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Abstract:

Generation of vorticity in the field of intense sound in a bubbly liquid in the free half-space is considered. The

reasons for generation of vorticity are nonlinearity, diffraction, and dispersion. Acoustic streaming differs
from that in a Newtonian fluid. Under some conditions, the vortex flow changes its direction. Conclusions
concern streaming induced by a harmonic or an impulse Gaussian beam.
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1. Introduction

Acoustical dispersion in unbounded acoustical media is
usually a weak effect in contrast to strong dispersion of
light in most optical media. Inhomogeneous media may
reveal noticeable dispersion under some special condi-
tions [1-3]. A liquid which involves gaseous bubbles pos-
sesses compressibility much lower than the gas phase, and
the acoustical properties of a bubbly liquid differ con-
siderably from that in a pure liquid [2, 4] The sound
speed becomes essentially reduced, nonlinearity increases
by orders of magnitude, and features of sound propaga-
tion depend considerably on its frequency. That makes
studies of nonlinear effects important not only relative to
sound itself, but in connection with nonlinear phenomena
induced in the sound field. Analysis of propagation of
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finite-amplitude sound in bubbly liquids is quite compli-
cated. It relates to a number of theoretical models which
describe inclusion of set of bubbles into the bulk of liquid
differently [4-8]. A proper description of nonlinear sound
propagation is the second starting point in all nonlinear
effects caused by sound [2, 3]. The equation which gov-
erns sound beam is analogous to the famous Khokhlov-
Zabolotskaya-Kuznetsov equation, but it includes a dis-
persive term instead of or supplementing standard atten-
uation [2, 9]. Analytical methods for solving the fully non-
linear form of the Khokhlov-Zabolotskaya equation (that
is, the lossless form of the KZK equation) have been pro-
posed only recently. One method incorporates analytical
techniques used in nonlinear geometrical acoustics [10].
An approximate axial solution is derived for the preshock
region of a beam radiated by a monofrequency source. The
second method is more general in that it applies to pulses
and takes into account shock formation [11]. A Gaussian
profile of acoustic pressure at the transducer is assumed
in both approaches. As for the full KZK equation, general
analytical methods to solve it are still absent, all the more
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so for solutions of the equations which govern sound in a
bubbly viscous liquid.

Among other nonlinear phenomena (such as acoustic heat-
ing and scattering of sound), understanding of acoustic
streaming in bubbly liquids is important [12, 13]. Studies
of nonlinear fluid dynamics must start from equations de-
scribing fluid dynamic of the mixture as a whole. These
equations schedule all motions which may exist in a bub-
bly liquid and should be consequently decomposed in or-
der to yield equations governing every mode. Modes of
infinitely small amplitude do not interact. In three dimen-
sions, both non-wave modes, i.e. vorticity and entropy
modes (these names come from the linear theory of flows
of Newtonian uniform unbounded fluids [14]) are nonlin-
early generated in the field of sound. As far as the authors
know, acoustic streaming in a bubbly liquid, that is, vor-
tex modes which are caused by intense sound, is still an
unexplored domain. The main difficulty is to describe as
precisely as possible propagation of the sound beam it-
self and the interaction of sound and non-wave modes. We
use an analytical approach in order to subdivide govern-
ing weakly nonlinear equations for every mode from the
system of conservation equations, and numerical methods
to solve them approximately.

As a result of the proper decomposition of equations, non-
linear terms become distributed between equations cor-
rectly. They include terms of all modes and may be con-
sidered as "driving forces" of specific modes. The proce-
dure was applied by one of the authors in problems of
acoustic heating and streaming in Newtonian and some
non-Newtonian fluids [15-17].

