2 ). The main difficulty in solving for

~Ω is establishment of function ρ1, which satisfies Eq. (28).As far as the authors know, there are no analytical solu-tions of Eq. (28). We rearranged Eq. (28) into the follow-ing equivalent form:
∂ρ1
∂t + ∂ρ1

∂y + √µ2r ∂
∂r

(rg) + D2 ∂3ρ1
∂y3 + ερ1 ∂ρ1

∂y = 0, (31)
∂g
∂y = √µ∂ρ1

∂r , (32)
where

g = −√µ ∫ ∞
y

∂ρ1
∂r dy. (33)

and solved it numerically. The equation describing theradial-component of ~Ω takes the form:
∂Ωr

∂t = √µDF (ρ1), (34)
where ρ1 is a solution of Eqs. (31), (32). The y-componentof ~Ω is independent on time. Solutions of Eq. (34) with ρ1described by Eqs. (31), (32) have been calculated numer-ically for the following initial and boundary conditions:
Ωy(y, r, t = 0) = Ωr(y, r, t = 0) = 0, Ωr(y = 0, r, t) = 0,(35)
ρ1(y, r, t = 0) = 0, ρ1(y = 0, r, t) = M sin(t)e−r2−at2 ,
∂ρ1
∂r (y, r = 0, t) = 0. (36)

In accordance with the system (29), the radial-component of the vorticity is proportional to M2, D and√µ. Its y-component equals zero for the chosen initialconditions. It can be concluded from numerical simulationsthat the vorticity achieves a maximum at some distancefrom a transducer and the axis of a beam. Vorticity de-creases far from a transducer, which is due to decrease in
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Figure 1. Transverse component of vorticity Ωr (y, r, t). a = 2.5 · 10−5 (impulse), M = 0.02, D = 0.02, √µ = 0.1, ε = 1.2, t = 150 or t = 400.

the magnitude of the acoustic density at large distances.For M less than D, vorticity constantly decreases withincreased distance from the sound source, starting fromthe distance where it achieves maximum. Thus, we canconclude that the parameter D is responsible for the sta-bilization of vorticity, in the sense that it suppresses os-cillations of vorticity. In this stabilization, D behaves likeattenuation in nonlinear effects caused by sound in New-tonian fluids. The larger the ratio ofM and D is, the larger

vorticity oscillations are. For values of M larger than D,domains appear where vorticity changes to the oppositesign. This happens, among other locations, close to thesource of sound for D = 0.02 and M between 0.01 and0.02. The last parameter that affects the formation of vor-ticity is the diffraction parameter µ. The distance from atransducer where vorticity is maximal increases somewhatwith decreased µ. In turn, maxima increase with enlarge-ment of µ. Oscillations of the vorticity generated by pulses
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Figure 2: Transversal component of vorticity Ωr(y, r, t). a = 2.5 · 10−5 (impulse), M = 0.02,
D = 0.02,

√
µ = 0.05, ε = 1.2, t = 150 or t = 400.
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Figure 2. Transverse component of vorticity Ωr (y, r, t). a = 2.5 · 10−5 (impulse), M = 0.02, D = 0.02, √µ = 0.05, ε = 1.2, t = 150 or t = 400.

are much smaller than those caused by harmonic acousticwaves at a transducer. For periodic acoustic waves, vor-ticity increases in time, while for aperiodic case its tendsto some limit level. Figures 1, 2 show vorticity generatedby impulses for values of diffraction parameter √µ equal0.1 and 0.05, respectively (a equals 0.000025). Figures 3,4 show vorticity generated by periodic sound for differentratios of the dispersion parameter and the Mach number.Solutions of Eqs. (31), (32) have been obtained by meansof a numerical scheme which uses an implicit Runge-Kutta

method, and the second-order central difference schemefor the spatial derivatives, which for zero diffraction pa-rameter µ is analogous to a scheme for solution of theKorteweg-de-Vries equation developed in [22]. The dif-ferences between two consecutive space points of 0.1 waschosen both for the dimensionless longitudinal variableand the dimensionless transversal variable in all evalua-tions. That corresponds to the following dimensional spa-tial steps: for the longitudinal variable 10−4 m and for thetransverse variable 10−3 m (for √µ = 0.1) and 2 · 10−3 m
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Figure 3. Values of Ωr (y, r, t), a = 0 (the case of harmonic sound at a transducer), plots for D = 0.02 and D = 0.002, M = 0.01, √µ = 0.05,

ε = 1.2, t = 400.
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Figure 4. Transversal component of vorticity, Ωr (y, r, t). a = 0 (the case of harmonic sound at a transducer), plots for different M, D = 0.02,√µ = 0.05, ε = 1.2 and t = 400.