2. Equations governing perturba-
tions in bubbly liquid

We consider three-dimensional motions of a mixture which
consists of compressible liquid and identical spherical
bubbles of an ideal gas. All bubbles are of the same radii
at equilibrium, and there is no heat and mass transfer be-
tween liquid and gas. To simplify the analysis, we assume
that motions of the bubbles do not influence each other
(i.e., they are well separated), and that they pulsate in
their lowest, radially symmetric mode. The characteristic
scale of perturbation in the mixture is much larger than
a bubble radius, so that the mixture as a whole may be
treated as a homogeneous continuum. The pressure of the
mixture equals the pressure of the liquid [4, 18]. Quanti-
ties relating to gas, liquid, or to the mixture are marked by
index g, [, and mix, respectively. Unperturbed quantities
are marked by an additional zero, and disturbed ones are

primed. The density of the mixture is given by

i (1)

P = ot (1 Bipy’

where B is the constant mass concentration of gas in the
mixture. The initial volume concentration of gas in the
mixture, o, equals

a = Bpmixo ) (2)
ng

The acoustics of incompressible liquids (when ¢, — o)
including bubbles was originally studied by van Wijn-
gaarden [4]. In particular, involving liquid compressibility
corrects the nonlinear sound parameter [2, 19]. The fol-
lowing equations in differential form declare conservation
of momentum, energy and mass:
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apmix
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where v, p denote velocity and pressure in the mixture.
The second equation in (3) is actually a result of linear
combination of the continuity and energy equations for
G 9

- . N
a pure liquid, with y; = &% (ap[)T_wm

and Cy denote the heat capacities at constant pressure

+ Vﬁ‘(‘?pmix) =0,

, where C,

and density. For water at normal conditions, it equals
approximately 7. Some other equations complement the
system (3). The first reflects a constant mass of gas inside
a spherical bubble whose density is constantly distributed
over a volume (R denotes the bubble’s radius),

R3P9 = Rgpgo, (4)

and the second one describes the adiabatic behavior of
gas in i,
PgPs" = PgoPy’ - (5)

Eq. (5) imposes, given spatially homogeneous distribution
of density and pressure in a bubble, no energy exchange
between bubbles and the surrounding liquid, v, = C"i—g

g

Pulsation of each bubble is described by the Rayleigh-
Plesset equation [20]:
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Surface tension is not taken into account by Eq. (6), but
it accounts for compressibility of a liquid [5, 18]. Egs. (4),
(5), (6) permit rearranging the second equation from the
system (3) in terms of quantities describing the mixture: p,
Pmix, V. Egs. (3) in the dimensionless quantities (X denotes
the vector of cartesian coordinates)

where excess quantities are denoted by primes, and ¢y
is the velocity of sound of infinitely small magnitude in a
bubbly liquid [4]:

1 (1 — 0’0)2 (7(0(1 — ao)p[()

- + , 8
= ’ ’ Crznix C[2 y9p90 ( )
\—/»d — v pd — P d — Pmix
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Starting from Egs. (9), upper indices by dimensionless
quantities will be omitted. The largest, quadratic terms
reside in the non-linear right-hand parts of all equations.

3. Decomposition of sound, the en-
tropy and the vorticity mode in the
flow of infinitely small magnitude

The linear analogue of the system (9) takes the form

ovy

— + LY =0 10

ar T (10)
where W is a vector of perturbations, ¥ =

(vx vy vV, p p)T,and
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are a linear matrix operator including spatial derivatives
and a small parameter responsible for dispersion, D, re-

spectively. In leading order, ‘3375 equals —A(ﬁ - V). That
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follows from the first and second equations in the system
(9). Studies of the motions of infinitely-small amplitudes
usually begin by representing of all perturbations as a
sum of plane waves:

(%, 1) = / F(K, t) exp(—ik-%)dk = / F(K) expliwt—ik-x)dK,

(12)
(?(I?, t) denotes the Fourier transform of f(X, t), 7(/?, t) =
(217)3 [ (%, #)ei*7dz). In all evaluations below only terms
proportional to D° and D', are retained. There are five
roots of the dispersion equation, the first two being acous-
tic (marked by indices 1 and 2, respectively), the third
dispersion relation describing a stationary (or “entropy”)
mode, and the last two zero roots describing the stationary
vortex motion,

w1:_iﬁ(1+§5), wzzﬁ(HQz),

0)320, UJ4:O, (1)5:0, (13)
where

A=—iZ—k2 =k, VA=i/k2+k +k.

They determine relations of perturbations specific for ev-
ery mode (¥ denotes a vector of Fourier-transforms of
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where p, (n = 1,2,3) are Fourier transforms of pertur-
bations in density belonging to the corresponding specific
mode. Both branches of the vortex mode may be deter-
mined in the following way:

V s5=0, ps5=0, pss =0, (15)

where ¥, i5 denote two arbitrary independent branches of
the vortex flow: v} + 5 = V,4,¢. Egs. (13),(14) may be ex-
panded in series with respect to powers of D. That signif-
icantly simplifies evaluations. Based on the links specific
for every mode, the projecting matrix operators may be
determined. Projectors are matrix operators decomposing
every mode from the total vector of perturbations,

PY=W, (i=1...5). (16)

Every projector is a matrix of spatial operators consisting
of five rows and five columns. In the Fourier space, they
take the leading-order forms
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Projectors analogous to (17) in the planar flow of a bubbly
liquid were firstly derived in [19]. In the leading order,
projecting operators form a full set of orthogonal operators,
with properties

Y Pi=L Pi-P;=0,i#j PP =P, (18)

i=1

where | and 0 denote unit and zero matrix operators.

4. Equations governing sound and
the vorticity mode in a weakly nonlin-
ear flow

The modes of a flow of infinitely small magnitude do
not interact far from boundaries. The dynamic equations
which govern any mode may be readily decomposed ap-
plying projectors on the linearized system (10). The pro-
jecting operators (17) point the way for successful decom-
position of equations governing every mode also in the
nonlinear flow. Projection results in dynamic equations
with nonlinear terms responsible for the modes’ interac-
tion. These terms may be considered as "driving forces" for
individual modes. Egs. (9) accounting for nonlinear terms

takes the form

oV
Y=y, 19
ot + [ (19)

Application of P, to the system (19) cancels all acoustic
and entropy terms in the linear part of the left-side vector,
but yields nonlinear sources in the right-hand vector. We

J

This yields the dynamic equation for the vorticity mode in
the field of intense sound in two equivalent forms,

o =0 (%) x (v30).
‘93;" = DPurts 0oV 000 (23)

where O is the vorticity of the flow, G =V X Vo, and
Pa = p1+ p2. Application of the last row of P; on Eqgs. (9),

will consider among nonlinear terms only acoustic ones.
These correspond to intense sound as compared to the
non-wave modes. The vorticity projector in fact applies
on three components of overall velocity. Its part, applying
to the velocity vector, Py, includes nine operators:

9? 9? 0? 0?
(')Tﬂ + 02 ox0dy ~ 0x0z
1 92 9? 9? 9?
Pvart,\7 = x - -5t -
A oxdy  ox* 072 dydz
9? 9? d? 9?
~ 0x0z - dyoz ox? * 67y2

(20)
Application of P, to the first three equations from the
system (9) (they represent the momentum equation), re-
sults in the dynamic equation governing velocity of the
vorticity mode:

I op

. —(V-V)v + p§

Vvor = P
Tt = Pvurt,\7 _(V . V)Vy + p@ (21)

I op
~(7- Vv + pg

The right-hand side of Eq. (21) includes, in general, terms
belonging to both acoustic modes. By use of the first
two eigenvectors from Eqs. (14), we express the acoustic
pressure and components of the velocity in terms of ex-
cess density for each pair of acoustic modes, and readily
rearrange Eq. (21) into the following equation:

2 2 2 2
+DY paVAY put =DPuopy (Z P VAY p, ) . (22)
n=1 n=1

n=1 n=1

(

if only nonlinear terms belonging to the first mode are
kept in the nonlinear part to leading-order, results in the
equation governing an excess density of the first branch
of sound,

0p1 D
28—1 =, 1» -
(259 s+ 39| =0, 24
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where € denotes the parameter of nonlinearity,

+

c= ( (1= )Gy +1) | cain0(1 — o)’ P (v + 1)
2¢; 2(¥spgo)?