(for √µ = 0.05). The dimensionless time step equals 0.01in all calculations. It corresponds to a dimensional timestep of about 10−7 s.
6. Conclusions

In this study, we consider acoustic streaming in a liquidincluding gaseous bubbles. The main results of this study

are equations (23), which describe nonlinear generation ofthe vortex mode in the field of intense sound. They applyto periodic and aperiodic sound, they are instantaneous,and their derivation does not require averaging over thesound period. An inviscid liquid is considered, so thatnonlinear generation of the vortex mode is caused exclu-sively by dispersion. Dispersion of a bubbly fluid origi-nates mostly from the difference in compressibility of theliquid and gaseous phases. In some sense, it behaves like
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The vortex flow caused by sound in a bubbly liquid

a Newtonian attenuation: it is a necessary (along withnonlinearity) condition for generation of the vortex motionin the field of sound. Dispersion also stabilizes the vortexvelocity. This study accounts for liquid compressibility.Neither heat transfer between bubbles and surroundingliquid, nor non-uniformity of pressure and temperature in-side a bubble, nor vaporization in the case of bubblesincluding vapor, were considered. Without accounting fornonlinearity, the dynamic equation for the vorticity modein an inviscid fluid describes a stationary velocity whichis independent on the sound field. In a viscous liquid, ittakes the form of a diffusion equation, but it still devel-ops independently from the other modes. Accounting fornonlinearity makes this mode enhance in the field of in-tense sound. We do not consider convective nonlinearityin the left-hand side of the dynamic equation for the vor-ticity, Eq. (27), which is described by the term (~v · ~∇)~Ω. Itis well established that accounting for this term preventsenlargement of vorticity with time [21].Numerical results show impact of non-linearity, disper-sion, and diffraction of an acoustic beam on the vortexmotion. The results concern a free half-space with a cir-cular transducer which is situated at the boundary. In-clusion of boundaries may essentially change conclusionsand influences on the very definition of modes, which, asa rule, refers to a discrete set of wavenumbers dependenton the geometry of a volume and boundary conditions.Analysis of the results has revealed the impact of the ra-tio of the Mach number and dispersion parameter on thevorticity mode. If the Mach number of a flow M is largerthan the dispersion D, the streamlines may change di-rection in some domains. This is shown in Figures 3, 4.The examples considered concern zero initial conditions.After the transducer is turned on, sound begins propagategenerating vorticity. In the initial phase (up to dimension-less t less than 40), generation of vorticity is similar fora set of different dispersion parameters and Mach num-bers. With longer time, differences become more evident.The vorticity achieves a maximum close to dimensionless
y = 50. If the ratio of M and D is larger than unity, themaximum value is achieved for smaller y. More intensesound yields larger fluctuations of vorticity. This is es-pecially evident for smaller distances from the transducer(for y less then 50).Another remarkable conclusion is connected with diffrac-tion. In accordance with Eq. (29), the vortex velocity isproportional to the square root of µ (it might be not so ev-ident from Eqs. (23)). That is confirmed by the numericalevaluations (Figs. 1, 2). For smaller values of the diffrac-tion parameter, the vorticity achieves its maximum at asomewhat larger distance from a transducer. The depen-dence of acoustic streaming on diffraction may be usefulfor configuring the vortex flow. A similar behavior of vor-

ticity is observed for both periodic sound and for pulses.The difference between these two cases is that, for thepulses, the value of vorticity is limited in time, and forthe periodic case, the vorticity constantly increases. Ac-counting for purely nonlinear attenuation (in an inviscidliquid, a shock wave forms sooner or later) or viscositywould prevent this unlimited growth in the magnitude ofthe vorticity.
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