(25)
and the square root of the Laplacian (VAf(F, t)) means an
integral operator which corresponds to the Fourier trans-
form of iy/kZ + k2 + K2f(K, t). The parameter of nonlin-
earity, given by Eq. (25), coincides with that evaluated
in Ref. [2]. In the study [2] the expression obtained
for incompressible liquid is completed by the terms fol-
lowing from the nonlinearity in equations different from
the pressure-density relation for the mixture. In contrast,
Eq. (25) is an immediate result of considering of the total
system of conservation equations describing compressible
liquid including bubbles.

5. Vortex flow induced in the field of
a Gaussian beam

Until this point, no restriction concerning the type of flow
geometry was done. Let y designate the nominal axis
of the sound beam pointing in the propagation direction,
and let x, z be the coordinates perpendicular to that axis.
We will assume that all acoustic perturbations vary much
faster in the direction of the OY axis than in the direction
perpendicular to this axis: k; > k7 + k7. This allows
expansion of the relations for sound perturbations in a
series of powers of the small parameter p = (k? + kzz)/kyz.
Using this assumption, we can rewrite the equation (24)

in the form:
6p1 6p1 AL D 63p1 6p1
—+t—+ = dy+ = — =0, (26
6t+6y+2 P y+20y3+£p1ag (26)
where A} = a% + a%' This equation is in fact one of

the forms of the KZ (the inviscid limit of KZK) equation
including dispersion. The dynamic equation for the vortic-
ity mode in the field of intense sound propagating in the
positive direction of the OY axis takes the leading-order
form:

aﬁ - -»62/)1
a_D(vm)x(vayz). 27)

Eq. (27) reveals that both nonlinearity and dispersion are
necessary conditions for acoustic streaming in a bubbly
liquid. The following assumptions will be made regard-
ing the source: it is defined at the plane y = 0 and is
positioned symmetrically with respect to the y-axis. The
system (Egs. (26), (27)) may be readily rearranged in a

cylindrically symmetric geometry with r = /v x? 4 z2:

a a d a Do d
9p1 9P K O (,/ﬂd )+7ﬂ+6 9Py,

at  dy 2ror or 2 ay? dy
(28)
2 cos ¢
0Q
S=vio| o |Fp), (29)
—sin¢
where ; ;
Flo = 221021y 91 0P (30)

or ay3 ' dy ardy?
Q is establishment of function p1, which satisfies Eq. (28).
As far as the authors know, there are no analytical solu-
tions of Eq. (28). We rearranged Eq. (28) into the follow-
ing equivalent form:

and ¢ = arccos ( ). The main difficulty in solving for

6p1 6,01 \/17 0 D63p1 6p1
9 D 9P _ 0 (31
at Ty T ar 9+ 3 a7 TPy 0. (31)
dg dp
99 _ P 32
ay  YFor (32)
where
© g
g=—vii [ Pay. (33)
y

and solved it numerically. The equation describing the
radial-component of Q takes the form:

0Q,
ot

= VHuDF(py), (34)

where p is a solution of Egs. (31), (32). The y-component
of Gis independent on time. Solutions of Eq. (34) with p,
described by Egs. (31), (32) have been calculated numer-
ically for the following initial and boundary conditions:

Quy,r,t=0)=Q(y,r,t=0)=0, Q(y=0,r1=0,
(35)

pily,r,t=0)=0, pi(y=0,r t)=Msin(t)e """,

6p1 _ _
>y r=01=0. (36)

In accordance with the system (29), the radial-
component of the vorticity is proportional to M?, D and
V. Its y-component equals zero for the chosen initial
conditions. It can be concluded from numerical simulations
that the vorticity achieves a maximum at some distance
from a transducer and the axis of a beam. Vorticity de-
creases far from a transducer, which is due to decrease in


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

Anna Perelomova, Pawel Wojda

Q,(y,r,t=150)/DM?>

020

oasf ¥=30

0.10F

y=5
M =0.02
00sf [ £
/ y =80
0.00 =120 e ‘ o
1 2 3 4
—0.05L
(a)

Q,(y,r,t=150)/DM?>
0.20

015

o10f

0.05

0.00 s
s0r=2.0 100 r=0.0150 200

r=15

—-0.05 -

(©

Q,(y,r,t=150,D=0.02,M=0.02)/DM>

(e)

Q,(y,r,t=400)/DM?

020
y =30
015}
0.10F /:5
/ M =0.02
) y =280
MRy =20 S T
—0.05t
(b)
Q,(y,1,t=400)/DM?>
020
0.15] .
/ r=06
0.10 '
0.05
000 = 2.0)730 r=0.0150 2007
r=15
—0.05C
(d)
().,(y,r,t=400,D=0.02,M=0.02)/DM2
r 3
0.2 2
1
0.1
0.0
—~0.1 50
100
y 150

200
(f)

Figure 1. Transverse component of vorticity Q,(y, r, t). a = 2.5-10° (impulse), M = 0.02, D = 0.02, VE=01,e=1.2,t=150o0r t = 400.

the magnitude of the acoustic density at large distances.
For M less than D, vorticity constantly decreases with
increased distance from the sound source, starting from
the distance where it achieves maximum. Thus, we can
conclude that the parameter D is responsible for the sta-
bilization of vorticity, in the sense that it suppresses os-
cillations of vorticity. In this stabilization, D behaves like
attenuation in nonlinear effects caused by sound in New-
tonian fluids. The larger the ratio of M and D is, the larger

vorticity oscillations are. For values of M larger than D,
domains appear where vorticity changes to the opposite
sign. This happens, among other locations, close to the
source of sound for D = 0.02 and M between 0.01 and
0.02. The last parameter that affects the formation of vor-
ticity is the diffraction parameter p. The distance from a
transducer where vorticity is maximal increases somewhat
with decreased p. In turn, maxima increase with enlarge-
ment of pr. Oscillations of the vorticity generated by pulses
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Figure 2. Transverse component of vorticity Q,(y, r, t). a = 2.5- 10~ (impulse), M = 0.02, D = 0.02, Vi =0.05,¢=1.2,t=150or t = 400.

are much smaller than those caused by harmonic acoustic
waves at a transducer. For periodic acoustic waves, vor-
ticity increases in time, while for aperiodic case its tends
to some limit level. Figures 1, 2 show vorticity generated
by impulses for values of diffraction parameter /i equal
0.1 and 0.05, respectively (a equals 0.000025). Figures 3,
4 show vorticity generated by periodic sound for different
ratios of the dispersion parameter and the Mach number.

Solutions of Egs. (31), (32) have been obtained by means
of a numerical scheme which uses an implicit Runge-Kutta

method, and the second-order central difference scheme
for the spatial derivatives, which for zero diffraction pa-
rameter p is analogous to a scheme for solution of the
Korteweg-de-Vries equation developed in [22]. The dif-
ferences between two consecutive space points of 0.1 was
chosen both for the dimensionless longitudinal variable
and the dimensionless transversal variable in all evalua-
tions. That corresponds to the following dimensional spa-
tial steps: for the longitudinal variable 10~ m and for the
transverse variable 1073 m (for /i =0.1) and 2- 103 m
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Figure 3. Values of Q(y,r, t), a = 0 (the case of harmonic sound at a transducer), plots for D = 0.02 and D = 0.002, M = 0.01, \/u = 0.05,

e=1.2,t=400.
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Figure 4. Transversal component of vorticity, Q,(y, r,#). @ = 0 (the case of harmonic sound at a transducer), plots for different M, D = 0.02,

Vi =0.05,e=12and t = 400.

(for /i = 0.05). The dimensionless time step equals 0.01
in all calculations. It corresponds to a dimensional time

step of about 1077 s

6. Conclusions

In this study, we consider acoustic streaming in a liquid
including gaseous bubbles. The main results of this study

are equations (23), which describe nonlinear generation of
the vortex mode in the field of intense sound. They apply
to periodic and aperiodic sound, they are instantaneous,
and their derivation does not require averaging over the
sound period. An inviscid liquid is considered, so that
nonlinear generation of the vortex mode is caused exclu-
sively by dispersion. Dispersion of a bubbly fluid origi-
nates mostly from the difference in compressibility of the
liquid and gaseous phases. In some sense, it behaves like
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a Newtonian attenuation: it is a necessary (along with
nonlinearity) condition for generation of the vortex motion
in the field of sound. Dispersion also stabilizes the vortex
velocity. This study accounts for liquid compressibility.
Neither heat transfer between bubbles and surrounding
liquid, nor non-uniformity of pressure and temperature in-
side a bubble, nor vaporization in the case of bubbles
including vapor, were considered. Without accounting for
nonlinearity, the dynamic equation for the vorticity mode
in an inviscid fluid describes a stationary velocity which
is independent on the sound field. In a viscous liquid, it
takes the form of a diffusion equation, but it still devel-
ops independently from the other modes. Accounting for
nonlinearity makes this mode enhance in the field of in-
tense sound. We do not consider convective nonlinearity
in the left-hand side of the dynamic equation for the vor-
ticity, Eq. (27), which is described by the term (V- ﬁ)ﬁ. It
is well established that accounting for this term prevents
enlargement of vorticity with time [21].

Numerical results show impact of non-linearity, disper-
sion, and diffraction of an acoustic beam on the vortex
motion. The results concern a free half-space with a cir-
cular transducer which is situated at the boundary. In-
clusion of boundaries may essentially change conclusions
and influences on the very definition of modes, which, as
a rule, refers to a discrete set of wavenumbers dependent
on the geometry of a volume and boundary conditions.
Analysis of the results has revealed the impact of the ra-
tio of the Mach number and dispersion parameter on the
vorticity mode. If the Mach number of a flow M is larger
than the dispersion D, the streamlines may change di-
rection in some domains. This is shown in Figures 3, 4.
The examples considered concern zero initial conditions.
After the transducer is turned on, sound begins propagate
generating vorticity. In the initial phase (up to dimension-
less t less than 40), generation of vorticity is similar for
a set of different dispersion parameters and Mach num-
bers. With longer time, differences become more evident.
The vorticity achieves a maximum close to dimensionless
y = 50. If the ratio of M and D is larger than unity, the
maximum value is achieved for smaller y. More intense
sound yields larger fluctuations of vorticity. This is es-
pecially evident for smaller distances from the transducer
(for y less then 50).

Another remarkable conclusion is connected with diffrac-
tion. In accordance with Eq. (29), the vortex velocity is
proportional to the square root of y (it might be not so ev-
ident from Egs. (23)). That is confirmed by the numerical
evaluations (Figs. 1, 2). For smaller values of the diffrac-
tion parameter, the vorticity achieves its maximum at a
somewhat larger distance from a transducer. The depen-
dence of acoustic streaming on diffraction may be useful
for configuring the vortex flow. A similar behavior of vor-

ticity is observed for both periodic sound and for pulses.
The difference between these two cases is that, for the
pulses, the value of vorticity is limited in time, and for
the periodic case, the vorticity constantly increases. Ac-
counting for purely nonlinear attenuation (in an inviscid
liquid, a shock wave forms sooner or later) or viscosity
would prevent this unlimited growth in the magnitude of
the vorticity.
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